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Non-geometric fluxes and non-associative geometry Erik Plauschinn

1. Introduction and Motivation

One of the remarkable features of string theory is that it provides a framework to treat gauge
theories and gravity in a unified way, and which is expected to be complete in the ultra-violet (UV).
Concerning gauge theories in field theory, it is known how to deal with (certain classes of) thereof
in the UV via the procedure of renormalization. For gravity on the other hand, that question is
understood to a far lesser degree. Although, one may expect that a theory of quantum gravity is
related to a space-time which is non-commutative. In view of this expectation, also string theory
should feature a non-commutative behavior.

However, non-commutativity in string theory was first discovered for D-branes which corre-
spond to the gauge theory sector. More concretely, for an open string ending on a D-brane endowed
with a gauge flux, the commutator of two open-string coordinates on the brane is generically non-
vanishing [1, 2, 3]. Moreover, correlation functions of vertex operators on the D-brane also indicate
a non-commutative structure which is encoded in a phase factor. Constructing then an effective ac-
tion out of these correlators, it turns out that the phase factor can be incorporated via a Moyal-Weyl
star product between the fields. One therefore obtains a non-commutative gauge theory on the
D-brane [4].

For the gravity sector in string theory, non-commutativity appears to be harder to obtain (for
earlier work on that subject see for instance [5]). But, given the results for the open string, a
guideline to study the closed string may be to parallel the discussion of the former. Let us therefore
highlight the following three points:

1. For the open string, as will be explained in more detail below, the non-commutativity pa-
rameter is related to the gauge flux on the D-brane. Therefore, in the closed-string sector we
should consider backgrounds with non-trivial fluxes.

2. A quantity which clearly shows the non-commutative behavior for the open string is the
commutator of two coordinates on the D-brane. For the closed string, we thus seek for a
similar expression.

3. Correlation functions of open-string vertex operators exhibited a non-commutative behavior,
which is related to the Moyal-Weyl star product. Therefore, also in the closed-string sector
we should compute correlation functions and try to extract a non-commutative product.

Background fluxes Let us continue with a brief discussion of background fluxes. As just men-
tioned, for the open string the non-commutativity parameter is related to the gauge flux on the
D-brane. For the closed string, the authors in [6] thus considered a background with non-vanishing
H-flux realized via Wess-Zumino-Witten model [7]. Other flux backgrounds with geometric flux f
and non-geometric fluxes Q and R can be obtained by applying successive T-dualities [8, 9]

T. T
H_xyz fxyZ : Q.XyZ

For the setting in [6], the most interesting situations were non-vanishing H- and R-fluxes, where

e, povz (1.1)

the latter is expected to be related to a non-associative structure [10, 11]. However, the question of
non-commutativity in closed string theory was also studied in [12], where the cases of H-flux and
geometric flux were analyzed in the framework of doubled geometry, leading to similar findings as
in [6].



Non-geometric fluxes and non-associative geometry Erik Plauschinn

(a) Open string disc correlator (b) Closed string correlator on (c) Closed string correlator on
with two vertex operators the sphere with two vertex oper- the sphere with three vertex op-
ators erators

Figure 1: Open string disc diagram (a) with two vertex operators, for which an ordering can be defined
(locally). For two vertex operators on the sphere (b), no such ordering can be defined. For three vertex
operators on the sphere (c), a line connecting the three insertion points has an orientation (locally).

To summarize, in order to investigate non-commutativity for the closed string, recent work
suggests to consider backgrounds with non-vanishing H-flux as well as non-vanishing geometric
or non-geometric fluxes.

Three-bracket We now turn to the question of how to identify a suitable expression displaying
non-commutative behavior. For the open string, the origin of the non-commutativity can be ex-
plained heuristically in the following way. To compute the two-point function on the D-brane, as
illustrated in figure 1(a), vertex operators are inserted at the boundary of a disc. Provided there
is a quantity sensitive to the ordering of these operators, such as the gauge flux on the brane, the
operators do not commute. For the closed string, the situation is different. Here, the world-sheet
is a sphere rather than a disc, and vertex operators are inserted in the bulk of the sphere. As illus-
trated in figure 1(b), no ordering of two operators on the sphere can be defined. However, when
inserting three vertex operators and connecting them through a closed line, as shown in figure 1(c),
a different orientation of the line may be detected by a quantity sensitive to such a change.

This heuristic observation suggests that in order to observe non-commutativity for the closed
string, one should consider three instead of two objects. In terms of commutators of closed string
coordinates, a natural guess for such an expression is

[X* XY XP] = Jim [[X*(01,7),X" (02, 7)],XP (03, T)] + cyclic . (1.2)
Note that if this cyclic double commutator is non-vanishing, it indicates not only a non-commu-
tative but also a non-associative structure (see also [13] within the proceedings of this conference).

Another argument supporting (1.2) is that for two closed-string coordinates X* (o, 7) the single
commutator generically depends on the coordinates ¢ and 7 of the world-sheet. Therefore, such a
quantity can not be expected to characterize a feature of the target space.

Correlation functions Non-commutative behavior may also be encoded in correlation functions
of vertex operators, and so we briefly recall the situation for the open string. With 7; denoting
a tachyon vertex operator of the open bosonic string, p; the corresponding momentum, 6 a flux
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parameter and €(7) = sign(7), a correlation function of N such operators is found to be
(Ty...Ty) =exp <i Y PuaO® pmpe(ti— rm)) X(Ti .. Tn) g_g (1.3)
1<n<m<N

which contains an extra phase due to the non-commutative nature of the theory. One can then
define an N-product %y in the following way

F1(x) %N fo(x) k- oxn fv(x) ==
exp <i Z gaba;n 8;“’”) fi(x1) fa(x2) ... fv(xw) ’

1<n<m<N K= =AIN=X

(1.4)

which correctly reproduces the phase appearing in (1.3). Note that these N-products are related to
the subsequent application of the usual star-product * = %,. Therefore, by evaluating correlation
functions of vertex operators in open string theory, it is possible to derive the Moyal-Weyl product
and some of its features [4]. Moreover, in [14] and [15] this product has been studied in the context
of the open string, and a non-associative behavior has been found.

By analogy, for the closed string we then also have to compute correlation functions and
identify the dependence on the flux. If the latter can be encoded in a phase factor, an analysis
along similar lines as for the open string can be performed. Although quite ambitious, from these
correlation functions a product like the Moyal-Weyl star product may be extracted, and a theory of
quantum gravity using such a product may be formulated.

Strategy and outline for these proceedings The points alluded to above suggest that to study
non-commutativity for the closed string, a cyclic double commutator in a background with non-
vanishing fluxes should be computed. A convenient setting for such an analysis are Wess-Zumino-
Witten models, which we employ in section 2 to compute (1.2) for the coordinates of the closed
bosonic string. Two of the main results will be that a non-commutative behavior for the closed
string can indeed be seen, and that this feature appears already at /inear order in the flux parameter.

However, since non-commutativity can also be detected in correlation functions, in section 3
we define a conformal field theory at linear order in the flux and introduce vertex operators. Com-
puting then correlation functions of the latter and studying the phase factor of these expressions,
we are led to the definition of a tri-product. One might suspect that this product can be used to
construct a non-commutative theory of gravity, which, however, has not been achieved to date.

As a final remark, let us mention that these proceedings cover a talk given some time ago
and so further developments and new results have appeared. In particular, as mentioned above,
non-commutativity in closed string theory has also been studied in [12], and examples have been
constructed in [16]. A comprehensive summary of the ideas in [6] and [17], with a different em-
phasis compared to here, can be found in the proceedings [18]. Furthermore, as we pointed out
above, backgrounds with H-, geometric and non-geometric fluxes are important for the question
of closed-string non-commutativity. Recently, such settings have been studied for instance in [19]
from the point of generalized complex geometry, and in [20] in the framework of double field the-
ory (see also [21]). Furthermore, in [22] a Palatini formulation of (higher-order) Lovelock gravity
has been analyzed, and requiring consistency of the Palatini formalism lead to constraints which
can be interpreted as Bianchi identities for geometric and non-geometric fluxes. This analysis will
be continued in [23].
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2. Closed string non-commutativity

In this section we approach the question about non-commutativity for closed strings. In the
open-string sector, non-commutativity appeared for strings ending on D-branes endowed with a
background flux [1, 2, 3]. In the following, we will therefore first briefly review the analysis in the
open-string case, and then perform a similar computation for closed strings. This section is based
on [6], where further details can be found.

2.1 Open string non-commutativity

In this subsection, we mainly follow the discussion in [2].

Open string computation We consider an open string with both endpoints on a Dp-brane car-
rying constant two-form flux .%;; = B;; + F;;, where i, j = 0,..., p. This leads to mixed Neumann-
Dirichlet boundary conditions longitudinal to the brane, so that the mode expansions for the corre-
sponding free bosons read

—intT
e

X'(o,7) =xh+ (gt — o Fj o) + ¥

(ioc,’; cos(no) — a,{ﬂfsin(nc)) . (2.1
n#0

Here we normalized 0 < ¢ < 7, and indices of .%; j are raised by the inverse metric of the form nij =
diag (—1,+1,...,4+1). As carried out in [2], the commutation relations for the modes appearing in
(2.1) can be obtained via canonical quantization. Using these relations, the equal-time commutator
is evaluated as

sinn(o; + o»
P(01,02) + Z (n)

n#0

[Xi(01,7),X(02,7)] = —2ic/ (M~ )" .2

where M;; = 6;j — e%kﬁkj and matrix products are understood. The function P is a continuous
linear expression in the world-sheet coordinates o; of the form

P(o),00)=01+0,— T, (2.3)

which arises purely from the commutation relations involving the zero modes x}, and ¢. The sum
in (2.2) originates from the oscillator modes ¢ for n # 0, and can be further evaluated using the
Fourier transform

(2.4)

V(‘P):i sin(nn(p) :{é(ﬂ—<p) 0<¢<2m,
n=1

0 ¢0=0,2m.
Using then equations (2.3) and (2.4), we see that for 0 < 0] + 0> < 27 the two terms in (2.2) cancel.
However, on the boundaries 6; = 0> = 0 and 67 = 0> = 7 one obtains

[X7(0,7),X7(0,7)] = —[X/(%,7),X/ (7, 7)] = 2mict/ (M~ F)" . 2.5)

In summary, the equal-time, equal-position commutator between two target-space coordinates
X!(0,7) does not vanish along a D-brane carrying non-trivial two-form flux .%;;.
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Remarks Let us make the following remarks:

e Even without knowing the zero mode contribution P(0j,07) explicitly, we could have
guessed this function by requiring the commutator (2.2) to vanish for generic points on the
world-sheet. In turn, the non-zero result in (2.5) arises from the boundaries of the open string
due to the discontinuity of y(¢) at ¢ =0 mod 27.

e Since the equal-time, equal-position commutator (2.5) is independent of the world-sheet
coordinates ¢ and 7, one can indeed conclude that this world-sheet computation reveals a
feature of the target space (as probed by an open string).

2.2 Closed string non-commutativity

For closed strings, we expect non-commutativity to arise for backgrounds with a non-vanishing
flux. As a consequence, the equations of motion require the space to be curved. One of the sim-
plest examples for an exactly solvable configuration are Wess-Zumino-Witten (WZW) [7] models
describing compactifications with H-flux [24].

Wess-Zumino-Witten models Let us therefore start our discussion by considering the WZW
model for the group manifold SU(2). The corresponding action is given by

S = % ./aZdeTr [(&xg)(aagfl)}

R L eI (01 9n0) (0 D) (0= 0
s e T Te (¢ dag) (e 0pe) (5 9pe)]

(2.6)

where k € Z" denotes the level and X is a three-dimensional manifold with boundary dX. The
indices take values @ = 1,2 and &, ... = 1,2,3, which are raised or lowered by the metrics hqp =
diag(+1,+1) and hgz = diag(+1,+1,+1), respectively. Parametrizing an element g € SU(2) in
terms of Hopf coordinates n* as

rn2 in3 .

eMcosn! €M sinn!

g = 7”}3 . 1 71'712 1 ) (2’7)
—e M sinn! e cosn

with 0 < n! < /2, 0 < n*3 < 27, one realizes that the first term in (2.6) is a non-linear sigma
model with target space S° of radius R = v/k, and the second term corresponds to a background
flux proportional to k.

Conserved currents and Kac-Moody algebras Solving the model (2.6) directly in terms of
Hopf coordinates 1’ is not easily possible, but it is well known that the WZW model actually is
exactly solvable. To see this, we introduce a complex coordinate z = exp(x' +ix?) and define the

currents
a a

O )
J=J"—=—k(d.g)g”! J=J"—=+kg '(2:9) . 2.8
NG (0.8)g ", N (o) (2.8)

Note that here and in the following, 0 with a = 1,2,3 are the Pauli matrices and summation over
repeated indices is understood. From the equation of motion of the WZW model (2.6) it follows
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that the currents J% are holomorphic and that the J¢ are anti-holomorphic. Therefore, one can
perform the Laurent expansions

=Y jiz !, @)=Y jiz . (2.9)
nez nez

The symmetry transformations of the WZW model then translate into the following commutation
relations for the modes j¢ and j*

[]fnv];l;] =i abcjrcn+n+km5m+n 8 ) _

o ) s n) =0, (2.10)

s ) = 1P Tonin kS 8,
which define two independent Kac-Moody algebras. Note that the structure constants for SU(2) in
our convention read f%¢ = /2&%¢_ and indices are raised or lowered by §°° and §,,, respectively.
For later reference, let us then employ the parametrization (2.7) in (2.8) and express the two currents
(2.9) as follows

J4(z) = —ivV2kE%; 0.1, J4(z) = —ivV2kE%; 0’ . (2.11)
The matrices E%; and E¢; are known explicitly (see [6]), and depend on the coordinates 7’.

Local coordinates So far, we have mainly reviewed the well-known geometry for the exactly
solvable SU (2); WZW model. However, let us now introduce fields X“(z,z) according to

J(2) = —ivVk9.X(2,7) = —iV2KEY (1) d:n'(2,2) ,

J(z) = _i\/];(}zxa(z’z) — _iv2kEY, (7) 91 (2,7) . (2.12)

It is clear that the X“ do not correspond to bona fide global coordinates on S* since there does not
exist a flat metric on S°. However, as shown in [25], if the X“(z,Z) satisfy their (free) equations of
motion, the 1'(z,Z) do so as well.

Next, since the cyclic double commutator (1.2) we are interested in is a local quantity, we can
imagine to probe the geometry around a point 7jo on a three-sphere > by a closed string. Writing
then

X%(2,2) = X“(2) + X“(2) (2.13)
and using (2.12), locally we can identify the left- and right-moving coordinates as
X“(2) = VIKE (7o) 0'(2) X(2) = VRKE () T(E) . (214

The mode expansions of X“(z) and X“(Z) are found by integrating the expansions of the currents
given in (2.9). In particular, for the holomorphic part we arrive at

]n "
i logz 4+ —— 2.15)
WA %

and a similar expression is obtained for the anti-holomorphic part X%(Z). The modes j¢ in (2.15)

X(z) =

satisfy the corresponding Kac-Moody algebra given in (2.10), however, a priori it is not clear what
the precise form of the commutation relations involving x is. In the following, we are going to fix
this contribution in analogy to the open string discussed in section 2.1.
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Cyclic double commutator Let us consider the cyclic double commutator for the holomorphic
part X“(z) of the free fields (2.13)

[X%(21), X" (22), X (23)] = [ [X“(21),X"(22)] , X“(23)] + cyclic,, (2.16)

evaluated at equal times. For our choice of complex coordinates z; = exp(t; + io;) this implies
|z1] = |z2] = |z3|, which will always be understood for the expression (2.16). To simplify the
following formulae, let us furthermore introduce x%, p* and j* as

i i . L N Jn
X' = —=xp, p(z) = ——=Jjologz, i'(2) = Pk 2.17
Vk vk Vi ,;5 n 217
For the computation of (2.16), we first collect all terms involving x* into a so far undetermined

function 92%b¢
PY(z1,20,23) = [ XXX ] 4 [x4Ox0, ]+ x4 ]+ (2.18)

For all other contributions in (2.16), we employ the Kac-Moody algebra (2.10) of the modes ;¢
as well as the Jacobi identity for the structure constants f*’.. Apart from (2.18), the only non-
vanishing double commutator then reads

w . w fabe 1 (z\" ()" .
(i@ ) @) = =7 n!mz#o wm <Z?> <ZZ> +eyelie. (2.19)
n-+m=£0

Remember that this expression is understood to be evaluated at equal times. For the right-hand side
in (2.19), we split the sums in the following way and compute

U (zz\" [(z3\" 1 ()" .
F(G],GQ,G}):— Z m<2) <2> —an<2> +cychc

n,m7#0 n a1 2 n#0 <
(2.20)
—n? 01 =0, =03,
B 0 else .

Combining the above results, we arrive at the equal-time double commutator of the holomorphic
fields X“(z) of the form

abc

Vi

For the computation in the anti-holomorphic sector, we note that the modes j¢ satisfy the same Kac-

(X9(21), X" (22),X (z3)] = 2 (21,22,23) + [(01,02,03) . (2.21)

Moody algebra as j¢. Furthermore, we have z; = %% and so we only need to replace 6; — —0;
in the result (2.21) for the holomorphic sector. However, observe that the function I" is invariant
under that substitution. Therefore, the result for the full equal-time double commutator reads

[X“(21,21),X"(22,22), X (23, %3)]

abc (2.22)
I'(o1,07,03) .

7 (01,02,03)

It is now tempting to follow the same logic as for the open-string computation. That is, we fix the

— e@abc(zlvz2vz3) +ﬁabc(21722723) +2

unknown contribution & + 2 of the zero modes xg and X; by:
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Assumption : The zero mode contribution & + & is continuous; and for the three points
z; not all equal, the equal-time double commutator has to vanish.

More concretely, this assumption means that
P (21,20,33) + P(21,%2,73) = 0. (2.23)
Using then (2.20) and (2.23) in (2.22), we arrive at the following result

2m?
X4 X? X] = 1im [X%(21,71),X"(22,22), X (23,73)| = — —= f*%*. 2.24
(X X" X°] z,-1£n>z[ (21,21),X"(22,22), X (23,23) ] \/];f (2.24)
Therefore, pursuing the same reasoning as for the open string, we are led to the intriguing result
that the fields X“ satisfy a non-vanishing three-bracket, where the right-hand side is constant and

proportional to the SU(2) structure constants £,
Summary and remarks Let us make the following remarks:

e In order to get a better understanding of the expression (2.24), we mention that for a funda-
mental product x’ e x/ one can define a three-bracket as

[xl,xz,XS] _ Z sign(o) ((xc(l) .xG(Z)) 0 °B) o) 4 (x0(2) 0x6(3))) ) (2.25)

being the completely anti-symmetrized associator of this e -product. For an associative prod-
uct this expression vanishes, and so the non-vanishing result (2.24) indicates both a non-
commutative and non-associative (NCA) structure.

e The equal-time, equal-position double commutator is independent of the world-sheet coor-
dinates. Thus, it is expected to reflect a property of the target space (as probed by a closed
string).

e Recalling that the radius of the three-sphere is R = v/k, we realize that in the large radius
limit R — oo the NCA effect vanishes.

e We also computed the single commutator lim,, ,.[X“(z1,21),X"(z2,72)] and found it to be
dependent on the world-sheet coordinates. We therefore conclude that the fundamental, well-
defined target space structure is a three-bracket.

e As explained in more detail in [6], in contrast to the Hopf coordinates 1’ the fields X¢(z,z)
in (2.13) are not proper coordinates on the sphere. Therefore, the structure constants f¢
appearing on the right-hand side in (2.24) have to be interpreted properly. In particular, they
should be interpreted as a non-geometric R-flux.

To summarize, denoting the flux-parameter by 89*¢, in the case of non-geometric R-flux the equal-
time, equal-position cyclic double commutator indicates a non-associative structure and reads

[X“,Xb,XC} ;= lim [Xa(zl,zl), [Xb(ZQ,ZQ),XC(Zg,,Z:;)]] +cycl. = O“bc . (2.26)

Zi—2
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3. Correlation functions and tri-product

In this section, we first define a conformal field theory (CFT) for the closed-string sector which
captures effects at linear order in the background flux. Then, we compute correlation functions of
vertex operators therein, and extract a non-commutative product. This part is based on [17], where
more details can be found.

3.1 Structure of the conformal field theory

Setting Here, we do not start from an exactly solvable WZW model and then take a local limit,
but rather from a flat background with flux. More concretely, our framework is that of a flat space
with constant H-flux and dilaton which is to be considered as part of a full bosonic string theory
construction. The metric and the flux are specified by

N
2 :
ds® =Y (dx)?, H = =5 OupedX NdX NdXE 3.1)
a=1 o
where in the following we focus mostly on N = 3. A closed string moving in this background can
be described by a sigma-model. With ¥ denoting the world-sheet of the closed string, its action

reads

1 _
A’z (gap + Bap) 90X 0X" 3.2
27ra’/z 2 (gab +Bap) ; (3.2)

where the metric for our particular situation is given by g, = 9,5, and for the B-field we choose a
gauge in which B, = %Hach".

Let us point out that already at lowest order in @', the background given by (3.1) is not a
solution to the string equations of motion. In particular, the beta-functional for the graviton

!/

G _ /Ry — %Hﬂﬂm 120V, V,® + 0(c?) (3.3)
does not vanish for (3.1) in the case of a constant dilaton ®. Only at linear order in the H-flux
the above background provides a solution. We can thus conclude that the flat-space background
with constant H and ® corresponds to a bona fide conformal field theory at linear order in the flux.
Furthermore, since the three-bracket (2.26) is linear in %€ ~ H¢, up to first order in the H-flux
we expect to find a reliable world-sheet CFT framework capturing potential non-associative effects.

Three-current correlators We continue by noting that the closed string coordinates X“(z,Z)
appearing in (3.2) are actually not proper conformal fields. Only the currents have a well-defined
behavior under conformal transformations. Therefore, as usual, for the free theory we define

J(z) =idX"(z), J4Z) = idX"(z), (3.4)

which at zeroth order in H are indeed holomorphic and anti-holomorphic, respectively. Employing
now the framework of conformal perturbation theory (see [17] for more details on the computation),

10



Non-geometric fluxes and non-associative geometry Erik Plauschinn

for the correlators of three currents (3.4) (up to first order in the H-flux) we find

2 1 72

. .Q —c/e .a 212
Ja Z Jb Z JL Z = —i Habci, Ja Z Jb Z JC Z :_liHabcij
@) @) I (@) 8 212223213 @) @) (@) 8 23,223713
= o 1 e o z
<Ja(Zl)Jb(ZZ)JC(Z3)> =+ Habczfa <Ja(Zl)Jb(ZZ)JC(Z3)> = "H?Habc%’
12223213 12223213
3.5

where we made use of the anti-symmetry of H,, raised the indices of H with 5 and used z; =
z; —zj. As one can see, these expressions are not purely holomorphic or purely anti-holomorphic,
but mixed terms appear. However, we have been using the currents (3.4) which are only valid for
the free theory. To work at first order in the flux, we should take into account corrections to (3.4)
linear in H. Let us therefore define new fields #“ and j‘l in terms of (3.4) in the following way

S (2,2) =J(2) = 3H eI (2) Xk (2) | T2 =T'R) - 3H X[ (2)T(7) . (3.6)

For these, the only non-vanishing correlators of three fields (up to first order in the flux) are then
either purely holomorphic or purely anti-holomorphic
o 1
</a(zl7zl) /b<Z27ZZ) /C(Z3723)> - _l ?Habc )
212223213 (3.7)
1

_ _ _ o 2
</a(zl7zl) /b(ZLZZ) fC(Z3;Z3)> =41 ?Habc - —_ -

212223213
Furthermore, using the equation of motion derived from the action (3.2), at linear order in H
we compute d_#%(z,Z) =0 and d_#(z,Z) = 0, so these fields are indeed holomorphic and anti-

holomorphic, respectively. From now on, they will be denoted as _#“(z) and _7“(z).

Current algebra and energy-momentum tensor Let us now study the fields #%(z) and _#(2)
in more detail. Their non-vanishing two-point function up to first order in H is readily found to be
o 1

(J%2) f (2) = (J2) () = - ——5 07,

2 (z1-2)
<?a(21)jb(22)> = <ja(Z1)jb(Zz)>0 = gl % 5 )
2 (z1—2)?
where we employed the definition (3.4) of the currents J%(z) as well as the two-point function of
the fields X“(z,z). Taking then into account the three-point functions (3.7) of the fields _#“(z) and

_79(%), with the help of (3.8) we can construct the following OPEs

(3.8)

(X’ 6ab a/ iHabc

JU) () = PR () + reg.,
a

4 21—
! 6ab a/ l-Hab _

Ji@) (@) = >

(3.9

——— + — ——— #°(72) + reg.,

(Z1—22)? 472-2 S @) s

where “reg.” stands for regular terms and where the OPEs between _#“(z) and _#?(Z) are purely
regular. Note that (3.9) defines two independent non-abelian current algebras with structure con-
stants f%. ~ H%_. The only difference to the usual expressions is an opposite relative sign for
H% . between the holomorphic and anti-holomorphic parts.

11
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Next, we turn to the energy-momentum tensor. Up to linear order in the flux we find

5(1)2%&%/“/":(@, ?(z):i, w: 79 70:(3), (3.10)

o

and the anti-symmetry of H implies that the OPEs of two energy-momentum tensors take the form

_c/2 27 () | 9T (22)
T(z) T () = a-ar T on? - p— + reg. , .
o\ Ty c/2 2?(&) 3?(22) r .
T (1) T () = G- T Eony + % + reg. ,

with .7 (z1) 7 (Z2) regular. We therefore find two copies of the Virasoro algebra with the same
central charge c as for the free theory. Moreover, using (3.9) and again the anti-symmetry of H,
one can show that the fields #9(z) and _#“(Z) are primary of conformal dimension (1,0) and
(0,1) with respect to .7 (z) and .7 (Z); and so they are indeed non-abelian currents.

Basic three-point function Let us now define fields 2 “(z,Z) as the integrals of (3.6). In partic-
ular, we write

I(2)=id2z,2), TR =id 2 (2,7) . (3.12)

The three-point function of three 2™ up to first order in the H-flux can then be obtained by inte-
grating the corresponding correlators (3.7). For that purpose, we introduce the Rogers dilogarithm
L(z) which is defined in terms of the usual dilogarithm Li,(z) as follows

L(z) = Lix(2) + % log(2) log(1 —z) . (3.13)

For the correlator of three fields .27 (z,Z) one obtains (see [17] for more details)

i} B} o a?
(2%z21,71) Z0(20,22) Z(23,53)) = ﬁH“bC [L(gi) +L<%> +L(%§) —C-C~] . (314
where “c.c.” stands for complex conjugation. To simplify our notation for the following, let us
12
recall from (3.1) the relation between the flux H and the flux parameter 0, that is gbe = Of—zH abe

and let us introduce
L&) =L@ +L(1-1)+L (i) . (3.15)

The correlation function (3.14) of three fields 27%(z,z) in the H-flux background can then be writ-
ten as

Il
v

1
13

Il

(2 21,71) Z(22,%2) X (23,73) ) = 0“° [g(m) -Z(

213

)] (3.16)

Vertex operator for the tachyon We now define vertex operators. In analogy to the free theory

of a closed string without H-flux, which in a compact space can have momentum p, and winding

w”, we define left- and right-moving momenta k; /R 8S

w w

a,, a_p (3.17)

ki =p*+ o

12
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The vertex operator for the perturbed theory should then be written in the following way

¥ (2,2) =:exp(ik, - 21+ ikg- ZR): (3.18)
where we employ the short-hand notation k; - 27 = k. Z}%, : ... : denotes normal ordering and
the left- and right-moving fields 2 L“/ z are obtained via integration of the currents. Now, recall

that in the free theory the tachyon vertex operator is a primary field of conformal dimension
(h,h) = (%/ k2, %l k%), and in covariant quantization of the bosonic string physical states are given
by primary fields of conformal dimension (4,4) = (1,1). In the deformed theory, we also require
that vertex operators ¥ (z,Z) are primary with respect to .7 (z) and .7 (z) which is not guaranteed a
priori. However, it is again the anti-symmetry of H which implies

_ 1 OC/kL-kL _ 1 _
T (1) V(22,22) = 5 V(22,22) + 0Y (22,22) + reg.,
(z1—22) 4 -2 (3.19)
— 1 o'k -k = '
T(21) YV (22,22) = AL Z Ry (2,2) + e 0V (22,72) + reg. .

Thus, the vertex operator (3.18) is primary and has the correct conformal dimension, and is there-
fore a physical quantum state of the deformed theory. However, as it is explained in more detail in
[17], in order for the tachyon vertex operator to carry momenta (kz,kg) we have to require

0=H" kK~ H%.p"w" ~ [pxw]". (3.20)

3.2 T-duality

As expected from the string equations of motion (3.3), in the last subsection we have found a
conformal field theory which describes the sigma model for a flat metric and constant H-flux up to
linear order. However, we are also interested in backgrounds T-dual to the H-flux configuration. On
the level of the CFT, T-duality is usually realized as a reflection on the right-moving coordinates.
Since the corrected fields 27%(z,z) still admit a split into a holomorphic and an anti-holomorphic
piece, we define T-duality on the world-sheet along a direction .2™“ as

%La (Z) T-duality _|_<%ch1 (Z) ; (3 21)

Clearly, for the currents this implies a similar action, and so the “structure constants” H. in
the anti-holomorphic OPE (3.9) receive an additional minus sign when performing a T-duality
transformation.

In the next subsection, we compute scattering amplitudes for tachyon vertex operators in the
H-flux background. There we allow for momentum and winding along the directions of our three-
dimensional (compact) space specified by (3.1). However, in the T-dual backgrounds we are par-
ticularly interested in pure momentum scattering, as from there one would derive the low-energy
effective action as a derivative expansion. Now, above we have mentioned that a tachyon ver-
tex operator ¥'(z,7) indeed corresponds to a physical state provided that p x w = 0. This has the
following implications (see again [17] for further details):

13
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e The effective field theory for tachyons in the H-flux background is expected to be reliably
computable from scattering amplitudes of pure momentum tachyons, since in this case the
constraint (3.20) is satisfied.

e For backgrounds with geometric flux, pure momentum scattering is related to the scattering
of for instance (p1, p2, ®3) modes in the H-flux background. However, in this case @ x p # 0
and so we can not reliably employ the vertex operator for the tachyon in our present approach.
A similar situation occurs for pure momentum scattering in the Q-flux background.

e For the case of R-flux we can again reliably compute the scattering amplitudes for pure
momentum tachyons. By T-duality, they are related to the scattering of pure winding states
in the H-flux background for which (3.20) is satisfied.

Therefore, in the following we focus on backgrounds with H- and R-flux.

3.3 Tachyon scattering amplitudes

In this subsection, we compute scattering amplitudes of the tachyon vertex operators (3.18)
and extract a tri-product.

Three-tachyon amplitude As discussed above, we focus on a compact three-dimensional space
and therein we are interested in pure momentum (pj, p2, p3) or pure winding (w;,wz,w3) state
scattering, where the latter is related by three T-dualities to pure momentum scattering in the R-
flux background. We therefore consider vertex operators of form
4//iH = 7/Pi(zivzi) = :exp(ipi"%‘(zivzi)):a (3 22)
VR = N(z) = 3CXP(iWi'%(Zi7Zi))H

where 2 = 21— Zg. Note that here and in the following we employ the short hand notation ”f/l-H/ K
and ViH/ R for the vertex operators of the perturbed and free theory, respectively. Furthermore, since
we can consider 7 as the momentum vertex operator in the R-flux background, in the following
we set w|g — p|g.

Next, in string theory one has to work with vertex operators integrated over the world-sheet.
We therefore define

FHIR _ /d2z7/,~H/R . (3.23)

Taking into account the freedom to fix three points on the world-sheet via the SL(2,C) symmetry,
the three-tachyon scattering amplitude is then given by

3
(5 5 75\ = / [1%2: 6P (@i —2) ez zas P (1 %95 /%, (3.24)
i=1

where we have put the superscript indicating the H- and R-flux background outside the bracket in
order to shorten the notation. Using (3.16), for the correlator of three vertex operators one obtains

H/R _ 0(p1+p2+p3)

W V5 YA
(#172%3) 212213 223

exXp [_ieabcpl7ap2,hp3,c [3(%) :Fg(@)ﬂ 0’ (325)

213
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where |...]g indicates that the result is valid only up to linear order in 6. Note that the upper sign
corresponds to the case of H-flux and the lower to the case of R-flux. The full scattering amplitude
then becomes

3
(5 7)"" = /Hdzzz'c?(”(zz' =) 8(p1+p2+p3)x
i=1 (3.26)

2

exp [—i@abcpl,apz,bp&c [g(%) :Fj(ﬁ)ﬂ 0

Permutations Let us now study the behavior of (3.25) under permutations of the vertex operators
7/1_11/ R Before applying momentum conservation, the three-tachyon amplitude for a permutation &
can be computed using properties of the Rogers dilogarithm. With € = —1 for H-flux and € = +1
for the case of R-flux, one finds

(Vo) Vo) Vo3))" =exp {i (L) N6 70 pira Pz,bps,c] (N 175)° (3.27)

where in addition 1 = 1 for an odd permutation and 14 = O for an even one. Thus, for the R-flux
background a non-trivial phase may appear which we have established up to linear order in the
flux. As will be discussed in more detail in section 3.4, the phase in (3.27) can be recovered from
a three-product on the space of functions V), (x) = exp(i p, - x), which can be defined as

def .
VPI (X)AVPZ (x)AVm (X) ; exp<_l%2 Gabcpl,aPZ,bp3,c) Vp1+172+p3 (X) . (328)

However, in correlation functions operators are understood to be radially ordered and so changing
the order of operators should not change the form of the amplitude. This is known as crossing
symmetry which is one of the defining properties of a CFT and thus should also be satisfied here. In
the case of the R-flux background, this is reconciled by applying momentum conservation leading
to

PlapPrp P30 =0 for p3=-pi—Dp2. (3.29)

Therefore, scattering amplitudes of three tachyons do not receive any corrections at linear order in
6 both for the H- and R-flux

(T T TN = 8(p1+prtp3) . (3.30)

Four- and N-tachyon amplitudes We now want to detect phases possibly appearing for the
product of N closed string tachyon vertex operators. But before we consider the general case, let
us start with the amplitude of four tachyons. Up to linear order in 6 we obtain

#9:1)" = (Vv Vs v K exp| —ioe Y p,',apj,bpk,c[z(%)w(@‘)ﬂ
6

| o Zik Zik
1<i<j<k<4

(3.31)

Again, the difference between H- and R-flux is given by the sign between the holomorphic and
the anti-holomorphic contribution, and the four-point function <V1 Vo V3 V4>g/ R is just the one from

the free theory. We can now determine the behavior of the amplitude under a permutation of the
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vertex operators. Prior to using momentum conservation, we again find momentum dependent
phase factors. Analogous to the three-tachyon amplitude, these arise in the case of R-flux and can
be described as resulting from a deformed four-product of the form

def . abe
Vi (X) 84 Vi ()84 Vi (8) 24V () < exp | <1 5 67 (p1.a pasy e .

+P1aP2bPac+ PlaP3pPac+ D2aP3b P4,c)] Vi pi(x) .

However, employing momentum conservation, one can show that this phase becomes trivial so that
the four-tachyon amplitude is indeed crossing symmetric.

This computation for four tachyons can straightforwardly be generalized to higher N-tachyon
amplitudes. The phase factors appearing when permuting two vertex operators for the case of the
R-flux background can then be encoded in a deformed N-product of the form

def .12
Vo ()8 .8y Vipy (x) = eXP(—l% 0 Y, piapis Pk,c> Vi pi(x) - (3.33)

1<i<j<k<N

The phase becomes again trivial after employing momentum conversation so that all N-tachyon
correlators are crossing symmetric. This signals that the basic principle of perturbative closed string
theory, namely conformal field theory, seems to be compatible with non-geometric backgrounds for
which the N-product of functions is deformed by (3.33).

3.4 A tri-product

In this section, we show that the relative phase factors of tachyon correlation functions can be
rephrased in terms of a generalization of the Moyal-Weyl star-product, which we call a tri-product.

Tri-product In particular, the phase appearing in the three-point correlator (3.27) indicates that
we can define a three-product of functions f(x) in the following way

Fi)8L)85() S exp(F 6708 9202 ) flx1) () f3(x3)

, (3.34)

X

where we used the notation ( )|x = ( )|x;=x,=x;—x- Choosing f,,(x) = exp(ip, - x) we obtain formula
(3.28), which after integration over x gives

/d3x fix)afa(x)afz(x) = eXP(—i%zeabcpl,apz,bP3,c> o(p1+p2+p3)

(3.35)
= /d3xf1(x)f2(x)f3(x)‘

Note that (3.34) is precisely the three-product (2.26). Indeed, with P? denoting the permutation
group of three elements, the three-bracket for the coordinates x* can then be re-derived as the
completely anti-symmetrized sum of three-products

(x40, x] = Y sign(o) x%@ A x9B) pAxO(€) = 372 gabe (3.36)

cep?
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N-product Next, we consider the N-tachyon amplitude and the phase appearing in equation
(3.33). This motivates us to define the N-product

Fi(xX) an () By -y f(x) E exp ”;9“’” Y 09,95 | filx) fa(x2) ... fu(xw)| 5 (3.37)
1<i<j<k<N *

which is the closed string generalization of the open string non-commutative product (1.4). This
completely defines the new tri-product, which satisfies the relation

JION 2N BN -1 ] = fidy—1 .. An-1 fy-1 - (3.38)
Specializing this expression to N = 3 gives

fibo fo= fits ozl = fi-f2, (3.39)

which just means that the tri-product of two functions is the usual commutative point-wise product.
However, there are two main differences compared to the open-string case.

e For the open string the star N-product was related to successive application of the usual
Moyal-Weyl bi-product. This simplifying behavior is not true for the tri-product, i.e. the
N-products Ay can not be related to successive applications of the three-product A=A3. This
means that one does not only have to specify a deformed product of three functions (with
the rest following), but has to specify a definition for a deformed product of any number of
functions.

e In contrast to the open string case, the effect of the tri-product in integrals vanishes, i.e.

/ A 1 () B f(X) A+ 2o fro(x) = / & fi(x) ox) - f(x) (3.40)

In other words, the difference between the tri-product and the ordinary product is a total
derivative. Thus, closed strings can consistently be defined on non-associative backgrounds
since in string scattering amplitudes its effect vanishes.
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4. Summary

In these proceedings, we have summarized recent work on non-commutativity in closed string
theory which appeared in [6] and [17]. In particular, motivated by results from the open-string
sector, we have illustrated two approaches to study non-commutative behavior for closed strings.

The first approach mimics the computation of the commutator of two open-string coordinates.
However, in the case of a closed string one should consider a cyclic double commutator involving
three instead of two fields. If such an expression is non-vanishing, it not only indicates a non-
commutative but also a non-associative structure. Furthermore, we illustrated that in order to obtain
a non-trivial result, background fluxes have to be non-vanishing. These can be ordinary H-fluxes
or geometric fluxes, but also non-geometric Q- and R-fluxes. In section 2, we have computed
the cyclic double commutator shown in equation (2.26) and found it to be non-vanishing for a
background with R-flux, and therefore indicating a non-associative structure.

The second approach to non-commutativity considered here is to compute correlation func-
tions of vertex operators. Since the non-commutative effect obtained in (2.26) is linear in the flux
parameter, we studied a conformal field theory up to linear order in the background flux. Defining
then a tachyon vertex operator in this CFT and computing correlation functions thereof, we ob-
tained a phase factor which encodes the flux dependence (up to linear order). From this factor we
motivated and studied a tri-product (3.34) which captures non-commutative and non-associative
effects.

The direction for future work is to make the non-commutative and non-associative structure
more apparent. For instance, the relation between R-flux and the non-vanishing three-bracket (2.26)
leading to a non-associative behavior has to be understood better. Furthermore, properties of the
tri-product (3.34) have to be studied, which is needed to eventually formulate an effective theory
using that product.
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