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1. BPS Saturated Quantitiesin String Theory

During the last decades our understanding of string theasydnamatically improved and a
great number of new and unexpected structures has emengeds@nmetries and dualities in turn
have proven to be powerful tools which allowed us to appraaiehesting physical (and mathemat-
ical) questions. Among the few guiding principles in thershaf new structures is to study those
sectors of the theory which are insensitive to certain ee&dions or corrections. In particular,
supersymmetrically protectaabjects have been an invaluable source of insights overdhesyIn
string theory we have two natural paths to approach 8R8-saturatedjuantities, namely either
through conformal field theory (world-sheet point of view)through the effective (space-time)
action and its spectrum (target space point of view). In n@ases there is an interesting interplay
between both approaches, whose combination has led to mizngsting complementary insights.

From the target space point of view BPS saturated quanéippear as very particular interac-
tion terms in the effective action of string compactificagowith extended supersymmetry. Such
couplings usually enjoy interesting analyticity propestidepending on the amount of supersym-
metry preserved. An important class of examples are chioaplings in theories with/” = 2
supersymmetry (seee.g. [1]), which are constrained to depend holomorphically o viector
multiplet moduli. Similar examples can be formulated indtes with more supersymmetry, in
which chirality is generalized to G(rassmann)-analyiaf (harmonic)superspaces (seg. [2]).
Couplings of this type usually enjoy so-called non-rendization theorems, which makes them
much simpler to handle from a field theoretic point of view.

From the world-sheet point of view, BPS saturated quastitixe the form of certaimdex-
like structures or (super)traces, which only receive contiobstfrom (a subset of) the BPS states
of the theory. The analyticity properties in the targetesgpapproach, which we mentioned above,
usually translate into certain differential equationdsé@d by these objects. Such equations in
many cases turn out to be very useful computational toolgwddlow us to elegantly handle BPS
saturated quantities. From a mathematical point of vieah glbjects encode important topological
invariants of the internal manifold of the string compactfion.

Over the years many explicit examples of BPS saturated wbjeve been studied in string
theory using both world-sheet as well as target-space rdethA selection of such quantities is
schematically depicted in figure 1. One of the most imporexamples in type Il string theory
compactified on a Calabi-Yau manifold (thus preserving= 2 supersymmetry in four dimen-
sions), is a certain class of chiral F-terms first discusadd]i which appear at higher string loop
level. These couplings are captured by the (higher genusijiga function of the topologically
twisted world-sheet theory A4~ = 2 topological string). Holomorphicity of these couplingandoe
formulated as a first order differential equation in the gechultiplet moduli space [3]. Further
examples of BPS-saturated amplitudes and differentightions satisfied by them have been dis-
cussed in [5-11]. These objects have been usedgiaest string-string dualities (seeg. [12])

IThroughout these notes we will count supersymmetries indaaensions.

2|ncidentally, due to a non-decoupling of BPS-exact (and tmphysical) states in the world-sheet CFT, this equa-
tion is modified by the so-calleldolomorphic anomaly3]. The resulting equation in fact takes the form of a reiwers
relation which allows in certain cases to compute the pamtifunction up to very high genus [4]. This is an example
where BPS properties of certain couplings serve as powesfaputational tools in the study of string compactificasion
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Figure 1. Selection of BPS saturated quantities in string-theoryffeBént columns correspond to Type
I, Type Il and Heterotic string theory respectively. Bluedarellow objects stand for /2 BPS saturated
quantities in4” = 2 and.#" = 4 compactifications respectively, while the green entryiisx@@ample of a 14
BPS saturated object in af” = 4 theory. Moreover, for each entry, the top right corner gjg=cthe internal
manifold of the string compactification, the top left corirticates whether it is a one-loop or higher loop
guantity, while the correlator hints at the explicit phyicoupling: HereR denotes the Riemann tensor,
T the field strength of the graviphoto@,stands for scalar modul, ¢ andA for fermions of the/” =2
hyper- and vector multiplets respectively and findllyhe vector multiplet gauge field strength.

or have played an important role in unravelling algebraiacitires in the BPS spectrum of string
compactifications (see.g. [13, 14]). The have also turned out to be very important fgoliek
physical questions.g.for the entropy of black holes (seeg.[15-18]).

In this article — instead of discussing all examples of figlirim any detail — we want to
focus on one particular/8 BPS-saturated quantity and present recent results, tmththe target
space as well as the world-sheet point of view. The quantéywant to focus on is thelliptic
genus of KB (g3(1,2)) which is a weak Jacobi form @L(2,7Z) of weight zero and index one. In
section 2 we will first take the world-sheet approach andudis@ recent observation of [19]: Upon
expansion ofgks(T1,2) in characters of the#” = 4 superconformal algebra, the expansion coeffi-
cients (.e. the multiplicities with which each multiplet contributesf the first few representations
are dimensions of irreducible representations of the &rlylathieu grougM,4. This observation,
which is now known under the nanMathieu moonshinemight be understood as a hint towards
an M4 symmetry which acts non-trivially on the BPS states thatrilomte to the elliptic genus
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of K3. We will discuss numerous number theoretic calculatiortich give additional weight to
this conjecture [20-28]. From, the space-time point of weswill review a new one-parameter
family of 1/4 BPS saturated one-loop amplitudes in type Il string theompactified orkK3 x T2.
We can define a generating functional for these amplitudbsseintegrand (over the world-sheet
torus) is preciselyks. Performing explicitly the loop integration, we can showttthis generating
functional is related to the logarithm of the Igusa-cusprfowhich is the unique weight 10 cusp
form of Sp4,Z). This results might indicate a connectionMb,4 with the algebra of BPS states
[13] (see also [14] as well as [29, 30, 25, 26]).

2. World-Sheet BPS Saturated Quantities: The Elliptic Genus of K3

2.1 General Properties of the Elliptic Genus

From the world-sheet perspective, a very important BP Sat®d quantity is thelliptic genus
of the compactification manifold#. For a world-sheet conformal field theory with central clearg
c that preservesy” > 2 supersymmetry, the latter can be defined as the followangetf31—-33] in
the Ramond-Ramond sector

_ _ _ 2Tt
#(1,2) == Trr (-1 Fybdo R 5) S:E;Z : (2.1)

HereF (F) is the left (right) moving fermion number generatdythe generator of the left moving
U (1) current algebra anby (Lg) a generator of the left (right) moving Virasoro algebgar, z) is
holomorphic in both arguments because only the right-nggiround state can contribute. More-
over, as discussed in [34] the elliptic genus has intergstindular properties: it transforms as a
weak Jacobi form of index one and weight zero urig2, Z) transformationsi.e. [35]

ar+b z 2nic? b
(p<CT+d’ cr+d> = e o(n,2), ¥ (Ca) € SU2.2), (2.2)
Q1,24 01+ 1) = e ZH(CTH22) 7 7) Vil e, (2.3)

The elliptic genus encodes important topological infolioratabout the target space manifold
of the sigma-model. For specific values of the variabtbe elliptic genus resembles important
signatures and genera, as can be seen from the following tabl

value formula quantity example . = K3
z=0 o(1,z=0)=x Euler number| ¢3(1,0) =24
Hirzebruch
_1 — 1 1=
Z= 2 (p(T,Z 2) O-—’_ﬁ(q) Signature (ﬂ(3(T7 2) 16+ ﬁ((',])
z= 41 | o(r,z= 41 =Aq 2+ 0(q?) | A-genus ®a(T,552) = —207% + 0(q)

Here, as an example, we have presented in the last colummasiee£ = K3 which gives rise to
a world-sheet theory with central charge= 6. In fact, all sigma models witkh = 6, which in



BPS Saturated Objects: K3 Elliptic Genus Stefan Hohenegger

fact preservet” = 4 supersymmetry, can be classified through their elliptitugen the sense that
there are only two possibilities

(1,2 =0,
@(1,2) = { Prelr,2) 6(1,2)2 (2.4)

W3(1,2) = 82i4:2 6(1,2=0)2

In the former case, the target space manifold is a four-to#is- T* while in the latter.# = K3,
which has already appeared in the table. Notice, althougtels a non-trivial moduli space &f3
surfaces (see equation (3.1) later on), the elliptic gesitise same at every point o#ks.

2.2 Expansion in .4 = 4 Characters and Mathieu M oonshine

As has been discussed in [36] (building on earlier work in)3he elliptic genus oK3 (i.e.
the non-trivial expressiogks(T,2) in (2.4)) can be expanded in a natural manner in elliptic geene
of representations of the (left-moving}y” = 4 superconformal algebra

&a(T,2) = 24c}‘i’%:f:0(r,z) + ZOAncm{rTf%J:%(r,z). (2.5)

Here we have introduced the elliptic genera of the shiir= 4 representation

NI

n(n+1)
_ 0.(1,2)? : o (=D"q 2 y™*

N =4 _ YL, _
Chh:%wlzo = r’(_[_)3 M(T7Z)7 with H(T,Z) - Ingz 91(T,Z)(1—q”y) ’

(2.6)

with u(1,z) an Appell-Lerch sum, which is a mock modular theta-funciisee [38, 36] and refer-
ences therein for more information). Besides this, we h#s@iatroduced an infinite sequence of
elliptic genera of long/” = 4 representations

01(1,2)?
n(r®

The multiplicities, with which each/” = 4 representation contributes ¢R3(7,z) are denoted by
the coefficientd\, in (2.5). Explicitly, the first few of them are

oolw

ohy 1.2 =" (2.7)

AL =2-45 A, =2-231 A3 =2-770, Ay =2-2277, As =2-5796.

It was observed in [19] that these numbers are in fact dinosessdf irreducible representations of
the largest Matthieu groul,4.2 This fact is very reminiscent of a similar observation by MgK
(and later McKay and Thompson) which lead to developmentmathematics which are today
known by the name of 'Monstrous Moonshine’ and which areflyrieutlined in appendix B (see
[39] for a more complete review). Indeed, this analogy sstg#hat the space of states contributing
to ¢k 3 takes the form

%BPS: @(Hn(gjfr{/:‘l)a (28)

n

3The next coefficienfg = 2- 3520+ 2- 10395 itself is not the dimension of an irreducible, representation, but
can naturally be written as the sum of two [20, 21].
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with 72" =4 the space of#" = 4 representations at mass-leveand H,, some representation of
M4. A consequence of this would be that the full elliptic genti&8 can be written in the form

-2

¢ = (dimHoo)ch "+, — (dimHo)ch "1 4 Z (dimHn)ch " |y (2.9)

with A, = dim(H,) in equ. (2.5) and the observation of [19] would be tantamaéaoint

Hoo = 23+1, Ho=1+1, Hy = 45+45,
Hy = 231+231, H3=770+770, Hyq= 227742277 (2.10)
Hs = 2-5796, He = 2- 3520+ 2- 10395.

2.3 Twining Genera

As a non-trivial check for this 'Mathieu moonshine’, it wassfi proposed in [20, 21] and
latter on elaborated in [22, 23] to consider so-catiething generawhich are the analogue of the
McKay-Thompson series in the context of Monstrous mooresf0] (see equ. (B.4)). Indeed, for
any elemeng € M4 we can defing

1 c
@(1.2) == 5 Trrr((~1)7 FayPgto g2 ) (211)
Although M4 has of order 1% elements, they fall into only 26 conjugacy classes (seeetabl
for the full character table), such that there are a prioly @6 different twining genera. If the
conjectured expression (2.9) is indeed correct, it shoelgdssible to writeg, in the following
manner

@(1.2) = 3 | Ty (@) oty T4y (r. 2~ Treg(@) oy T4, (1.2

=1
4'=2

+ZTan( chh n+ I 1(r,z)
=1

with the first few representationtd,, as given in (2.10). Similar to the elliptic genus itself, iasv
first argued in [20, 21] using standard conformal field themsthods, that the twining genegg
should transform as weak Jacobi forms of index 1 and weigtd&usome congruence subgroup
of SL(2,Z), up to some multiplier system. Indeed, in [22] it was conjeet! that for anyg € M,

of orderN

ar+b Z ricd  2micZ2
® (cr+d’ cr+d> = e gyr,2), for (ab) €lo(N) (2.12)

wherel o(N) is the congruence subgroup ®k(2,7) defined as

Fo(N) := {(2‘3) c SL(Z,Z)|CEOmodN}. (2.13)

4For convenience we have included a facg)rsuch thatpa(t,2) = %(n(g(r,z) = @1(7,2) is identical to the
standard weak Jacobi form of index 1 and weight O (see [35]).

5Due to the fact that there are 10 conjugacy classes whichaappeomplex conjugate pairs, there are only 21
distincttwining genera.
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The quantityh € N with h|gcdN,12) determines the multiplier system, which is in particular
trivial if g contains a representative bfy,3 C M. l.e. h=# 1 only for those conjugacy classes
which reside to the right of conjugacy class 23B in the charaable given in table 1.

Besides the conjectured transformation properties (2u@)also know the first few Fourier
coefficients for each twining genus: They can be inferrednftbe first few representations in
equation (2.10) that follow from the original observatidr{19]. It turns out that these two pieces
of information are sufficient to obtain closed form expreasifor allg,. A number of them have
first been worked out in [20, 21] while the complete list hasrbgiven in [22, 23].

The information encoded in they(7,2) in turn can be used to find explicit decompositions
of the representationd,, (for n > 6) into irreducible representations Bf,4. It has been checked
up ton = 600 (see [22, 23]) that the multiplicities in this decompiosi are indeed non-negative
integer coefficients as is required for well defined reprieg@ems. This highly non-trivial result
provides overwhelming evidence for the correctness of tla¢hMu-moonshine conjecture, albeit
it is no full-fledged mathematical proof.

3. Symmetries of K3 Sigma Models

3.1 Quantum Symmetries

Given the strong evidence in favour of the conjecture (2rBingportant question is why ex-
actly Mip4 seems to be acting on the BPS states contributing to theéieljipnus oK 3. An impor-
tant theorem in this respect was derived in [41]

Theorem: Let G be a finite group of symplectic automorphisms of a K3 surfadeen
G is isomorphic to a subgroup of the Mathieu grdyjps, which has at least 5 orbits on
a set of 24 elements.

This suggests that an action bf,3 € Mio4 on the space of BPS states contributing to the ellip-
tic genus may be expected from a geometric point of view. Hewen the expansion (2.9) we
encounter irreducible representationshM, rather than merel,s. It therefore seems that the
purely geometric action gets enhanced at the quantum lévahtural first question is therefore
how symmetries of sigma models wiB target space are related to the Mathieu grip.

Recalling the conjectured structure.#fBPSfrom equ. (2.8), however, we are not interested in
anypossible symmetry of the sigma model, but only in those whanmute with the /" = (4,4)
superconformal algebra. To classify these symmetriesddirst consider the moduli space of
A = (4,4) theories with elliptic genugks, which is believed to be [42, 43]

Myz = O(T*2%)\0(4,20)/(0(4) x O(20)). (3.1)

The Grassmannia®(4,20)/(0(4) x O(20)) is parametrized by the choice of a positive definite
4-dimensional subspadeé ¢ R*?% andO(I'*+?°) is the group of automorphisms of the even uni-
modular latticel*2° ¢ R*20, Physically, we may think of 420 as the integral homology d€3,

i.e. the lattice of D-brane charges, and the positiofilaé fixed through the choice of a Ricci-flat
metric and &B-field onK3. As was discussed in [24] the group of supersymmetry prageauto-
morphismsG = Gp of the non-linear sigma-model characterized bgonsists of those elements of
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O(I*2%) which leavell invariant pointwise. Let us introduce the following ortlomgl sublattices
in 420

L®: = {xeM*?|g(x) =x,Vg e G}, (3.2)
Lg: = {xeM*?)x.y=0,vyeLC}. (3.3)

By construction[1 is a subspace of the real vector spa€ex R ¢ R*20, and sincd1 has signature
(4,0), the orthogonal complemeht must be a negative definite lattice of rank at most 20. There-
fore, as was explained in [24],(—1) can be embedded into the Leech lattieeprovided that
Ls(—1) does not contain any vectors of length squared&mce the action of fixes all vectors
of A orthogonal toLg(—1), G must be a subgroup @o; C Coy = Aut(A) that fixes pointwise a
sublattice of the Leech lattice of rank at least 4. A more fcduanalysis then leads to the theorem
[24]

Theorem: Let G be the group of symmetries of a non-lineasmodel onK3 preserving

the .4 = (4,4) superconformal algebra. Then one of the following posgisl holds:

1. G=G.G", whereG' c 73, andG” C My, with at least four orbits when acting
as a permutation ofll, ..., 24}

2. G=5127,
3. G=7Z3A¢

4. G=3"47,.G", whereG" is either trivial,Z,, Z3 or Z,.

Here p'™2" denotes an extra special group of orgér2", andN.Q denotes a grouf® for which N
is a normal subgroup such th@/N =~ Q. Except for case 1. witky' trivial, these groups are not
subgroups oM4.

This classification does not uniquely single &4 but includes several other options (partic-
ularly cases 2.—4.). In fact, in [24] a particular Gepner gldths been studied in which possibility
3. isindeed realized. This result is somewhat puzzlingnenere so since all cases of the classifi-
cation theorem are subgroups of the Conway gi@ap which, however, seems not to be favored
by the elliptic genus oK 3. Therefore, the appearancelMb, in the space of BPS states K3
sigma-models must be more involved and further insightengeebe necessary. For example, we
might hope that we can gain further hints by studying the obl®l,4 from the target space point
of view.

4. 1/4-BPS Saturated String Amplitudes

4.1 Connection to Target Space Physics and BPS Statesin String Theory

So far our attempts to understand the appearandéghave focused on the world-sheee(
conformal field theory) side. It is a natural question to seleether we may also gather insights
by using a space-time (effective action) approach. Indeedyould like to understand how much

6The presence of the latter would signal an enhancement gegaummetry and would lead to a singular CFT [42].
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(if any) of the action ofM»4 maps over to the target space physics. To this end, we first toee
identify a suitable quantity on the target space which mdisplayM»,4 symmetry,i.e. some BPS
saturated object that is related to the elliptic genuk ®f

In the following we will discuss such a quantity, namely atigatar BPS saturated amplitude
in type Il string theory compactified dk3 x T2, whose integrand can be written as derivatives of
(3. However, before discussing the amplitude explicitly,ustfirst review the BPS spectrum of
this particular string compactification. The effectiveiaitis described by4” = 4 supergravity
in four dimensions. The massless spectrum comprisesithe 4 supergravity multiplet coupled
to 28 vector multiplets. The latter consist of a vector fiegdugino), four Weyl spinors and six
real scalars. However, not all of the 28 VMs are physical.ebd] 6 of them act as compensating
multiplets: As explained ir.g.[2], the 36 scalars of these multiplets are eliminated byasipg
the D-term constraints (20 constraints) as well as gaugadfi¥ieyl invariance (one constraint)
and local SO(6) symmetry (15 constraints). The remaining di3ysical scalarsfrom the Weyl
multiplet and the remaining 22 VMs span the coset space:

SU(1,1) SO22,6,R)
Ul SQ22R) x SO6,R)

The first factor corresponds to tHe? torus and is described by the Kahler modulus= T; +
iTo, while its complex structure modulls = Uy + iU,, the c—model moduli ofK3, the type IIA
dilaton Sand the Wilson lines oii % of the Ramond-Ramond gauge fields parametrize the second
factor. Since in the type Il compactification two superckarffom the left— and right—-movers each
comprise the full#” = 4 SUSY algebra, half of the gauginos originate from the R-88®@ and
the second half from the NS-R sector.

As discussed in [44] (see also [16] for a more explicit extiobi of these states), in type IIA
the 22 physical gauge vectors in the VMs arise from the R-RrBifpotentials reduced on the
b, (K3) = 22 two—cycles, while the six graviphotons from the supefiiyamultiplet stem from
the R-R 1-form in 10 dimensions, the R-R 3-form reducedTénthe NS-NS anti-symmetric
tensor and metric reduced along the two one—cycles of thes f. We can associate electric
and magnetic charges to all these gauge fields. In partj¢hlafundamental string wrapped ®R
with winding numbers, n, and Kaluza—Klein (KK) momentan, m, is electrically charged under
the reduction of the 10-dimensional B-field and the metricTérwith chargesy, ny,my,mp € Z,
respectively The mass of a fundamental string state is given by

=N+ AP+ ()’ and  MR=Ne— 3+ [RPH(R)7. (42)

with p,, the space-time momenturl_r the left- and right-moving oscillator numbers and the
Narain moment&R , Pr) € 22

(4.1)

A= (M +mU +mT+nTU), and Pr= (Mg +mpU +mT +npTU).

1 1
vV 2ToU» v 2ToU»
"Physically, in type IIA these scalars arise as follows: Brenodel ofkK3 has 80 and that 6F2 four real defor-
mations. The R-R 1-form gives rise to the two real scalar€s and the R-R 3-form givels(K3 x T2) = 44 scalars.
Reducing the R-R 3-form down to an anti-symmetric space-tBytensor, which can be dualized to a scalar, gives
by (K3 x T2) = 2 more scalars. Together with the dilaton fildie obtain 80+ 4+ 2+ 44+ 2+ 2 = 134 real scalars.
8Their corresponding magnetic counter parts are descrigatiddNS five-brane wrapped dfs x St and a KK
monopole orst.
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Level matching requires the identifications
m2 —m& = N_ — Nr+ |PL|? — [P/ = NL = Nr+ 2 (mynz — ngmp) = 0. (4.3)

The class of states which will be relevant for us in the follogvare the so—called Dabholkar—
Harvey (DH) states. The latter are perturbative BPS statkish may either have left-moving,
or right—-movingNg excitations [11]:

NR, N. = 0: MmN — Ny = 0 s 1/2 BPS,
N, =0: 2 (mlnz — nlmz) =NR, 1/4 BPS, (4.4)
Nr=0: 2(nump—mnp)=N_, 1/4BPS.

Depending on the value of the duality invariamin, — nym, these states represent eithé® br 1/4
BPS saturated string states. In [44] particular string th@mnplitudes have been discussed which
only receive contributions from such states and which ammately related to the elliptic genus of
K3. Such amplitudes have to be very carefully arranged, tadtrall the properties that we have
reviewed in section 2.1. First of all, singrs is a weak Jacobi form dL(2,7Z) the amplitude we
are interested in must appear at one-loop in string petiorbéheory? Moreover, sincas is a
holomorphic function in both arguments, the amplitude cafe left-right symmetric. Indeed, as
reviewed in section 2.1, it can only depend on the right mgp\gnound state, which means that
only zero modes may contribute from the right moving secfbe left-moving sector, however, is
free to receive any type of BPS excitations, such that indechave two different possibilities

¢ all external states are/2 BPS
e we may also allow for 14 BPS external states

As we shall see in the explicit computations, in the first cise integrand will only be sensitive
to the contributions of short multiplets to the elliptic gsn while in the second case, we will
encounter the fullks.

4.2 1/2 BPS Saturated Amplitude
4.2.1 General Setup

In [44] the following class of 12 BPS saturated one—loop couplings has been proposed

N
N R(+),uvpraRél_,‘_/)pa (F(—),)\TF()LT)) ) NeN, (4.5)

with Rﬁ")”" the self-dual part of the four-dimensional Riemann tensmﬂ%{i‘; the field strength

of the Kaluza—Klein vector field coming from the compactifica on T2 andN is an arbitrary
integer. The coupling functioffy can be found by a one-loop computation with 2 2 external

9Here we will considerxs as a function of the world-sheet torus coordinatend a further variable which we
will encounter later on.

10
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states. The explicit answer found in [44] is given as

d2T 2 N 02n aZN 2n 2711WI](T)3 2 _ nw?42)
N = 4/ z 922" gw2N-2n < oL (W.T) > &s(T,2e  © o
X z Pr)2N qz g2l (4.6)

re2)
By a change of variable&j can also be written as

2 N [ 6 2
:—16n2/d Tn 9 {u N st uje % ]

hulld IPLI2 IRP (47
2 50N | By, 1)2 (@.7)

As we can see, the integrand of (4.7) is indeed related tollipticegenus ofK3. As has been

argued in [44], it is in fact just the contribution of the showultiplets in the expansion (2.5) with
2

2nu
¢ =0. To see this, we drop the facter = , which corresponds to a non-analytic contribution to
the integral (see [44] for a detailed discussion on thistpoMoreover we use the explicit form of
the 4" = 4 characters (2.6) and (2.7) to write

2
alr.u) = ELE [24p(r)+3(0)] @8)

where we have introduced
l [ee]
()= ~8[u(tu=13) +u(ru=24) +p(ru=1)] = 2q 4 (1— 5 Anqn) @49
n=1

We notice in particular that, sinc(1) is independent oz, ¥n>1 Will only receive contributions
from the first term in the square bracket of (4.8). The latiewyever, is precisely the contribution
of the masslessy” = 4 multiplets to the elliptic genus.

5. Intermediate Multiplets and the Elliptic Genus

A natural question to ask is whether it is possible to slightbdify the coupling (4.5) in such
a manner as to capture the full elliptic genuskd, namely also the /4 BPS contributions. To
this end, we recall that (4.5) only involves external stdtes short {.e. 1/2 BPS) multiplets
and we therefore may expect qualitatively different reswthen we allow external states from
intermediate or long multiplets. This can be achieved in tiifferent ways: (i) through so-called
reducible diagrams,e. amplitudes with two of the external vertices colliding ($iggire 2 for an
example) and intermediate states propagating in the mtehannels, or (ii) directly using massive
external states. In [44] it has been shown, that both appesaeffectively lead to the same result
and we will therefore only focus on approach (ii).

Indeed, the type of amplitude proposed in [44] is of the fellgy form

: . N N
IN = < / dzZle(go’o)(hll, p2) / dzZzVF(qo’o)(hHa P2) [ / A%, V&_l’_l)(pa,xa,fa) M VPCO>
a=1 b=1

(5.1)
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(i i) i

where

0
L P i)
int — z o Ping

=i}

pr
R R

Figure 2: Reducible diagram with external field® and®, pairwise colliding. The intermediate channel
can be decomposed into a series of fields of different cordbdimensions, belonging to different multi-
plets.

whereVF(eo’o)(hll, p2) are the vertex operators of gravitons with polarizatiggy and momentum

Py, while V,\(,l_l’_1> are vertex operators for particular massive scalar fiel#se precise form is
given by0 B
Vi " (pzZ =1t YsoH(2) e ? aaxa(2) €FX: (5.2)

We refer the reader to [44] for further technical details loese massive vertex operators but just
remark thatys and X3 are free fermions and bosons of the world-sheet theory%fwhile ¢
bosonizes the superghost addheU (1) C SU(2) current of the internak3 world-sheet theory.
The state corresponding to (5.2) is a massive modulus fiefd theT? compactification, however,
from the point of view of the internal CFT living o3, it is in the right-moving ground state.
This in fact is the reason why the string amplitudes will fipanly be sensitive to the very basic
topological information o3, i.e. the elliptic genus. Explicit computation in [44] leads tath
following result

A%,y

0
IN= | —T5 0—ZN(p,<3(T,z)

N
[ ] (PN (PN g2 g2 PR (5.3)
T =0 (FLPR)EFZ‘Z

As it stands, this expression is not very illuminating siicill involves the integration over. To
perform the latter we first realize that one may write
d?r [ oN
yN(T,U) = (@J)N/— [0—2'\' (ﬂ(3(T,Z):|

o Y (RNt — (75N A (T,

z=0 my,mpeZ
ny,Np€Z

where we have introduced the covariant differentigl with respect to the modulug$ which acts
in the following manner on a functioh™ of weightw

Uu-uy/a w
) Y (9 W ) gw
7ot 2 <0U 2(U—U)> AN -4)

101n (5.1) these vertices appear in thel) ghost picture, while the gravitons are inserted in tBepicture. To
balance the total ghost number, we also inseRqaicture changing operato¥pco(r,T).

12



BPS Saturated Objects: K3 Elliptic Genus Stefan Hohenegger

Here the prefactor takes into account the normalizatiothebt-vertex operators in string theory
(seee.g. [11]) and the second term in the bracket yields the curvatargribution. With this we
can now define the following generating functional (with éxpansion parametar)

N
[+ L - 2 ,
F()\’T,U):g (7V2-&LJZ)EN(T,U): ﬂ Z(Iks (T,“ﬂ> q%IPL\Zq—%\PRIz. (5.5)

—0 N! ] my,MyeZ V 2T2U2
ny,Nop€Z
Upon Fourier expanding the elliptic genuski
a(T,2) = Zc(n,ﬂ)q”ezm”, with c(nd)=c (n— %2) , (5.6)
n,/

the t-integral in the generating functional (5.5) can be perfedrexplicitly*!, yielding [44]

F(A,T,U) = —4In | (kY)*¥®

| e

Q2T +U+iA) l—l (1_ezm(rT+n’U+i€)\))C(n/r’Z)
r,n (>0

whereY = T,U, — A2. Comparing this expression with [48], we recognize that

Xuo(T.U3A) =T (1—e2m<rT+n’U+wA>)°(”'“€) (5.8)
r,n (>0

is nothing but the product representation of the unique ktei§ Igusa cusp forid of SQ(2,3;7) ~
Sp4,7Z). We also note that the remaining terms in (5.7) guaranteari@nce of the integral under
this latter group. Finally, the groupQ(2,3,7Z) is parametrized by the torus modyli,U) (which
generically give rise t&Q(2,2,7Z)) and the additional coupling constant

6. Conclusions

In this article we have reviewed recent interesting studiethe elliptic genus oK3 as an
example of a BPS saturated quantity in string theory. We heesl a world-sheet as well as a
target-space approach to study the space of BPS stategating to the elliptic genus df3.

In the CFT approach we have discussed some recently diszbaéyebraic properties, which
go by the name of Mathieu moonshine, acknowledging similecgding discoveries in connection
with the Monster sporadic group. Although there is so farlstact proof for Mathieu moonshine
we have reviewed the overwhelming evidence which has rgckaén compiled in its favour. In
order to understand the action of the Mathieu grdfig, on the elliptic genus oK3 it is necessary
to obtain a better understanding of sigma-models Wightarget space at the quantum level. We
have reviewed a classification theorem derived in [24] fodiskrete symmetries which leave the
A = (4,4) supersymmetry intact. Unfortunately, this classificatitmes not uniquely single out
M4 but includes several other options as well. In fact, in [2ppaticular Gepner model has been

1176 solve this integral, in [44] the method of orbits was usetich was first introduced in [45, 13] and further
developed in [46, 11, 47].

12This genus two modular form first appeared in string theorgigscribe the bosonic two-loop partition function
[49] and in the context of one—loop gauge threshold comast[50].
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studied in which one of the latter is indeed realized. Thislitds somewhat puzzling and probably
indicates that the appearancel$, is slightly more involved.

From the target space point of view we have presented sé@fbkaturated amplitudes whose
integrands are linked to the elliptic genuskd8. We have seen two different types of amplitudes:
those with external fields from massless short multipletg capture a particular part of the elliptic
genus corresponding to a mock modular form. As was argueddin(fee also [36]) this part is
linked to the elliptic genus of massless short multiplettie Tull elliptic genus is obtained from
amplitudes with external fields sitting in massive multipldt would be interesting to understand
whether the appearance of the elliptic genus in string aogas signals an action 8,4 on the
BPS states contributing to these couplings (see [25, 29Flated discussions). Moreover, in [44]
a generating functional for these later amplitudes has eeked out, which is the weight 10 cusp
form of Sp4,Z). In Ref. [51] x10 has been identified as the partition function counting dyons
(dyonic five—brane states) in” = 4 string theory and it was argued thaty can be related to the
free energy of strings iB = 6 with target—spack3 x T2. It would be interesting to find a possible
connection between the one—loop amplitude of [44] and tinepeation of this free energy from
the partition function of the six—dimensional world—volerstring theory o3 x T2,

Besides this it would also be nice to see, whether the twigmgera defined in (2.11) also
appear in string theory scattering amplitudes. This wouttbably give a more direct hint on the
appearance dlilp4 in string theory. Finally, it would be very curious to see Wi it is also
possible to define a generating functional for twining gansimilar to the Igusa cusp-form for
the elliptic genus. It would be very interesting to see whetimy connection can be made to the
modular forms recently discussed in [52].
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A. The Character Table of the Mathieu Group M4

M4 is th largest of the Mathieu groups and can best be thoughs afsubgroup 0%4 the
permutation group of 24 elements. It is a sporadic (finite simple) group with

210.3%.5.7.11. 23 = 244823040 (A1)

elements. The latter are organized in 26 different conjugéasses, which we will denote using
standard ATLAS notation,e. by a number, which indicates the order of the group elemeit.aa
capital letter. The full character table can be found in &bl
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Table 1: The character table of the Mathieu groMfp,. We use standard ATLAS notation to label the
conjugacy classes and %:@WH (-1£i/p)/2.
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B. Monstrous Moonshine

Consider the Fourier expansion of the modular invariafitnction

. E4(1)®
A0 = o= 44
= %+196884q+2149376@]2+86429997(ﬁ13+ﬁ(q“), (B.1)

whereE4(T) is the Eisenstein series of weight 4 andr) the Dedekind-eta function. In 1978
McKay and Thompson observed that the coefficients can bengfeased in the following manner

196884= 196883+ 1,
21493760= 21296876+ 196883+ 1,
864299970= 842609326-21296876+2-196883+2-1,

where the numbers that appear on the right are the dimensfahg smallest irreducible repre-
sentations of the Fischer-Griess Monster gréilp This observation gives an intriguing hint to a
connection between modular forms and sporadic groups aygests the existence of an infinite-
dimensional graded representation

V=V_1VieVodV35... (BZ)

with V, representations @bt such that
J(T)=dim(V-1)g*+ Y dim(Va)g". (B.3)
n=1

In [40] a more generalized object thd(r) was proposed in which the dimensions\ifare re-
placed by characters ¢fig) = Try,(g) for elementgy € 9

To(1) :=chy,(g)q '+ i chy,(9)a". (B.4)
n=1

There are 171 distinct sudficKay-Thompson serieghich have been shown to be Hauptmoduls
of various genus 0 subgroupsof SL(2,7).%3

There is an elegant explanation for these observationg[6354]: J(7) can be interpreted
as the partition function of a (bosonic) conformal field thewith central charge = 24, whose
automorphism group is the Monster group. Indeed, the spiastates of this CFT takes the form

00

V=P Vaw 4N, (B.5)
n=0

whereV, are representations of the Monster group, wlﬁ'ﬂﬁ:i{] are representations of the Virasoro
algebra with conformal weigHt.

13Genus zero in this context means thi#t /I has the topology of a sphere. The Hauptmodul is the correspon
ing function which encodes the change of coordinates to itkenBn spher€ U {«} (see [39] for a more detailed
discussion).
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