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1. Introduction

The geometry which we learn at school can be described by a set of axioms deduced from
the observation of the motion of particles in spacetime. The field theory of particles is based on
that geometry. In this sense, one can say that the problem of the stringy geometry is to find the
geometry for an observer who only sees the motion of strings, and on which the string theory can
be based on. Such a geometry will be characterized by the properties of the strings which are not
the properties of particles. In this context, the T-duality [2, 3] which is a one of the fundamental
properties in string theory, will play an important role to understand the stringy geometry. It is also
an important concept when we consider alternative theories of the geometry such as generalized
geometry. In the present analysis, we compare the T-duality transformation of the boundary state
in superstring with the rules in the effective theory, in particular with the Nahm-Fourier-Mukai
duality.

One aim of our investigation is to analyze the compatibility among the results on T-duality
found in various approaches, i.e. worldsheet, supergravity and gauge theory. The boundary state
description of D-branes is a framework which fits well for such a task. A boundary state can be
defined for D-branes with non-trivial gauge bundle on it, and its coupling to various closed string
states is also easily estimated.

Concretely speaking, on the string side, we will use a boundary state and take the T-dual with
respect to T 2 wrapped by a D2-D0 brane. Then we compare the result with the expression obtained
by taking the Nahm transformation [4] of the corresponding gauge configuration on T 2 and look at
the Buscher rules in the RR sector (which will lead us to the Hori formula).

The Nahm transformation was first formulated for the case of T 4 [5, 6], where k SU(N) in-
stantons are mapped to N SU(k) instantons. Unfortunately, we do not have a concrete instanton
solution for T 4, which is a problem since there is no single-instanton configuration. And, without
an explicit solution there is no explicit boundary state construction.

Contrary to T 4, on T 2 the solution of the gauge field which corresponds to D2-D0 configura-
tion is rather simple and thus we can construct corresponding boundary states. The advantage of
a boundary states is that, once it is constructed explicitly, the comparison of T-duality and Nahm
transformation may be directly done at the string level.

Of course, there were technical complications in the beginning - even on T 2 - to construct the
boundary states on tori, due to the Wilson loop factor. For the bosonic string sector, Duo et al. [7]
(and DiVecchia et al. [8]) proposed a systematic way to construct the gauge invariant boundary
state including an appropriate cocycle factor. Using their method we constructed the boundary
state on T 2 and established the precise agreement of the T-duality transformation of the boundary
state with the Nahm transformation in the bosonic string theory. The expressions agree up to a
nontrivial minus sign, which we shall discuss later in detail.

The organization of this article is the following. First, we briefly give the formulation of
the Nahm transformation, particularly for the case of the T 2 torus, which contains some subtlety
compared to the T 4. Then, we recall the formulation of the boundary state, complete it with respect
to the fermionic part and give the T-dual of this superstring boundary state. Finally, we show the
connection between both formulations, followed by discussion and conclusion.
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This talk is based on the paper entitled "Boundary state analysis on the equivalence of T-duality
and Nahm transformation in superstring theory" by T. Asakawa, U. Carow-Watamura, Y. Teshima
and S. Watamura(to appear in Prog. Theor. Phys. 127, no. 4) [1].

2. Nahm transformation of T 2

We can define the Nahm transformation of U(N) gauge fields with first Chern number C1 = k
on T 2 [9, 1]. This works as follows: Consider a bundle E → T 2 with a positive first Chern number,
C1(E) = k > 0 and look for the zero modes of the Dirac operator,which is parametrized by the
coordinate x̃ of the dual torus T̃ 2

/Dx̃ = γµDx̃ µ

=

(
0 D+

x̃
D−

x̃ 0

)
, (2.1)

where γµ =−iσµ with the Pauli matrices σµ , µ = 1,2, and

D+
x̃ =−i(∂1 − iA1 − i

x̃1

2π
)− (∂2 − iA2 − i

x̃2

2π
) ,

D−
x̃ =−i(∂1 − iA1 − i

x̃1

2π
)+(∂2 − iA2 − i

x̃2

2π
) . (2.2)

If D−
x̃ φ = 0 has no solutions for the left-handed component φ ∈ Γ(T 2,π∗S+ ⊗ Ex̃), with E =

π∗E ⊗P over T 2 × T̃ 2, π : T 2 × T̃ 2 → T 2 and P is the Poincare bundle, it follows from the index
theorem that the right-handed spinor φ ∈ Γ(T 2,π∗S−⊗Ex̃),

D+
x̃ φ = 0 (2.3)

possesses k nomalized solutions φ p(p = 1 · · ·k), which can be collected into an N × k matrix of
zero-modes. The relation of the various bundles are given in the Figure 1.

The solutions of eq.(2.3) also give the projection to the space of zero modes Hx̃

Px̃ = |φ⟩⟨φ| : H → Hx̃ . (2.4)

This defines the projection to a projective module over C(T 2) which is a set of sections of a k-
dimensional vector bundle Ẽ over T̃ 2 with connection

Ãµ(x̃) = i⟨φ |∂̃µφ⟩= i
∫

T 2
d2xφ†∂̃µφ . (2.5)

Applying the family index theorem to the parametrized Dirac operator we obtain a relation
between E and Ẽ as:

ch(Ẽ) =
∫

T 2
ch(P)ch(E). (2.6)

For the torus T 2, this gives

(L.H.S.) = rank(Ẽ)+ c1(Ẽ),

(R.H.S.) = C1(E)− rank(E)
dx̃1 ∧dx̃2

vol(T̃ 2)
. (2.7)
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Figure 1: The schematical picture of the various bundles and maps appearing in the Nahm transformation
of T 2.

C1(E) =
∫

c1(E) is the first Chern number and c1(E) is the first Chern class. The above equations
lead to the relations between the bundles E and Ẽ as

rank(Ẽ) = C1(E) ,
C1(Ẽ) = −rank(E) (2.8)

This tells us that for T 2 there is a relative sign under Nahm transformation and that this transfor-
mation exchanges the rank of the gauge group and first Chern number. Symbolically we can write:
(N,k) → (k,−N).

Note that we obtain the same result when we construct Aµ by constructing the zero modes of
the Dirac equation [1].

3. T-duality in the boundary state

The boundary state of the D2−D0 system on T 2 is given by

|BF⟩ = OA |B⟩

= OA
√

det(G+B) ∑
s∈Z

∞

∏
n=1

e−
1
n α†

n GRα̃†
n |0;ωm⟩ (3.1)

where where R = (G+B)−1(G−B),

OA = TrN ∏
α=1,2

mα−1

∏
ℓ=0

Ωα(x+2π
√

α ′
α−1

∑
β=1

mβ aβ +2π
√

α ′ℓaα)exp(−SA), (3.2)
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and the Wilson loop factor

exp(−SA) = Pexp
(

i
2πα ′

∫ 2π

0
Aα∂σ Xαdσ

)
, (3.3)

In order to obtain a gauge invariant expression we have to close the path of the Wilson loop factor
in the covering space by using the transtion functions Ωi[7, 8], as schematically shown in Figure 2.

Figure 2: The path of the Wilson line is indicated by the solid line and the part of the cocycle factors is
given by the dashed line.

Using the explicit form of transition functions, we can construct the boundary state of k D0
branes on N D2 branes. It is given with a Wilson loop factor of a U(N) gauge field Aµ with constant
flux Fµν satisfying the following gauge field configuration

A1 = 0 , A2 =
k

2πα ′N
x1 , F12 =

k
2πα ′N

, C1 = k . (3.4)

To compare with the Nahm transformation, we construct the boundary state with the corre-
sponding flux and then take the T-dual [10, 11, 12, 13, 14, 15]. The boundary state on T 2 with
B = 0 and G = diag(a2

1,a
2
2) is

|BF⟩=
√

(a1a2N)2 + k2 ∑
(m1,m2)∈Z2

e−iπNkm1m2

×

[
∞

∏
n=1

exp
 1

n
1

a2
1a2

2N2+k2 (α
1†
n α2†

n )

 a2
1a2

2N2 − k2 2a1a2Nk
−2a1a2Nk a2

1a2
2N2 − k2

 α̃1†
n

α̃2†
n


]

×

∣∣∣∣∣
(
−km2

km1

)
,

(
Nm1

Nm2

)⟩
. (3.5)
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Taking the T-dual we have to exchange momenta and winding modes and change the sign of
the oscillators α̃µ . The result is

∣∣B̃F
⟩
=
√

N2 +(ã1ã2k)2 ∑
(m1,m2)∈Z2

eiπNkm1m2

×

[
∞

∏
n=1

exp
 1

n
1

ã2
1 ã2

2k2+N2 (α
1†
n α2†

n )

 ã2
1ã2

2k2 −N2 −2ã1ã2Nk
2ã1ã2Nk ã2

1ã2
2k2 −N2

 α̃1†
n

α̃2†
n


]

×

∣∣∣∣∣
(

Nm2

−Nm1

)
,

(
km1

km2

)⟩
, (3.6)

where ãi = 1/ai.
Comparing with the result from the Nahm transformation, we find that the T-dual of the bound-

ary state can be also obtained by the rule:

(N,k) ⇒ (k,−N) Nahm transformation

ai ⇒ ãi =
1
ai

Buscher rule (3.7)

4. RR sector of the boundary state

The boundary state in NSNS sector in superstring is analogous to the bosonic case. A special
care is necessary for the states in RR sector due to the existence of the picture [16, 17, 18, 19]. It
is known that to construct the boundary state which couples to the potential rather than the field
strength, it is necessary to construct the state on the asymmetric picture. Including the Wilson line
factor, the boundary state can be written as

|B⟩= e−
∫

Fµν θ µ θ ν
θ †

0 · · ·θ
†
p |W ⟩ (4.1)

|W ⟩= eiβ0 γ̃0O|A,−1/2⟩CAB|B̃,−3/2⟩ ≡ O|[C]⟩ (4.2)

where O is the oscillator part. Here we wrote only the zeromode part of the fermionic boundary
state explicitly.

The meaning of the symbols in the above expression is the following: |A,−1/2⟩ means the
left mover ground state in spinor representation labeled by A in the picture −1/2 and |B̃,−3/2⟩ is
the corresponding right mover state. CAB is the charge conjugation matrix. The objects in the right
mover carry a "tilde". β0, γ̃0 are the zeromodes of the bosonic ghosts. The θ µ denotes the fermionic
creation-annihilation operator defined by a conbination of the fermionic oscilators ψµ

n in the RR
sector :

θ µ = ψµ
0 + iψ̃µ

0 , {θ µ ,θ †
ν}= δ µ

ν .

Our convention of the representation of the zeromodes is

ψµ
0 |A⟩⊗ |B̃⟩ = (

1√
2

Γµ ⊗1)|A⟩⊗ |B̃⟩ ,

ψ̃µ
0 |A⟩⊗ |B̃⟩ = (Γ11 ⊗

i√
2

Γ11Γµ)|A⟩⊗ |B̃⟩ . (4.3)
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where we surpressed the ghost number. This representation is convenient for the following analysis
and different from the one given in [18, 19] (see also Ref. [20].). The action of the θ µ on the state
|[C]⟩ is then

θ †
µ |[C]⟩= |[CΓµ ]⟩ . (4.4)

and for the Dp-brane we have
|Dp⟩= θ †

pθ †
p−1 · · ·θ

†
0 |[C]⟩ (4.5)

which satisfies the boundary condition for a Dp brane

θ †
α |Dp⟩= 0, (α = 0, · · · , p),

θi|Dp⟩= 0, (i = p+1, · · · ,9). (4.6)

We focus on the D2-D0 brane system here. The corresponding boundary state is thus

|D2D0⟩ = Ne2πα ′F12θ 1θ 2 |D2⟩
= N(1+2πα ′F12θ 1θ 2)|D2⟩
= N|D2⟩+ k|D0⟩ . (4.7)

The T-duality of the fermion is obtained by changing the sign of the right mover for the os-
cillator mode: ψ̃n →−ψ̃n. For the zeromode, T-duality transformation for the α-direction can be
represented by an operator Tα as

Tα = θ α −θ α†, (4.8)

which maps Tαθ β T †
α = −θ †β and Tαθ †β T †

α = −θ β , and satisfies T †
α Tα = 1 and TαTα =

−1. Tα maps a boundary state (4.5) of a Dp-brane to that of a D(p+ 1) or a D(p− 1) brane,
depending on whether the direction of the T-duality map is perpendicular or parallel to the Dp
brane, respectively. Using the above operator, we can take a T-duality of the state (4.7) and get

|D2D0⟩′ = T2T1|D2D0⟩= k|D2⟩−N|D0⟩ . (4.9)

To calculate the overlap we need conjugate states, which can be defined on the state

⟨[C]|= ⟨Ã,−1/2|[C]AB⟨B,−3/2|e−iβ0 γ̃0 , (4.10)

as the boundary state. The action of the fermionic zeromodes on the tensor state is

⟨Ã|⊗ ⟨B|ψµ =
−1√

2
⟨Ã|⊗ΓB

µ,C⟨C| , (4.11)

⟨Ã|⊗ ⟨B|ψ̃µ =
i√
2
(Γ11Γµ)

A
C⟨C̃|⊗ΓB

11,D⟨D| . (4.12)

The RR-state for antisymmetric tensor potentials can be defined as

⟨A |= ⟨[C]|A = ⟨[C]|∑Aµ1···µqθ µ1 · · ·θ µq . (4.13)

Note that the T-duality of these RR-states can also be taken by applying the operator Tα .

7
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The physical state is given by applying the GSO projection

[GSO] =
(1− (−1)F0+G0)(1+(−1)p+F̃0+G̃0)

4
, (4.14)

which selects the rank of the antisymmetric tensor field according to the type of the superstring.
F0 and G0 in the GSO projection are fermion number and ghost number, respectively. Using these
states, we can obtain the Chern-Simons coupling of the RR-potentials to the D-brane by

ICS = ⟨A |[GSO]c0c̃0|B⟩ . (4.15)

The T-duality transformation of the Chern-Simons coupling follows from the relation

ICS = ⟨A |[GSO]T †T c0c̃0|B⟩= ⟨A |T †[GSO]c0c̃0T |B⟩= ⟨A ′|[GSO]c0c̃0|B′⟩ . (4.16)

where T is an appropriate conbination of T-dual operator Tα and ⟨A ′| and |B′⟩ are the T-dual state
of the RR-potentials and the boundary state, respectively. Here the T-dual operator is T = T2T1

Now we can discuss the consistency of the Nahm transformations and T-duality of the string
for the D2-D0 system on the torus. It is straightforward to evaluate:

⟨A ′| = ⟨A |T †
1 T †

2 = ⟨[C]|(A (0)+A
(1)

1 θ 1 +A
(1)

2 θ 2 +A
(2)

12 θ 1θ 2)T †
1 T †

2

= ⟨[C]|(A (0)θ 1θ 2 −A
(1)

1 θ 2 +A
(1)

2 θ 1 −A
(2)

12 ) , (4.17)

where we have expanded the sum of RR-potentials A in terms of θ 1 and θ 2. Note that the coeffi-
cients A (k) do not contain θ 1 or θ 2. From this we get the T-duality rule for the RR antisymmetric
field as

A ′(0) =−A
(2)

12 , A
′(1)

1 = A
(1)

2 , A
′(1)

2 =−A
(1)

1 , A
′(2)

12 = A (0) . (4.18)

This is essentially the Buscher rule for RR-potentials [21] as argued in Refs. [22, 23, 24, 25]. The
transformation rule (4.18) can be represented in terms of differential forms in a compact form as

A ′ =−
∫

T 2
A edxi∧dyi , (4.19)

where A ′ is the T-dual RR antisymmetric field with θ 1, θ 2 being replaced by dy1,dy2 and θ k

(k ̸= 1,2) replaced by dxk, respectively.
As we have seen in the previous section, the T-duality of the boundary state is given by the

Nahm transformation. For the following discussion, we use the representation of the Nahm trans-
formation in the similar form to the family index formula (2.6) as

Trk(e2πα ′F̃) =
1

(2π)2α ′

∫
T 2

edxi∧dyi ∧TrN(e2πα ′F)

= k−Ndy1 ∧dy2, (4.20)

where F̃ is the dual curvature 2-form.
The Chern-Simons coupling (4.15) can be represented in terms of differential forms [27, 28,

29] as
ICS = µ2

∫
M

A ∧TrN(e2πα ′F) , (4.21)

8
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where µ2 = T2 is the unit of D2-brane charge, M = R× T 2 is the worldvolume, A is a sum of
RR-potentials and F is curvature 2-form. In our gauge configuration (3.4), this reduces to

ICS = µ2

∫
M
(A (0)+ · · ·+A

(2)
12 dx1 ∧dx2)(N + kdx1 ∧dx2)

= Nµ2

∫
M

A
(2)

12 dx1 ∧dx2 + kµ0

∫
R

A (0), (4.22)

where µ0 = (2π
√

α ′)2µ2 is the unit of D0-brane charge, and we have used the same notation for
the RR q-form field as (4.17).

By using these two transformations (4.19) and (4.20), we obtain

µ2

∫
M̃

A ′∧Trk(e2πα ′F̃) = µ2

∫
M̃
(A ′(0)+ · · ·+A

′(2)
12 dy1 ∧dy2)(k−Ndy1 ∧dy2)

= −µ2

∫
(−NA

(2)
12 dy1 ∧dy2 − kA (0)dy1 ∧dy2)

= Nµ2

∫
M̃

A
(2)

12 dy1 ∧dy2 + kµ0

∫
R

A (0), (4.23)

where M̃ = R× T̃ 2. This shows the invariance of the Chern-Simons term, as required. The trans-
formation rule of RR-potentials (4.19) or the gauge flux (4.20) is ambiguous in its overall sign.
It is necessary in our convention that (4.19) has an overall minus sign to obtain a consistent and
T-duality invariant Chern-Simons coupling of the brane and q-form field.

5. Conclusion and Discussion

We have proved the equivalence of the Nahm transformation with the T-duality in string theory
on the level of the boundary state for the case of a ND2/kD0 bound state on a torus T 2.

For this we gave the two dimensional version of the Nahm transformation, which interchanges
the rank N of the gauge group and the flux k according to the rule (N,k) → (k,−N) together with
the map T 2 to T̃ 2, including a nontrivial relative sign.

Then, we proved the equivalence of the Nahm transformation with the T-duality transformation
in superstring theory. A consistent extension of the boundary state description of magnetized D-
branes on tori to the superstring was derived.

In the superstring case, the T-duality transformation of the RR-zeromode sector has to be
handled carefully. Using the method for constructing the boundary state given in [19][18], we
introduced a new representation of the zeromodes, which has the advantage that the boundary state
and the RR-states are treated in a seamless way. Also the T-duality invariance of the Chern-Simons
term follows rather naturally. Introducing the T-duality operator for the zeromode part which acts
on both the boundary state and the RR q-form state, as was first introduced in [23][24] to describe
the Buscher rule of RR-potentials, the relationship between T-duality rule at the superstring level
and that at the low energy effective theory is clarified. The T-duality invariance of the Chern-
Simons term in the effective theory requires an extra sign for the Hori formula. As a final result,
we showed the compatibility among the T-duality, Buscher rule (Hori formula) and the Nahm
tranform (family index formula).

9
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It is a well known fact that when performing two Fourier transformations in sequence, this
does not give back the original function but a "parity transformed function", i.e. its variable x is
replaced by −x. This means (⃗x, p⃗)→ (p⃗,−⃗x)→ (−⃗x,−p⃗). One must perform the Fourier transform
4 times to get back to the original function, which is called Z4-duality.

The Nahm transformation, which is a special case of Fourier-Mukai transformation, shows the
same feature, symbolically written as (N,k) → (k,−N) → −(N,k). Similarly, the RR-potentials
get an overall minus sign when we transform them twice by the Hori formula. These are simply the
consequence of the square of the T-duality. In fact, for T = T2T2 we have T 2 =−T 2

2 T 2
1 =−1.

Thus, the overall sign appearing in these formulae indicates a Z4-duality nature of the T-duality.
On the other hand, T-duality is usually designed to act as an Z2-duality [24]. This works

since we can redefine both RR-potentials and the boundary state by a minus sign using the sign
ambiguity. However, one has to be aware that this redefinition has to be done simultaneously in
order to leave their overlap unchanged.

It would be interesting to extend our analysis to a higher even-dimensional torus T d (d: even),
where the Nahm transformation interchanges the rank and higher Chern numbers. In this way, one
may find a connection to the so-called toron solutions on T 4 corresponding to D4/D2/D0-bound
states [30].

The discrete T-duality considered here is a subgroup of the group O(2,2;Z) for T 2 and O(d,d;Z)
for T d . Corresponding T-duality rules for bosonic boundary states [7][8], and for RR-potentials
[22][23][24] have been found. We expect that there is family of O(d,d;Z) Nahm transformations.
However, besides the D2/D0-bound states for d = 2, it also has to include tilted D-strings and a
state of D0-branes only.

Restricting to type IIA theory and the subgroup SO(d,d;Z), these Nahm transformations
should relate gauge theories of various even dimensions, which leads us to the derived category
viwpoint on D-brane bound states. Then, the corrsponding Nahm transformations would be the
Fourier-Mukai transformations.
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