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1. Introduction

The physics on a curved spacetime becomes more transparent when expressed in a locally
inertial frame and it is even indispensable when one want to couple spinors to gravity since spinors
in d-dimensions form a representation of SO(d) rather than GL(d,R). On the orthonormal frame
bundle, a Riemannian metric on spacetime manifold M is replaced by a local basis for the tangent
bundle T M, which is orthonormal tangent vectors EA (A = 1, · · · ,d) on M. But, in any vector
space, there is a freedom for the choice of basis and physical observables are independent of the
arbitrary choice of an orthonormal frame. As in any other gauge theory with local gauge invariance,
to achieve local Lorentz invariance requires introducing a gauge field ωA

B of the Lorentz group
SO(d). The gauge field of the local Lorentz group is called the spin connection [1]. In the end,
d-dimensional Einstein gravity can be formulated as a gauge theory of SO(d) Lorentz group where
spin connections play a role of gauge fields and Riemann curvature tensors correspond to their field
strengths.

In spite of the close analogy between gravity and gauge theory, there also exist acute dif-
ferences between them. It is worthwhile to notice that the fundamental variable in gravity is the
orthonormal tangent vectors EA, the so-called (inverse) vielbeins, rather than spin connections. The
spin connections are determined by the vielbeins via the torsion free condition [1]. In other words,
the spin connections have their own gauge fields, i.e. vielbeins, though they are SO(d) gauge fields
from the gauge theory point of view. As a result, the Riemann curvature tensor already contains
second-order derivatives of the Riemannian metric. Therefore the action of Einstein gravity must
be linear in curvature tensors for the theory to be unitary because higher order terms such as a
quadratic term in curvature tensors will generate ghost fields in general. On the contrary, the gauge
theory has no analogue of vielbeins or a Riemannian metric and it is described by a quadratic
action of curvature tensors. Consequently this difference brings about a different scaling behav-
ior of coupling constants in gravity and gauge theory, which causes the notorious problem for the
renormalization of gravity.

Above all, the gauge theory formulation of gravity may uncover a profound reason why gravity
enjoys a peculiar structure apart from the homomorphy with gauge theory. Therefore, in order
to appreciate an origin of the contrast between gravity and gauge theory, we will undertake a
systematic formulation of Einstein gravity as a gauge theory of local Lorentz symmetry and answer
to the following question in the end [2, 3, 4]: What is the Einstein equations from the gauge
theory point of view? Or equivalently, what is the gauge theory object corresponding to Einstein
manifolds?

2. Gauge Theory of Riemannian Manifolds

Let M be a d-dimensional Riemannian manifold M whose metric is given by

ds2 = gMN(x)dxM ⊗dxN , M,N = 1, · · · ,d (2.1)

and introduce at each spacetime point on M a local basis of orthonormal tangent vectors (vielbeins)
EA = EM

A ∂M ∈ Γ(T M), A = 1, · · · ,d. The frame basis {EA} defines a dual basis EA = EA
MdxM ∈

2
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Γ(T ∗M) by a natural pairing ⟨EA,EB⟩= δ A
B . In terms of the non-coordinate (anholonomic) basis in

Γ(T M) or Γ(T ∗M), the metric (2.1) can be written as

ds2 = δABEA ⊗EB = δABEA
MEB

N dxM ⊗dxN = gMN(x) dxM ⊗dxN (2.2)

or ( ∂
∂ s

)2
= δ ABEA ⊗EB = δ ABEM

A EN
B ∂M ⊗∂N = gMN(x) ∂M ⊗∂N . (2.3)

There is a large arbitrariness in the choice of a vielbein because the vielbein formalism respects
a local gauge invariance. Under a local Lorentz transformation which is an orthogonal frame
rotation in SO(d), the basis vectors transform according to

EA(x)→ E ′
A(x) = EB(x)ΛB

A(x),
EA(x)→ EA′(x) = ΛA

B(x)EB(x)
(2.4)

where ΛA
B(x) ∈ SO(d) is a local Lorentz transformation. As in any other discussion of local

gauge invariance, to achieve the local Lorentz invariance requires introducing a gauge field. On
a Riemannian manifold M, the spin connection ω is an SO(d) gauge field [1]. To be precise, a
matrix-valued spin connection ω = 1

2 ωABJAB = 1
2 ωMAB(x)JABdxM constitutes a gauge field with

respect to the local SO(d) rotations

ωM → ω ′
M = ΛωMΛ−1 +Λ∂MΛ−1 (2.5)

where Λ = exp(1
2 λAB(x)JAB) ∈ SO(d) and JAB are SO(d) Lorentz generators which satisfy the

following Lorentz algebra

[JAB,JCD] =−
(
δ ACJBD −δ ADJBC −δ BCJAD +δ BDJAC). (2.6)

Then the covariant derivatives for the vectors in Eq. (2.4) are defined by

DMEA = ∂MEA −ωM
B

AEB,

DMEA = ∂MEA +ωM
A

BEB.
(2.7)

The connection one-forms ωA
B = ωM

A
BdxM satisfy the Cartan’s structure equations [1, 5]

T A = dEA +ωA
B ∧EB, (2.8)

RA
B = dωA

B +ωA
C ∧ωC

B, (2.9)

where T A are the torsion two-forms and RA
B are the curvature two-forms. We impose the torsion

free condition, TMN
A = DMEA

N −DNEA
M = 0, to recover the standard content of general relativity,

which eliminates ωM as an independent variable, i.e.,

ωABC = EM
A ωMBC =

1
2
( fABC − fBCA + fCAB) (2.10)

where fABC are the structure functions defined by

[EA,EB] =− fAB
CEC. (2.11)

3
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For orthogonal groups the second-rank antisymmetric tensor representation is the same as the
adjoint representation, so the Lorentz generators JAB =−JBA, A,B = 1, · · · ,d, can be conveniently
labeled as T a, a = 1, · · · , d(d−1)

2 . Hence, we now introduce an SO(d)-valued gauge field defined by
A = AaT a where Aa = Aa

MdxM are connection one-forms on M and T a are Lie algebra generators
of SO(d) satisfying

[T a,T b] =− f abcT c. (2.12)

In order to formulate the gauge theory of gravity, it will be useful to adopt the following local
isomorphism for d-dimensional Lorentz group SO(d):

SO(3)∼= SU(2), SO(4)∼= SU(2)L ×SU(2)R, SO(5)∼= Sp(2), SO(6)∼= SU(4). (2.13)

Another useful relation is the isomorphism between the Clifford algebra Cl(d) in d-dimensions and
the exterior algebra Λ∗M of cotangent bundle T ∗M over a d-dimensional Riemannian manifold M
[6]:

Cl(d)∼= Λ∗M =
d⊕

k=0

ΛkT ∗M. (2.14)

In this correspondence, the chiral operator Γd+1 in even dimensions corresponds to the Hodge
star operation ∗ : ΛkT ∗M → Λd−kT ∗M in Λ∗M. In particular, the Clifford map (2.14) implies that
the SO(d) Lorentz generators JAB = 1

4 [Γ
A,ΓB] in Cl(d) have one-to-one correspondence with the

space Λ2T ∗M of two-forms in Λ∗M where ΓA are d-dimensional Dirac matrices obeying the Dirac
algebra

{ΓA,ΓB}= 2δ ABI
2[

d
2 ] . (2.15)

The identification [2, 4] we want to make is then given by1

ω =
1
2

ωABJAB ≡ A = AaT a. (2.16)

In particular, the isomorphism (2.13) for four-dimensional Lorentz group SO(4) suggests that the
spin connections in four dimensions are split into a pair of SU(2)L and SU(2)R gauge fields. The
Lorentz transformation (2.5) can then be translated into a usual gauge transformation

A → A′ = ΛAΛ−1 +ΛdΛ−1 (2.17)

where Λ = eλ a(x)T a ∈ SO(d). The SO(d)-valued Riemann curvature tensor is defined by

R = dω +ω ∧ω

=
1
2

RABJAB =
1
2

(
dωAB +ωAC ∧ωCB

)
JAB

=
1
4

[(
∂MωNAB −∂NωMAB +ωMACωNCB −ωNACωMCB

)
JAB

]
dxM ∧dxN (2.18)

1To be precise, the spin connection (2.16) is a connection on a spinor bundle induced from the SO(d)-bundle and
the structure group of its fiber is lifted to Spin(d), a double cover of SO(d), according to the short exact sequence of Lie
groups: 1 → Z2 → Spin(d)→ SO(d)→ 1. Hence the global isomorphism should refer to Spin(d). Nevertheless we will
not care about the Z2-factor because we are mostly interested in local descriptions (in the level of Lie algebras) and we
will not be careful to discriminate a Lie group and its Lie algebra.
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or, in terms of gauge theory variables, it is given by

F = dA+A∧A

= FaT a =
(

dAa − 1
2

f abcAb ∧Ac
)

T a

=
1
2

[(
∂MAa

N −∂NAa
M − f abcAb

MAc
N

)
T a

]
dxM ∧dxN . (2.19)

Using the form language where d = dxM∂M = EAEA and A = AMdxM = AAEA, the field strength
(2.19) of SO(d) gauge fields in the non-coordinate basis takes the form

F = dA+A∧A =
1
2

FABEA ∧EB

=
1
2

(
EAAB −EBAA +[AA,AB]+ fAB

CAC

)
EA ∧EB (2.20)

where we used the structure equation

dEA =
1
2

fBC
AEB ∧EC. (2.21)

Then it is easy to find the gauge theory representation for the second Bianchi identity for Riemann
curvature tensors which is mapped to the Bianchi identity for Yang-Mills field strengths [2], i.e.,

DR ≡ dR+ω ∧R−R∧ω = 0 ⇔ DF ≡ dF +A∧F −F ∧A = 0. (2.22)

3. Four-Manifolds and Yang-Mills Instantons

The four dimensional space has mystic features. Among the group of isometries of d-dimensional
Euclidean space Rd , the Lie group SO(4) for d ≥ 3 is the only non-simple Lorentz group as was
shown in (2.13) and one can define a self-dual two-form only for d = 4. If M is an oriented four-
manifold, the Hodge ∗-operation defines an automorphism of the vector space Λ2T ∗M of two-forms
with the decomposition

Λ2T ∗M = Λ+
3 ⊕Λ−

3 (3.1)

where Λ±
3 ≡ P±Λ2T ∗M and P± = 1

2(1±∗). That is, in four dimensions, the six-dimensional vector
space Λ2T ∗M of two-forms splits canonically into the sum of three-dimensional vector spaces of
self-dual and anti-self-dual two forms [7, 8]. In order to answer to the previous question, it is
enough to note such a plain fact that the Lorentz group SO(4) is isomorphic to SU(2)L × SU(2)R

and the Riemann curvature tensor RA
B = dωA

B +ωA
C ∧ωC

B is an SO(4)-valued two-form. One
can thus apply two kinds of decomposition to spin connections and curvature tensors. The first
decomposition is that the spin connections ωA

B can be split into a pair of SU(2)L and SU(2)R

gauge fields according to the splitting of the Lie algebra SO(4) = SU(2)L ⊕SU(2)R [2, 4]:

ωMAB ≡ A(+)a
M ηa

AB +A(−)ȧ
M η ȧ

AB (3.2)

where A(+)a = A(+)a
M dxM and A(−)ȧ = A(−)ȧ

M dxM are SU(2)L and SU(2)R gauge fields, respectively.
Accordingly the Riemann curvature tensor RA

B will also be decomposed into a pair of SU(2)L and
SU(2)R curvature two-forms:

RMNAB ≡ F(+)a
MN ηa

AB +F(−)ȧ
MN η ȧ

AB, (3.3)

5
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where
F(±)

MN = ∂MA(±)
N −∂NA(±)

M +[A(±)
M ,A(±)

N ] (3.4)

are field strengths of SU(2)L and SU(2)R gauge fields in (3.2).
The second decomposition is to apply the Hodge ∗-decomposition (3.1) to the Riemann curva-

ture tensors in (3.3). Because SU(2)L and SU(2)R field strengths defined by F(+)a = 1
2 F(+)a

MN dxM ∧
dxN and F(−)ȧ = 1

2 F(−)ȧ
MN dxM ∧dxN , respectively, are curvature two-forms in gauge theory, both of

them can be split into a pair of self-dual and anti-self-dual two-forms as follows

F(+)a
AB ≡ f ab

(++)η
b
AB + f aḃ

(+−)η
ḃ
AB, (3.5)

F(−)ȧ
AB ≡ f ȧb

(−+)η
b
AB + f ȧḃ

(−−)η
ḃ
AB. (3.6)

Using the above result, we get the following decomposition of the Riemann curvature tensor [3]

RABCD = f ab
(++)η

a
ABηb

CD + f aḃ
(+−)η

a
ABη ḃ

CD + f ȧb
(−+)η

ȧ
ABηb

CD + f ȧḃ
(−−)η

ȧ
ABη ḃ

CD. (3.7)

The first Bianchi identity εACDERBCDE = 0 constrains the coefficients in the expansion (3.7) which
reads as

f ab
(++) = f ba

(++), f ȧḃ
(−−) = f ḃȧ

(−−), f aḃ
(+−) = f ḃa

(−+) (3.8)

and
f ab
(++)δ

ab = f ȧḃ
(−−)δ

ȧḃ. (3.9)

Now we can state the Lemma for general Einstein manifolds proven in [3, 4].
Lemma. The Riemann curvature two-form RAB = 1

2 RMNABdxM ∧dxN is an SO(4)-valued field
strength of the spin connections in (3.2) from the gauge theory point of view and thus can be
decomposed into a pair of SU(2)L and SU(2)R field strengths. With the decomposition (3.3), the
Einstein equation

RAB −
1
2

δABR+δABΛ = 0 (3.10)

for a Riemannian manifold M is equivalent to the self-duality equation of Yang-Mills instantons

F(±)
AB =±1

2
εAB

CDF(±)
CD , (3.11)

where F(+)a
AB ηa

AB = F(−)ȧ
AB η ȧ

AB = 2Λ.
One can draw a very interesting implication [3, 4] from the above lemma. The SU(2) field

strengths in Eq. (3.3) are given by

F(±) = dA(±)+A(±)∧A(±). (3.12)

The integrability condition, namely, the Bianchi identity, then reads as

D(±)F(±) ≡ dF(±)+A(±)∧F(±)−F(±)∧A(±) = 0. (3.13)

Therefore the self-duality equation (3.11) immediately leads to the remarkable result that any Ein-
stein manifold automatically satisfies the Yang-Mills equations of motion, i.e.,

D(±) ∗F(±) =±D(±)F(±) = 0 ⇔ D∗F = D(+) ∗F(+)+D(−) ∗F(−) = 0 (3.14)

6
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where ∗F means the Hodge ∗-operation on a two-form F . After all, our lemma sheds light on why
the action of Einstein gravity is linear in curvature tensors contrary to the Yang-Mills action being
quadratic in curvatures. If the action of Einstein gravity were quadratic in curvature tensors, four-
manifolds obeying the equations of motion would not necessarily be given by SU(2) Yang-Mills
instantons and the four-manifold could be unstable in general as is well-known from gauge theory.

4. Topology of Four-Manifolds

The topological invariants for four-manifolds have a local expression due to the Atiyah-Singer
index theorem [5, 7]. For a general closed manifold M, the Euler number χ(M) for the de Rham
complex and the signature τ(M) for the Hirzebruch signature complex are defined by

χ(M) = − 1
8π2

∫
M

TrΓ5R∧R =
1

32π2

∫
M

εABCDRAB ∧RCD, (4.1)

τ(M) = − 1
12π2

∫
M

TrR∧R =
1

24π2

∫
M

RAB ∧RAB. (4.2)

It is then straightforward to express the topological invariants with SU(2) gauge fields using the
decomposition (3.7) [3]

χ(M) =
1

4π2

∫
M

(
F(+)a ∧F(+)a −F(−)ȧ ∧F(−)ȧ

)
=

1
2π2

∫
M

d4x
√

g
[(

f ab
(++)

)2
+
(

f ȧḃ
(−−)

)2 −2
(

f aḃ
(+−)

)2
]
, (4.3)

τ(M) =
1

6π2

∫
M

(
F(+)a ∧F(+)a +F(−)ȧ ∧F(−)ȧ

)
=

1
3π2

∫
M

d4x
√

g
[(

f ab
(++)

)2 −
(

f ȧḃ
(−−)

)2
]
. (4.4)

Since Einstein manifolds carry a topological information in the form of Yang-Mills instantons
as was shown before, it will be interesting to see how the topology of spacetime fabric is encoded
into gauge fields. An Einstein manifold has a curvature tensor given by (3.7) with the coefficients
satisfying f aḃ

(+−) = f ḃa
(−+) = 0 [3]. In this case, the Euler characteristic χ(M) is given by the sum

of self-dual and anti-self-dual instantons whereas the signature τ(M) is their difference. Then
Eq. (4.3) immediately shows χ(M) ≥ 0 with equality only if f ab

(++) = f ȧḃ
(−−) = 0, i.e., M is flat.

Moreover, it is easy to get the Hitchin-Thorpe inequality [5, 7]

χ(M)± 3
2

τ(M) =
1

π2

∫
M

d4x
√

g
(

f ȧḃ
(±±)

)2 ≡ 2χ±(M)≥ 0 (4.5)

where the equality holds if and only if f ȧḃ
(±±) = 0, i.e., M is half-flat (a gravitational instanton).

After all, the topology of Einstein manifolds is characterized by intanton and anti-instanton
configurations. Let

χ(M) = χ+(M)+χ−(M)≡ m ∈ Z≥0, (4.6)

τ(M) =
2
3
(
χ+(M)−χ−(M)

)
≡ n ∈ Z. (4.7)

7
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Figure 1: Topological numbers of closed Einstein manifolds

In four dimensions, we can define an intersection form Q : H2 ×H2 → R by [8]

Q(α,β ) =
∫

M
α ∧β (4.8)

where H2 := H2(M,R) is the second de Rham cohomology and α,β ∈ H2(M,R). The decom-
position (3.1) can descend to the de Rham cohomology and so we find a similar decomposition
H2 = H2

+⊕H2
−. The Betti number bk = dimHk(M,R) of M is the dimension of k-th cohomology

group and so we have b2 = b+2 +b−2 with

b±2 = dimH2
±. (4.9)

The signature τ(M) is then defined as the difference of positive and negative eigenvalues of Q

τ(M) = b+2 −b−2 . (4.10)

The Euler characteristic χ(M) is of course defined by χ(M) = ∑4
k=0(−1)kbk = 2−2b1+b2, which

results from the Poincaré duality and may be expressed as χ(M) = b2 mod 2. So one can deduce
that χ + τ = 2(1−b1 +b+2 ) ∈ 2Z [7, 8]. Hence we can conclude that the set (m,n) of topological
numbers forms an even integer lattice, i.e., m+ n ∈ 2Z. Furthermore, one can get the inequality
2m± 3n ≥ 0 from Eq. (4.5). Consequently any closed Einstein manifold should appear in upper
wedge of the even integer lattice (m,n) as shown in Fig. 1.

The Figure 1 reveals some interesting features. First suppose that the first Betti number is
zero, b1 = 0, and so b±2 +1 = 1

2(m±n). In this case the inequality b±2 +1 ≥ 3±2
6 m holds where the

8
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equality occurs when M is a gravitational instanton, i.e., F(±) = 0 or equivalently m = 3
2 |n|. For a

K3 surface, for example, m = 24, b+2 = 19 and b−2 = 3 [7]. Another intriguing aspect of the figure
is that it shows a left-right reflection symmetry. In order to examine the “reflection” symmetry, let
us consider two compact Einstein manifolds (M,g) and (M̃, g̃) obeying the following relation

χ+(M) = χ−(M̃) =
2m+3n

4
, χ−(M) = χ+(M̃) =

2m−3n
4

. (4.11)

Under the above transformation (4.11), the topological invariants are related as follows

χ(M) = χ(M̃)≥ 0, τ(M) =−τ(M̃). (4.12)

Thereby we can rephrase the reflection map (4.11) as an interchange of the signature (b+2 ,b
−
2 ) of

the intersection form Q in Eq. (4.8):

b+2 (M) = b−2 (M̃), b−2 (M) = b+2 (M̃). (4.13)

This map indicates that a four-manifold with b+2 = b−2 , i.e. τ(M) = 0, will be self-mirror.

5. Calabi-Yau Manifolds and Hermitian Yang-Mills Instantons

We now apply the gauge theory formulation to six-dimensional Riemannian manifolds [9]. For
this purpose, SO(6) Lorentz group for Euclidean gravity will be identified with SU(4) gauge group
in Yang-Mills gauge theory according to the isomorphism (2.13). Via the gauge theory formula-
tion of six-dimensional Euclidean gravity, we want to find a gauge theory object corresponding to
Calabi-Yau manifolds.

Let us start with the Clifford algebra Cl(6) whose generators are given by

Cl(6) = {I8,ΓA,ΓAB,ΓABC
± ,Γ7ΓAB,Γ7ΓA,Γ7} (5.1)

where ΓA (A= 1, · · · ,6) are six-dimensional Dirac matrices satisfying the algebra (2.15), ΓA1A2···Ak =
1
k! Γ

[A1ΓA2 · · ·ΓAk] with the complete antisymmetrization of indices, the chiral matrix Γ7 = iΓ1 · · ·Γ6

and ΓABC
± = 1

2(I8 ±Γ7)ΓABC. The Clifford map (2.14) suggests that the Clifford algebra (5.1) can
be identified with the exterior algebra Λ∗M =

⊕6
k=0 ΛkT ∗M.

The spinor representation of the algebra (5.1) has two irreducible spinor representations S±
each of dimension 4, namely the spinors of positive and negative chirality, i.e. V = S+⊕S−, where
the Hilbert space V of dimension 8 is defined by

V =
3⊕

k=0

|Ωi1···ik⟩=
3⊕

k=0

a∗i1 · · ·a
∗
ik |Ω⟩. (5.2)

If the Fock vacuum |Ω⟩ has positive chirality, the positive chirality spinors are states given by

S+ =
⊕

k even

|Ωi1···ik⟩= |Ω⟩+ |Ωi j⟩= 4 (5.3)

while the negative chirality spinors are those obtained by

S− =
⊕
k odd

|Ωi1···ik⟩= |Ωi⟩+ |Ωi jk⟩= 4. (5.4)

9
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As the SO(6) Lorentz algebra is isomorphic to the Lie algebra of SU(4), the positive- and negative-
chirality spinors of SO(6) can be identified with the fundamental representation 4 and the anti-
fundamental representation 4 of SU(4), respectively [10].

One can form a direct product of the fundamental representations 4 and 4 of SU(4) in order to
classify the Clifford generators in Eq. (5.1):

4⊗4 = 1⊕15 = {Γ+,ΓAB
+ }, (5.5)

4⊗4 = 1⊕15 = {Γ−,ΓAB
− }, (5.6)

4⊗4 = 6⊕10 = {ΓA
+,Γ

ABC
+ }, (5.7)

4⊗4 = 6⊕10 = {ΓA
−,Γ

ABC
− }, (5.8)

where Γ± ≡ 1
2(I8 ±Γ7), ΓA

± ≡ Γ±ΓA and ΓAB
± ≡ Γ±ΓAB. Note that 15 in (5.5) and (5.6) is the

adjoint representation of SU(4) and 6 in (5.7) and (5.8) is the antisymmetric second-rank tensor
of SU(4) while 10 is the symmetric second-rank tensor of SU(4). It is worthwhile to remark that
Γ2
± = Γ±, Γ+Γ− = 0 and so Γ± is a projection operator onto the space of definite chirality.

A new feature different from the four-dimensional case is that there are two sources of two-
forms. One is from two-forms themselves in Λ2T ∗M and the other is from the Hodge-dual of four-
forms in Λ4T ∗M. This duplication of two-forms results in the doubling of two-form basis, i.e.,
Λ2T ∗M ⊕∗(Λ4T ∗M). Also note that ΓAB

+ ∈ 15 in (5.5) and ΓAB
− ∈ 15 in (5.6) are independent of

each other as we remarked above and this doubling of the Clifford basis is parallel to the doubling
of two-forms according to the Clifford map (2.14). Hence ΓAB

+ ∈ 15 and ΓAB
− ∈ 15 will serve as

independent bases of two-forms.
According to the identification (2.16), we have the following relation [9]

RAB =
1
2

RABCDJCD = (F(+)a
AB T a

1 ⊕F(−)a
AB T a

2 ) = FAB, (5.9)

where T a
1 and T a

2 are SU(4) Lie algebra generators defined by (2.12). On the right hand side, the
doubling of SU(4) algebra in four-dimensional representations R1 and R2 was considered because
the SO(6) spinor representation on the left hand side is eight-dimensional and reducible. Thus RAB

on the left hand side has twice as many components as the usual Riemann curvature tensor. But,
as we already pointed out above, the SU(4)-valued two-form RAB must be regarded as a mixture
of two-forms in Λ2T ∗M and the Hodge-dual of four-forms in Λ4T ∗M.2 As already indicated by
(5.9), this mixture of Λ2T ∗M ⊕∗(Λ4T ∗M) has an irreducible decomposition as follows. We will
regard the Riemann tensor RAB as a linear map acting on the Hilbert space V in Eq. (5.2). As RAB

contains two gamma matrices, it does not change the chirality of the vector space V . Therefore, we
can represent it in a subspace of definite chirality as either RAB : S+ → S+ or RAB : S− → S−. The
former case RAB : S+ → S+ will take values in 4⊗4 in (5.5) with a singlet being removed while the
latter case RAB : S− → S− will take values in 4⊗4 in (5.6) with no singlet.

Therefore, there exist two independent identifications defined by

A :
1
2

RABCDJCD
+ ≡ F(+)a

AB

(
T a ⊕0

)
, (5.10)

B :
1
2

RABCDJCD
− ≡ F(−)a

AB

(
0⊕T a), (5.11)

2In other words, we think of RAB to contain the usual curvature tensor in (2.9) as well as another curvature tensor
defined by R̃AB ≡ ∗GAB = dω̃AB + ω̃AC ∧ ω̃CB where GAB is an SO(6)-valued form-form tensor.

10
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where we distinguish the two classes A and B depending on the six-dimensional chirality. Because
the classes A and B are now represented by 4× 4 matrices on both sides, we can take a trace
operation for the matrices which leads to the following relations

A : RABCD =−F(+)a
AB Tr(T aJCD

+ )≡ F(+)a
AB ηa

CD, (5.12)

B : RABCD =−F(−)a
AB Tr(T aJCD

− )≡ F(−)a
AB ηa

CD. (5.13)

Here we have introduced the six-dimensional analogue of the ’t Hooft symbols defined by

ηa
AB =−Tr(T aJAB

+ ), ηa
AB =−Tr(T aJAB

− ). (5.14)

An explicit representation of the six-dimensional ’t Hooft symbols can be found in [9]. Similarly,
SO(6) spin connection ω = 1

2 ωABJAB can be identified with (doubled) SU(4) gauge fields. From
the identification (2.16), we get the following relation

ω(±) ≡ Γ±ω = A(±)aT a, A(±)a =−2Tr
(
T aω(±)). (5.15)

The corresponding SU(4) field strengths are defined by (2.19) and appear in the chiral sectors in
(5.12) and (5.13).

Consider an arbitrary two-form

F =
1
2

FMNdxM ∧dxN =
1
2

FABEA ∧EB ∈ Λ2T ∗M (5.16)

and introduce 15-dimensional basis of two-forms in Λ2T ∗M for each chirality of SO(6)

Ja
+ ≡ 1

2
ηa

ABEA ∧EB, Ja
− ≡ 1

2
ηa

ABEA ∧EB. (5.17)

It is easy to derive the following useful identity

Ja
±∧ Jb

±∧ Jc
± =±1

2
dabcvol(g) (5.18)

where vol(g) =
√

gd6x. Also introduce a nondegenerate 2-form on M

Ω =
1
2

IABEA ∧EB = E1 ∧E2 +E3 ∧E4 +E5 ∧E6 (5.19)

where I ≡ iσ 2⊗I3. This two-form can be wedged with the Hodge star to construct a diagonalizable
operator on Λ2T ∗M as follows

∗Ω ≡ ∗(•∧Ω) : Λ2T ∗M
•∧Ω

−−−→ Λ4T ∗M ∗−→ Λ2T ∗M (5.20)

by ∗Ω(α) = ∗(α ∧Ω) for α ∈ Λ2T ∗M. The 15× 15 matrix representing ∗Ω turns out to have
eigenvalues 2,1 and −1 with eigenspaces of dimension 1, 6 and 8, respectively. On any six-
dimensional Riemannian manifold M, the space of 2-forms Λ2T ∗M can thus be decomposed into
three subspaces [9]

Λ2T ∗M = Λ2
1 ⊕Λ2

6 ⊕Λ2
8 (5.21)

11
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where Λ2
1 and Λ2

6 are locally spanned by

Λ2
1 = 2

(
J3
++

1√
3

J8
++

1√
6

J15
+

)
= Ω, (5.22)

Λ2
6 =

{
J1
+,J

2
+,J

4
+,J

5
+,J

9
+,J

10
+

}
, (5.23)

and Λ2
8 by

Λ2
8 =

{
J6
+,J

7
+,J

11
+ ,J12

+ ,J13
+ ,J14

+ ,K+,L+

}
(5.24)

with K+ ≡ 1√
3

(
J8
+−

√
2J15

+

)
and L+ ≡ 2√

3

(
− 1

2 J3
++ 1√

3
J8
++ 1√

6
J15
+

)
. A similar decomposition can

be done with the negative chirality basis Ja
−.

In conclusion, Ja
+ and Ja

− in (5.17) serve as independent basis of two-forms in the space of
positive chirality and negative chirality, respectively. Note that F(+)a = 1

2 F(+)a
AB EA ∧EB in (5.12)

and F(−)a = 1
2 F(−)a

AB EA ∧EB in (5.13) are field strengths of SU(4) gauge fields defined in the space
of positive chirality and negative chirality, respectively. Therefore one can expand the SU(4) field
strengths in the classes A and B in terms of the two-form basis in (5.17)

A : F(+)a
AB = f ab

(++)η
b
AB, (5.25)

B : F(−)a
AB = f ab

(−−)η
b
AB. (5.26)

Consequently, we expand the six-dimensional Riemann curvature tensors according to their six-
dimensional chirality class for two different classes [9]:

A : RABCD = f ab
(++)η

a
ABηb

CD, (5.27)

B : RABCD = f ab
(−−)η

a
ABηb

CD. (5.28)

In order to define Ω-self-duality equations in Eq. (5.20), it is useful to introduce the following
operator acting on 6×6 antisymmetric matrices defined by [9]

PABCD
± ≡ 1

4
(
δACδBD −δADδBC

)
± 1

8
εABCDEF IEF = PCDAB

± . (5.29)

One can deduce by a straightforward calculation the following properties

PABEF
± PEFCD

± = PABCD
± +

1
8

IABICD, PABEF
± PEFCD

∓ =−1
8

IABICD. (5.30)

The action of the operator (5.29) on the two-form F in (5.16) is given by

PABCD
± FCD =

1
2
(
FAB ±

1
4

εABCDEF FCDIEF
)

(5.31)

or in terms of form notation

2P±F = F ±∗(F ∧Ω) = F ±∗ΩF. (5.32)

Hence we see that, if F ∈ Λ2
8 = {F | P+F = 0}, it satisfies the Ω-anti-self-duality equation [11]

F =−∗ (F ∧Ω), (5.33)

12
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whereas F ∈ Λ2
6 = {F | P−F = 0} satisfies the Ω-self-duality equation

F = ∗(F ∧Ω). (5.34)

Now we are ready to identify the gauge theory object corresponding to Calabi-Yau manifolds
in six dimensions [9]. Suppose that (M,Ω,g) is a Kähler manifold. One can show that the Kählar
condition, dΩ = 0, is equivalent to the result that the gauge fields in (5.15) take values in U(3) Lie
algebra. This immediately leads to the conclusion that

F(+)a = dA(+)a − 1
2

f abcA(+)b ∧A(+)c

= f ab
(++)J

b
+ ∈ Λ2

8 ⊕Λ2
1 (5.35)

where the field strengths F(+)a, a = 0,1, · · · ,8 are defined by Eq. (2.19) with U(3) generators T a.
As is well-known [7, 10], the Ricci-tensor of a Kähler manifold is the field strength of the U(1)
part of the spin connection which is given by F(+)0 ∈ Λ2

1 and F(+)â ∈ Λ2
8, â = 1, · · · ,8 belong to the

SU(3) part. In particular, as F(+)â ∈ Λ2
8, they satisfy the Ω-anti-self-duality equation (5.33) known

as the Hermitian Yang-Mills equations (or Donaldson-Uhlenbeck-Yau equations) [10, 12]

F(+)â =−∗ (F(+)â ∧Ω), â = 1, · · · ,8. (5.36)

The same formulae can be obtained for the type B case and Calabi-Yau manifolds for the type B
case are also described by the Hermitian Yang-Mills equations

F(−)â =−∗ (F(−)â ∧Ω), â = 1, · · · ,8. (5.37)

In summary, the Kähler condition projects the ’t Hooft symbols to U(3)-valued ones and re-
sults in the reduction of the gauge group from SU(4) to U(3). After imposing the Ricci-flat con-
dition or the trivial first Chern class, F(+)0 = dA(+)0 = 0, the gauge group is further reduced to
SU(3). Remaining spin connections are SU(3) gauge fields and satisfy the Hermitian Yang-Mills
equation (5.36) or (5.37). As a Kähler manifold with trivial first Chern class is a Calabi-Yau man-
ifold, this means that the Calabi-Yau manifold is described by the Hermitian Yang-Mills equation
(5.33) whose solution is known as Hermitian Yang-Mills instantons [10]. Consequently, we find
that six-dimensional Calabi-Yau manifolds are equivalent to Hermitian Yang-Mills instantons in
SU(3) Yang-Mills gauge theory [9].

The equivalence between Calabi-Yau manifolds and SU(3) Hermitian Yang-Mills instantons
can be more clarified by considering SU(4) Yang-Mills theory defined on a Riemannnian manifold
(M,g) whose action is given by

SY M =− 1
2g2

Y M

∫
M

d6x
√

ggMPgNQTrFMNFPQ. (5.38)

One can rewrite the action (5.38) as

SY M =− 1
4g2

Y M

∫
M

d6x
√

g Tr
[(

FA1B1 ±
1
4

εA1B1A2B2A3B3FA2B2IA3B3

)2
− 1

2
(
IABFAB)2

∓1
2

εABCDEF FABFCDIEF

]
(5.39)
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using the following formula(
P±F

)2
=

(
PA1B1A2B2
± FA2B2

)(
PA1B1A3B3
± FA3B3

)
=

1
4

(
FA1B1 ±

1
4

εA1B1A2B2A3B3FA2B2IA3B3

)2

= PABCD
± FABFCD +

1
8
(
IABFAB)2

=
1
2

FABFAB ± 1
8

εABCDEF FABFCDIEF +
1
8
(
IABFAB)2

, (5.40)

which can be derived by using the projection operator (5.29) and the identity (5.30). The above
action may be written in a more compact form [9] as

SY M = − 1
4g2

Y M

∫
M

d6x
√

gTr
[(

FAB ±∗(F ∧Ω
)

AB

)2
− 1

2
(
IABFAB)2

]
± 1

g2
Y M

∫
M

d6xTrF ∧F ∧Ω (5.41)

where Ω is the two-form of rank 6 defined in Eq. (5.19).
Using the fact

TrF ∧F = d Tr
(
A∧F − 1

3
A∧A∧A

)
≡ dK, (5.42)

one can see that the last term in Eq. (5.41) is a topological term, i.e.,

TrF ∧F ∧Ω = d(K ∧Ω) (5.43)

if and only if the two-form Ω is closed, i.e. dΩ = 0. In other words, when M is a Kähler manifold,
the last term in Eq. (5.41) depends only on the topological class of the Kähler-form Ω and the
vector bundle E on M. In order to keep the positive definiteness of the Yang-Mills action (5.41)
after separating the topological term, it is necessary to impose the following requirement

IABFAB = 0. (5.44)

After the condition (5.44), the action (5.41) is now positive definite up to a topological term and
the minimum action can be achieved in a configuration satisfying the equations

FAB ±∗(F ∧Ω
)

AB = 0. (5.45)

The above Ω-self-duality equations together with Eq. (5.44) implies the so-called Donaldson-
Uhlenbeck-Yau equation

F ∧Ω2 = 0. (5.46)

It is easy to see [10, 11] that, if Eqs. (5.44) and (5.45) are satisfied, Yang-Mills equations on a
Kähler manifold given by

gMNDMFNP = 0, (5.47)

are automatically satisfied.
Finally it can be shown [9] that Hermitian Yang-Mills instantons obeying (5.44) and (5.45)

are connections of a stable holomorphic vector bundle in SU(3) Yang-Mills gauge theory with the
trivial first Chern class. This is precisely the result for Calabu-Yau manifolds [10].
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