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1. BPS Saturated Quantities in String Theory

During the last decades our understanding of string theory has dramatically improved and a
great number of new and unexpected structures has emerged. Such symmetries and dualities in turn
have proven to be powerful tools which allowed us to approachinteresting physical (and mathemat-
ical) questions. Among the few guiding principles in the search of new structures is to study those
sectors of the theory which are insensitive to certain deformations or corrections. In particular,
supersymmetrically protectedobjects have been an invaluable source of insights over the years. In
string theory we have two natural paths to approach suchBPS-saturatedquantities, namely either
through conformal field theory (world-sheet point of view) or through the effective (space-time)
action and its spectrum (target space point of view). In manycases there is an interesting interplay
between both approaches, whose combination has led to many interesting complementary insights.

From the target space point of view BPS saturated quantitiesappear as very particular interac-
tion terms in the effective action of string compactifications with extended supersymmetry. Such
couplings usually enjoy interesting analyticity properties depending on the amount of supersym-
metry preserved. An important class of examples are chiral couplings in theories withN = 2
supersymmetry1 (seee.g. [1]), which are constrained to depend holomorphically on the vector
multiplet moduli. Similar examples can be formulated in theories with more supersymmetry, in
which chirality is generalized to G(rassmann)-analyticity of (harmonic)superspaces (seee.g. [2]).
Couplings of this type usually enjoy so-called non-renormalization theorems, which makes them
much simpler to handle from a field theoretic point of view.

From the world-sheet point of view, BPS saturated quantities take the form of certainindex-
like structures or (super)traces, which only receive contributions from (a subset of) the BPS states
of the theory. The analyticity properties in the target-space approach, which we mentioned above,
usually translate into certain differential equations satisfied by these objects. Such equations in
many cases turn out to be very useful computational tools, which allow us to elegantly handle BPS
saturated quantities. From a mathematical point of view, such objects encode important topological
invariants of the internal manifold of the string compactification.

Over the years many explicit examples of BPS saturated objects have been studied in string
theory using both world-sheet as well as target-space methods. A selection of such quantities is
schematically depicted in figure 1. One of the most importantexamples in type II string theory
compactified on a Calabi-Yau manifold (thus preservingN = 2 supersymmetry in four dimen-
sions), is a certain class of chiral F-terms first discussed in [1], which appear at higher string loop
level. These couplings are captured by the (higher genus) partition function of the topologically
twisted world-sheet theory (N = 2 topological string). Holomorphicity of these couplings can be
formulated as a first order differential equation in the vector-multiplet moduli space [3].2 Further
examples of BPS-saturated amplitudes and differential equations satisfied by them have been dis-
cussed in [5–11]. These objects have been used toe.g. test string-string dualities (seee.g. [12])

1Throughout these notes we will count supersymmetries in four dimensions.
2Incidentally, due to a non-decoupling of BPS-exact (and thus unphysical) states in the world-sheet CFT, this equa-

tion is modified by the so-calledholomorphic anomaly[3]. The resulting equation in fact takes the form of a recursive
relation which allows in certain cases to compute the partition function up to very high genus [4]. This is an example
where BPS properties of certain couplings serve as powerfulcomputational tools in the study of string compactifications.
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Figure 1: Selection of BPS saturated quantities in string-theory: Different columns correspond to Type
I, Type II and Heterotic string theory respectively. Blue and yellow objects stand for 1/2 BPS saturated
quantities inN = 2 andN = 4 compactifications respectively, while the green entry is an example of a 1/4
BPS saturated object in anN = 4 theory. Moreover, for each entry, the top right corner specifies the internal
manifold of the string compactification, the top left cornerindicates whether it is a one-loop or higher loop
quantity, while the correlator hints at the explicit physical coupling: HereR denotes the Riemann tensor,
T the field strength of the graviphoton,φ stands for scalar moduli,χ ,ψ andλ for fermions of theN = 2
hyper- and vector multiplets respectively and finallyF the vector multiplet gauge field strength.

or have played an important role in unravelling algebraic structures in the BPS spectrum of string
compactifications (seee.g. [13, 14]). The have also turned out to be very important for explicit
physical questions,e.g.for the entropy of black holes (seee.g. [15–18]).

In this article — instead of discussing all examples of figure1 in any detail — we want to
focus on one particular 1/4 BPS-saturated quantity and present recent results, both from the target
space as well as the world-sheet point of view. The quantity we want to focus on is theelliptic
genus of K3 (φK3(τ ,z)) which is a weak Jacobi form ofSL(2,Z) of weight zero and index one. In
section 2 we will first take the world-sheet approach and discuss a recent observation of [19]: Upon
expansion ofφK3(τ ,z) in characters of theN = 4 superconformal algebra, the expansion coeffi-
cients (i.e. the multiplicities with which each multiplet contributes)of the first few representations
are dimensions of irreducible representations of the largest Mathieu groupM24. This observation,
which is now known under the nameMathieu moonshine, might be understood as a hint towards
anM24 symmetry which acts non-trivially on the BPS states that contribute to the elliptic genus

3
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of K3. We will discuss numerous number theoretic calculations,which give additional weight to
this conjecture [20–28]. From, the space-time point of viewwe will review a new one-parameter
family of 1/4 BPS saturated one-loop amplitudes in type II string theorycompactified onK3×T2.
We can define a generating functional for these amplitudes, whose integrand (over the world-sheet
torus) is preciselyφK3. Performing explicitly the loop integration, we can show that this generating
functional is related to the logarithm of the Igusa-cusp form, which is the unique weight 10 cusp
form of Sp(4,Z). This results might indicate a connection ofM24 with the algebra of BPS states
[13] (see also [14] as well as [29, 30, 25, 26]).

2. World-Sheet BPS Saturated Quantities: The Elliptic Genus of K3

2.1 General Properties of the Elliptic Genus

From the world-sheet perspective, a very important BPS saturated quantity is theelliptic genus
of the compactification manifoldM . For a world-sheet conformal field theory with central charge
c that preservesN ≥ 2 supersymmetry, the latter can be defined as the following trace [31–33] in
the Ramond-Ramond sector

φ(τ ,z) := TrRR

(

(−1)F+F̄yJ0qL0− c
24 q̄L̄0− c

24

)

,
q= e2π iτ

y= e2π iz . (2.1)

HereF (F̄) is the left (right) moving fermion number generator,J0 the generator of the left moving
U(1) current algebra andL0 (L̄0) a generator of the left (right) moving Virasoro algebra.φ(τ ,z) is
holomorphic in both arguments because only the right-moving ground state can contribute. More-
over, as discussed in [34] the elliptic genus has interesting modular properties: it transforms as a
weak Jacobi form of index one and weight zero underSL(2,Z) transformations,i.e. [35]

φ
(

aτ +b
cτ +d

,
z

cτ +d

)

= e
2π icz2
cτ+d φ(τ ,z) , ∀

(ab
cd

)

∈ SL(2,Z) , (2.2)

φ(τ ,z+ ℓτ + ℓ′) = e−2π i(ℓ2τ+2ℓz)φ(τ ,z) ∀ ℓ,ℓ′ ∈ Z . (2.3)

The elliptic genus encodes important topological information about the target space manifoldM

of the sigma-model. For specific values of the variablez the elliptic genus resembles important
signatures and genera, as can be seen from the following table

value formula quantity example M = K3

z= 0 φ(τ ,z= 0) = χ Euler number φK3(τ ,0) = 24

z= 1
2 φ(τ ,z= 1

2) = σ +O(q)
Hirzebruch
signature

φK3(τ , 1
2) = 16+O(q)

z= τ+1
2 φ(τ ,z= τ+1

2 ) = Âq−
1
2 +O(q

1
2 ) Â-genus φK3(τ , τ+1

2 ) =−2q−
1
2 +O(q

1
2 )

Here, as an example, we have presented in the last column the caseM = K3 which gives rise to
a world-sheet theory with central chargec = 6. In fact, all sigma models withc = 6, which in
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fact preserveN = 4 supersymmetry, can be classified through their elliptic genus in the sense that
there are only two possibilities

φ(τ ,z) =

{

φT4(τ ,z) = 0,

φK3(τ ,z) = 8∑4
i=2

θi(τ ,z)2

θi(τ ,z=0)2 .
(2.4)

In the former case, the target space manifold is a four-torusM = T4 while in the latterM = K3,
which has already appeared in the table. Notice, although there is a non-trivial moduli space ofK3
surfaces (see equation (3.1) later on), the elliptic genus is the same at every point ofMK3.

2.2 Expansion in N = 4 Characters and Mathieu Moonshine

As has been discussed in [36] (building on earlier work in [37]), the elliptic genus ofK3 (i.e.
the non-trivial expressionφK3(τ ,z) in (2.4)) can be expanded in a natural manner in elliptic genera
of representations of the (left-moving)N = 4 superconformal algebra

φK3(τ ,z) = 24chN =4
h= 1

4 ,l=0(τ ,z)+
∞

∑
n=0

AnchN =4
h=n+ 1

4 ,l=
1
2
(τ ,z) . (2.5)

Here we have introduced the elliptic genera of the shortN = 4 representation

chN =4
h= 1

4 ,l=0 =
θ1(τ ,z)2

η(τ)3 µ(τ ,z) , with µ(τ ,z) = i ∑
n∈Z

(−1)nq
n(n+1)

2 yn+ 1
2

θ1(τ ,z)(1−qny)
, (2.6)

with µ(τ ,z) an Appell-Lerch sum, which is a mock modular theta-function(see [38, 36] and refer-
ences therein for more information). Besides this, we have also introduced an infinite sequence of
elliptic genera of longN = 4 representations

chN =4
h,l= 1

2
(τ ,z) = qh− 3

8
θ1(τ ,z)2

η(τ)3 . (2.7)

The multiplicities, with which eachN = 4 representation contributes toφK3(τ ,z) are denoted by
the coefficientsAn in (2.5). Explicitly, the first few of them are

A1 = 2·45, A2 = 2·231, A3 = 2·770, A4 = 2·2277, A5 = 2·5796.

It was observed in [19] that these numbers are in fact dimensions of irreducible representations of
the largest Matthieu groupM24.3 This fact is very reminiscent of a similar observation by McKay
(and later McKay and Thompson) which lead to developments inmathematics which are today
known by the name of ’Monstrous Moonshine’ and which are briefly outlined in appendix B (see
[39] for a more complete review). Indeed, this analogy suggests that the space of states contributing
to φK3 takes the form

H
BPS=

⊕

n

(Hn⊗H
N =4

n ) , (2.8)

3The next coefficientA6 = 2 ·3520+2 ·10395 itself is not the dimension of an irreducibleM24 representation, but
can naturally be written as the sum of two [20, 21].
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with H N =4
n the space ofN = 4 representations at mass-leveln andHn some representation of

M24. A consequence of this would be that the full elliptic genus of K3 can be written in the form

φ = (dimH00)chN =4
h= 1

4 ,l=0− (dimH0)chN =4
h= 1

4 ,l=
1
2
+

∞

∑
n=1

(dimHn)chN =4
h=n+ 1

4 ,l=
1
2

(2.9)

with An = dim(Hn) in equ. (2.5) and the observation of [19] would be tantamountto

H00 = 23+1 , H0 = 1+1 , H1 = 45+45 ,

H2 = 231+231 , H3 = 770+770 , H4 = 2277+2277 (2.10)

H5 = 2·5796 , H6 = 2·3520+2·10395 .

2.3 Twining Genera

As a non-trivial check for this ’Mathieu moonshine’, it was first proposed in [20, 21] and
latter on elaborated in [22, 23] to consider so-calledtwining genera, which are the analogue of the
McKay-Thompson series in the context of Monstrous moonshine [40] (see equ. (B.4)). Indeed, for
any elementg∈M24 we can define4

φg(τ ,z) :=
1
2

TrRR

(

(−1)F+F̄gyJ0qL0− c
24 q̄L̄0− c

24

)

. (2.11)

Although M24 has of order 108 elements, they fall into only 26 conjugacy classes (see table 1
for the full character table), such that there are a priori only 26 different twining genera.5 If the
conjectured expression (2.9) is indeed correct, it should be possible to writeφg in the following
manner

φg(τ ,z) :=
1
2

[

TrH00(g)chN =4
h= 1

4 ,l=0(τ ,z)−TrH0(g)chN =4
h= 1

4 ,l=
1
2
(τ ,z)

+
∞

∑
n=1

TrHn(g)chN =4
h=n+ 1

4 ,l=
1
2
(τ ,z)

]

with the first few representationsHn as given in (2.10). Similar to the elliptic genus itself, it was
first argued in [20, 21] using standard conformal field theorymethods, that the twining generaφg

should transform as weak Jacobi forms of index 1 and weight 0 under some congruence subgroup
of SL(2,Z), up to some multiplier system. Indeed, in [22] it was conjectured that for anyg∈M24

of orderN

φg

(

aτ +b
cτ +d

,
z

cτ +d

)

= e
2π icd

Nh e
2π icz2
cτ+d φg(τ ,z) , for

(ab
cd

)

∈ Γ0(N) (2.12)

whereΓ0(N) is the congruence subgroup ofSL(2,Z) defined as

Γ0(N) :=
{

(ab
cd

)

∈ SL(2,Z)|c≡ 0modN
}

. (2.13)

4For convenience we have included a factor1
2 , such thatφ1A(τ,z) = 1

2φK3(τ,z) = φ0,1(τ,z) is identical to the
standard weak Jacobi form of index 1 and weight 0 (see [35]).

5Due to the fact that there are 10 conjugacy classes which appear in complex conjugate pairs, there are only 21
distinct twining genera.

6
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The quantityh ∈ N with h|gcd(N,12) determines the multiplier system, which is in particular
trivial if g contains a representative ofM23 ⊂ M24. I.e. h 6= 1 only for those conjugacy classes
which reside to the right of conjugacy class 23B in the character table given in table 1.

Besides the conjectured transformation properties (2.12), we also know the first few Fourier
coefficients for each twining genus: They can be inferred from the first few representations in
equation (2.10) that follow from the original observation of [19]. It turns out that these two pieces
of information are sufficient to obtain closed form expressions for allφg. A number of them have
first been worked out in [20, 21] while the complete list has been given in [22, 23].

The information encoded in theφg(τ ,z) in turn can be used to find explicit decompositions
of the representationsHn (for n> 6) into irreducible representations ofM24. It has been checked
up ton= 600 (see [22, 23]) that the multiplicities in this decomposition are indeed non-negative
integer coefficients as is required for well defined representations. This highly non-trivial result
provides overwhelming evidence for the correctness of the Mathieu-moonshine conjecture, albeit
it is no full-fledged mathematical proof.

3. Symmetries of K3 Sigma Models

3.1 Quantum Symmetries

Given the strong evidence in favour of the conjecture (2.8) an important question is why ex-
actlyM24 seems to be acting on the BPS states contributing to the elliptic genus ofK3. An impor-
tant theorem in this respect was derived in [41]

Theorem: Let G be a finite group of symplectic automorphisms of a K3 surface.Then
G is isomorphic to a subgroup of the Mathieu groupM23, which has at least 5 orbits on
a set of 24 elements.

This suggests that an action ofM23 ⊂ M24 on the space of BPS states contributing to the ellip-
tic genus may be expected from a geometric point of view. However, in the expansion (2.9) we
encounter irreducible representations ofM24 rather than merelyM23. It therefore seems that the
purely geometric action gets enhanced at the quantum level.A natural first question is therefore
how symmetries of sigma models withK3 target space are related to the Mathieu groupM24.

Recalling the conjectured structure ofH BPS from equ. (2.8), however, we are not interested in
anypossible symmetry of the sigma model, but only in those whichcommute with theN = (4,4)
superconformal algebra. To classify these symmetries let us first consider the moduli space of
N = (4,4) theories with elliptic genusφK3, which is believed to be [42, 43]

MK3 = O(Γ4,20)\O(4,20)/(O(4)×O(20)) . (3.1)

The GrassmannianO(4,20)/(O(4)×O(20)) is parametrized by the choice of a positive definite
4-dimensional subspaceΠ ⊂ R

4,20 andO(Γ4,20) is the group of automorphisms of the even uni-
modular latticeΓ4,20 ⊂ R

4,20. Physically, we may think ofΓ4,20 as the integral homology ofK3,
i.e. the lattice of D-brane charges, and the position ofΠ is fixed through the choice of a Ricci-flat
metric and aB-field onK3. As was discussed in [24] the group of supersymmetry preserving auto-
morphismsG≡GΠ of the non-linear sigma-model characterized byΠ consists of those elements of

7
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O(Γ4,20) which leaveΠ invariant pointwise. Let us introduce the following orthogonal sublattices
in Γ4,20

LG : = {x∈ Γ4,20|g(x) = x,∀g∈ G} , (3.2)

LG : = {x∈ Γ4,20|x·y= 0,∀y∈ LG} . (3.3)

By construction,Π is a subspace of the real vector spaceLG⊗R⊂R
4,20, and sinceΠ has signature

(4,0), the orthogonal complementLG must be a negative definite lattice of rank at most 20. There-
fore, as was explained in [24],LG(−1) can be embedded into the Leech latticeΛ, provided that
LG(−1) does not contain any vectors of length squared two.6 Since the action ofG fixes all vectors
of Λ orthogonal toLG(−1), G must be a subgroup ofCo1 ⊂Co0 = Aut(Λ) that fixes pointwise a
sublattice of the Leech lattice of rank at least 4. A more careful analysis then leads to the theorem
[24]

Theorem: Let G be the group of symmetries of a non-linearσ -model onK3 preserving
theN = (4,4) superconformal algebra. Then one of the following possibilities holds:

1. G= G′.G′′, whereG′ ⊂ Z
11
2 , andG′′ ⊂M24 with at least four orbits when acting

as a permutation on{1, . . . ,24}

2. G= 51+2.Z4

3. G= Z
4
3.A6

4. G= 31+4.Z2.G′′, whereG′′ is either trivial,Z2, Z2
2 orZ4.

Herep1+2n denotes an extra special group of orderp1+2n, andN.Q denotes a groupG for whichN
is a normal subgroup such thatG/N ∼= Q. Except for case 1. withG′ trivial, these groups are not
subgroups ofM24.

This classification does not uniquely single outM24 but includes several other options (partic-
ularly cases 2.–4.). In fact, in [24] a particular Gepner model has been studied in which possibility
3. is indeed realized. This result is somewhat puzzling, even more so since all cases of the classifi-
cation theorem are subgroups of the Conway groupCo1, which, however, seems not to be favored
by the elliptic genus ofK3. Therefore, the appearance ofM24 in the space of BPS states ofK3
sigma-models must be more involved and further insights seem to be necessary. For example, we
might hope that we can gain further hints by studying the roleof M24 from the target space point
of view.

4. 1/4-BPS Saturated String Amplitudes

4.1 Connection to Target Space Physics and BPS States in String Theory

So far our attempts to understand the appearance ofM24 have focused on the world-sheet (i.e.
conformal field theory) side. It is a natural question to see,whether we may also gather insights
by using a space-time (effective action) approach. Indeed,we would like to understand how much

6The presence of the latter would signal an enhancement of gauge symmetry and would lead to a singular CFT [42].
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(if any) of the action ofM24 maps over to the target space physics. To this end, we first need to
identify a suitable quantity on the target space which mightdisplayM24 symmetry,i.e. some BPS
saturated object that is related to the elliptic genus ofK3.

In the following we will discuss such a quantity, namely a particular BPS saturated amplitude
in type II string theory compactified onK3×T2, whose integrand can be written as derivatives of
φK3. However, before discussing the amplitude explicitly, letus first review the BPS spectrum of
this particular string compactification. The effective action is described byN = 4 supergravity
in four dimensions. The massless spectrum comprises theN = 4 supergravity multiplet coupled
to 28 vector multiplets. The latter consist of a vector field (gaugino), four Weyl spinors and six
real scalars. However, not all of the 28 VMs are physical. Indeed, 6 of them act as compensating
multiplets: As explained ine.g. [2], the 36 scalars of these multiplets are eliminated by imposing
the D-term constraints (20 constraints) as well as gauge fixing Weyl invariance (one constraint)
and local SO(6) symmetry (15 constraints). The remaining 134 physical scalars7 from the Weyl
multiplet and the remaining 22 VMs span the coset space:

SU(1,1)
U(1)

⊗ SO(22,6,R)
SO(22,R)×SO(6,R)

. (4.1)

The first factor corresponds to theT2 torus and is described by the Kähler modulusT = T1 +

iT2, while its complex structure modulusU =U1+ iU2, theσ–model moduli ofK3, the type IIA
dilatonSand the Wilson lines onT2 of the Ramond-Ramond gauge fields parametrize the second
factor. Since in the type II compactification two supercharges from the left– and right–movers each
comprise the fullN = 4 SUSY algebra, half of the gauginos originate from the R-NS sector and
the second half from the NS-R sector.

As discussed in [44] (see also [16] for a more explicit exhibition of these states), in type IIA
the 22 physical gauge vectors in the VMs arise from the R-R 3-form potentials reduced on the
b2(K3) = 22 two–cycles, while the six graviphotons from the supergravity multiplet stem from
the R-R 1–form in 10 dimensions, the R-R 3-form reduced onT2, the NS-NS anti-symmetric
tensor and metric reduced along the two one–cycles of the torus T2. We can associate electric
and magnetic charges to all these gauge fields. In particular, the fundamental string wrapped onT2

with winding numbersn1,n2 and Kaluza–Klein (KK) momentam1,m2 is electrically charged under
the reduction of the 10-dimensional B-field and the metric onT2 with chargesn1,n2,m1,m2 ∈ Z,
respectively.8 The mass of a fundamental string state is given by

m2
L = NL − 1

2 + |PL|2+(pµ)
2 , and m2

R = NR− 1
2 + |PR|2+(pµ)

2 , (4.2)

with pµ the space-time momentum,NL,R the left- and right-moving oscillator numbers and the
Narain momenta(PL,PR) ∈ Γ2,2

PL =
1√

2T2U2
(m1+m2U +n1T̄ +n2T̄U) , and PR =

1√
2T2U2

(m1+m2U +n1T +n2TU) .

7Physically, in type IIA these scalars arise as follows: Theσ–model ofK3 has 80 and that ofT2 four real defor-
mations. The R-R 1-form gives rise to the two real scalarsC4,C5 and the R-R 3-form givesb3(K3×T2) = 44 scalars.
Reducing the R-R 3-form down to an anti-symmetric space-time 2-tensor, which can be dualized to a scalar, gives
b1(K3×T2) = 2 more scalars. Together with the dilaton fieldSwe obtain 80+4+2+44+2+2 = 134 real scalars.

8Their corresponding magnetic counter parts are described by the NS five-brane wrapped onK3 ×S1 and a KK
monopole onS1.
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Level matching requires the identifications

m2
L −m2

R= NL −NR+ |PL|2−|PR|2 = NL −NR+2 (m1n2−n1m2) = 0 . (4.3)

The class of states which will be relevant for us in the following are the so–called Dabholkar–
Harvey (DH) states. The latter are perturbative BPS states,which may either have left–movingNL

or right–movingNR excitations [11]:

NR,NL = 0 : m1n2−n1m2 = 0 , 1/2 BPS,

NL = 0 : 2 (m1n2−n1m2) = NR , 1/4 BPS,

NR = 0 : 2 (n1m2−m1n2) = NL , 1/4 BPS.

(4.4)

Depending on the value of the duality invariantm1n2−n1m2 these states represent either 1/2 or 1/4
BPS saturated string states. In [44] particular string theory amplitudes have been discussed which
only receive contributions from such states and which are intimately related to the elliptic genus of
K3. Such amplitudes have to be very carefully arranged, to furnish all the properties that we have
reviewed in section 2.1. First of all, sinceφK3 is a weak Jacobi form ofSL(2,Z) the amplitude we
are interested in must appear at one-loop in string perturbation theory.9 Moreover, sinceφK3 is a
holomorphic function in both arguments, the amplitude cannot be left-right symmetric. Indeed, as
reviewed in section 2.1, it can only depend on the right moving ground state, which means that
only zero modes may contribute from the right moving sector.The left-moving sector, however, is
free to receive any type of BPS excitations, such that in factwe have two different possibilities

• all external states are 1/2 BPS

• we may also allow for 1/4 BPS external states

As we shall see in the explicit computations, in the first case, the integrand will only be sensitive
to the contributions of short multiplets to the elliptic genus, while in the second case, we will
encounter the fullφK3.

4.2 1/2 BPS Saturated Amplitude

4.2.1 General Setup

In [44] the following class of 1/2 BPS saturated one–loop couplings has been proposed

GN R(+),µνρτσRµνρσ
(+)

(

F(−),λτFλτ
(−)

)N
, N ∈ N , (4.5)

with Rµνρσ
(+) the self-dual part of the four-dimensional Riemann tensor and Fµν

(−) the field strength

of the Kaluza–Klein vector field coming from the compactification on T2 andN is an arbitrary
integer. The coupling functionGN can be found by a one-loop computation with 2N+2 external

9Here we will considerφK3 as a function of the world-sheet torus coordinateτ and a further variablez which we
will encounter later on.
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states. The explicit answer found in [44] is given as

GN = 4
∫

d2τ
τ2

τ2N
2

N

∑
n=0

(2N
2n

) ∂ 2n

∂z2n

∂ 2N−2n

∂w2N−2n

[

(

2π iwη(τ)3

θ1(w,τ)

)2

φK3(τ ,z)e
− π(w2+z2)

τ2

]

∣

∣

∣

∣

z=w=0

× ∑
Γ(2,2)

(PR)
2Nq

1
2 |PL|2q̄

1
2 |PR|2 . (4.6)

By a change of variables,GN can also be written as

GN =−16π2
∫

d2τ
τ2

τ2N
2

∂ 2N

∂u2N

[

u2 η(τ)6

θ1(u,τ)2 φK3(τ ,u)e−
2πu2

τ2

]∣

∣

∣

∣

u=0
∑

Γ(2,2)

(PR)
2Nq

1
2 |PL|2q̄

1
2 |PR|2 . (4.7)

As we can see, the integrand of (4.7) is indeed related to the elliptic genus ofK3. As has been
argued in [44], it is in fact just the contribution of the short multiplets in the expansion (2.5) with

ℓ = 0. To see this, we drop the factore−
2πu2

τ2 , which corresponds to a non-analytic contribution to
the integral (see [44] for a detailed discussion on this point). Moreover we use the explicit form of
theN = 4 characters (2.6) and (2.7) to write

φK3(τ ,u) =
θ1(τ ,u)2

η(τ)3 [ 24 µ(τ ,u)+Σ(τ) ] , (4.8)

where we have introduced

Σ(τ) =−8
[

µ
(

τ ,u= 1
2

)

+µ
(

τ ,u= 1+τ
2

)

+µ
(

τ ,u= τ
2

)]

=−2 q−
1
8

(

1−
∞

∑
n=1

Anq
n

)

. (4.9)

We notice in particular that, sinceΣ(τ) is independent ofz, GN≥1 will only receive contributions
from the first term in the square bracket of (4.8). The latter,however, is precisely the contribution
of the masslessN = 4 multiplets to the elliptic genus.

5. Intermediate Multiplets and the Elliptic Genus

A natural question to ask is whether it is possible to slightly modify the coupling (4.5) in such
a manner as to capture the full elliptic genus ofK3, namely also the 1/4 BPS contributions. To
this end, we recall that (4.5) only involves external statesfrom short (i.e. 1/2 BPS) multiplets
and we therefore may expect qualitatively different results when we allow external states from
intermediate or long multiplets. This can be achieved in twodifferent ways: (i) through so-called
reducible diagrams,i.e. amplitudes with two of the external vertices colliding (seefigure 2 for an
example) and intermediate states propagating in the internal channels, or (ii) directly using massive
external states. In [44] it has been shown, that both approaches effectively lead to the same result
and we will therefore only focus on approach (ii).

Indeed, the type of amplitude proposed in [44] is of the following form

FN =

〈

∫

d2z1V
(0,0)
R (h11, p2)

∫

d2z2V
(0,0)
R (h1̄1̄, p̄2)

N

∏
a=1

∫

d2xa V(−1,−1)
M (pa,xa, x̄a)

N

∏
b=1

VPCO

〉

(5.1)
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Figure 2: Reducible diagram with external fieldsΦ1 andΦ2 pairwise colliding. The intermediate channel
can be decomposed into a series of fields of different conformal dimensions, belonging to different multi-
plets.

whereV(0,0)
R (h11, p2) are the vertex operators of gravitons with polarizationhµν and momentum

pµ , while V(−1,−1)
M are vertex operators for particular massive scalar fields, whose precise form is

given by10

V(−1,−1)
M (p,z, z̄) = : e−ϕ ψ3 ∂H(z) e−ϕ̃ ψ̃3 ∂̄X3(z̄) eipX : . (5.2)

We refer the reader to [44] for further technical details on these massive vertex operators but just
remark thatψ3 and X3 are free fermions and bosons of the world-sheet theory ofT2, while ϕ
bosonizes the superghost andH theU(1) ⊂ SU(2) current of the internalK3 world-sheet theory.
The state corresponding to (5.2) is a massive modulus field from theT2 compactification, however,
from the point of view of the internal CFT living onK3, it is in the right-moving ground state.
This in fact is the reason why the string amplitudes will finally only be sensitive to the very basic
topological information ofK3, i.e. the elliptic genus. Explicit computation in [44] leads to the
following result

FN =
∫

d2τ
τ2

τ2N
2

[

∂ N

∂zN φK3(τ ,z)
]

z=0
∑

(PL,PR)∈Γ2,2

(PL)
N(PR)

2N q
1
2 |PL|2q̄

1
2 |PR|2 . (5.3)

As it stands, this expression is not very illuminating sinceit still involves the integration overτ . To
perform the latter we first realize that one may write

FN(T,U) = (DŪ)
N
∫

d2τ
τ2

[

∂ N

∂zN φK3(τ ,z)
]

z=0
∑

m1,m2∈Z
n1,n2∈Z

′
(τ2PR)

N q
1
2 |PL|2q̄

1
2 |PR|2 = (DŪ )

N
F̃N(T,U) ,

where we have introduced the covariant differentialDŪ with respect to the modulusU which acts
in the following manner on a functionf (w) of weightw

DŪ f (w) =
U −Ū

2

(

∂
∂Ū

− w
2(U −Ū)

)

f (w) . (5.4)

10In (5.1) these vertices appear in the(−1) ghost picture, while the gravitons are inserted in the(0)-picture. To
balance the total ghost number, we also insertedN picture changing operatorsVPCO(r, r̄).
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Here the prefactor takes into account the normalization of theU -vertex operators in string theory
(seee.g. [11]) and the second term in the bracket yields the curvaturecontribution. With this we
can now define the following generating functional (with theexpansion parameterλ )

F(λ ,T,U) =
∞

∑
N=0

(

λ√
2T2U2

)N

N!
F̃N(T,U) =

∫

d2τ
τ2

∑
m1,m2∈Z
n1,n2∈Z

′
φK3

(

τ ,
λτ2PR√
2T2U2

)

q
1
2 |PL|2q̄

1
2 |PR|2 . (5.5)

Upon Fourier expanding the elliptic genus ofK3

φK3(τ ,z) = ∑
n,ℓ

c(n, ℓ)qne2π izℓ , with c(n, ℓ) = c
(

n− ℓ2

4

)

, (5.6)

theτ-integral in the generating functional (5.5) can be performed explicitly11, yielding [44]

F(λ ,T,U) =−4ln

[

(κY)10

∣

∣

∣

∣

∣

e2π i(T+U+iλ) ∏
r,n′,ℓ>0

(

1−e2π i(rT+n′U+iℓλ)
)c(n′r,ℓ)

∣

∣

∣

∣

∣

]

, (5.7)

whereY = T2U2−λ 2. Comparing this expression with [48], we recognize that

χ10(T,U ;λ ) = e2π i(T+U+iλ) ∏
r,n′,ℓ>0

(

1−e2π i(rT+n′U+iℓλ)
)c(n′r,ℓ)

, (5.8)

is nothing but the product representation of the unique weight 10 Igusa cusp form12 of SO(2,3;Z)≃
Sp(4,Z). We also note that the remaining terms in (5.7) guarantee covariance of the integral under
this latter group. Finally, the groupSO(2,3,Z) is parametrized by the torus moduli(T,U) (which
generically give rise toSO(2,2,Z)) and the additional coupling constantλ .

6. Conclusions

In this article we have reviewed recent interesting studiesof the elliptic genus ofK3 as an
example of a BPS saturated quantity in string theory. We haveused a world-sheet as well as a
target-space approach to study the space of BPS states contributing to the elliptic genus ofK3.

In the CFT approach we have discussed some recently discovered algebraic properties, which
go by the name of Mathieu moonshine, acknowledging similar preceding discoveries in connection
with the Monster sporadic group. Although there is so far no abstract proof for Mathieu moonshine
we have reviewed the overwhelming evidence which has recently been compiled in its favour. In
order to understand the action of the Mathieu groupM24 on the elliptic genus ofK3 it is necessary
to obtain a better understanding of sigma-models withK3 target space at the quantum level. We
have reviewed a classification theorem derived in [24] for all discrete symmetries which leave the
N = (4,4) supersymmetry intact. Unfortunately, this classificationdoes not uniquely single out
M24 but includes several other options as well. In fact, in [24] aparticular Gepner model has been

11To solve this integral, in [44] the method of orbits was used,which was first introduced in [45, 13] and further
developed in [46, 11, 47].

12This genus two modular form first appeared in string theory todescribe the bosonic two-loop partition function
[49] and in the context of one–loop gauge threshold corrections [50].
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studied in which one of the latter is indeed realized. This result is somewhat puzzling and probably
indicates that the appearance ofM24 is slightly more involved.

From the target space point of view we have presented severalBPS saturated amplitudes whose
integrands are linked to the elliptic genus ofK3. We have seen two different types of amplitudes:
those with external fields from massless short multiplets only capture a particular part of the elliptic
genus corresponding to a mock modular form. As was argued in [44] (see also [36]) this part is
linked to the elliptic genus of massless short multiplets. The full elliptic genus is obtained from
amplitudes with external fields sitting in massive multiplets. It would be interesting to understand
whether the appearance of the elliptic genus in string amplitudes signals an action ofM24 on the
BPS states contributing to these couplings (see [25, 29] forrelated discussions). Moreover, in [44]
a generating functional for these later amplitudes has beenworked out, which is the weight 10 cusp
form of Sp(4,Z). In Ref. [51] χ10 has been identified as the partition function counting dyons
(dyonic five–brane states) inN = 4 string theory and it was argued thatχ10 can be related to the
free energy of strings inD = 6 with target–spaceK3×T2. It would be interesting to find a possible
connection between the one–loop amplitude of [44] and the computation of this free energy from
the partition function of the six–dimensional world–volume string theory onK3×T2.

Besides this it would also be nice to see, whether the twininggenera defined in (2.11) also
appear in string theory scattering amplitudes. This would probably give a more direct hint on the
appearance ofM24 in string theory. Finally, it would be very curious to see whether it is also
possible to define a generating functional for twining genera, similar to the Igusa cusp-formχ10 for
the elliptic genus. It would be very interesting to see whether any connection can be made to the
modular forms recently discussed in [52].
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I would like to thank the organizers of the Corfu Summer Institute 2011 for giving me the
opportunity to present this work and for creating a highly stimulating atmosphere throughout the
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A. The Character Table of the Mathieu Group M24

M24 is th largest of the Mathieu groups and can best be thought of as a subgroup ofS24 the
permutation group of 24 elements. It is a sporadic (finite andsimple) group with

210 ·33 ·5·7·11·23= 244823040 (A.1)

elements. The latter are organized in 26 different conjugacy classes, which we will denote using
standard ATLAS notation,i.e. by a number, which indicates the order of the group element, and a
capital letter. The full character table can be found in Table 1.
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i 1A 2A 3A 5A 4B 7A 7B 8A 6A 11A 15A 15B 14A 14B 23A 23B 12B 6B 4C 3B 2B 10A 21A 21B 4A 12A

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 23 7 5 3 3 2 2 1 1 1 0 0 0 0 0 0−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
3 252 28 9 2 4 0 0 0 1−1 −1 −1 0 0 −1 −1 0 0 0 0 12 2 0 0 4 1
4 253 13 10 3 1 1 1−1 −2 0 0 0 −1 −1 0 0 1 1 1 1−11 −1 1 1 −3 0
5 1771−21 16 1−5 0 0 −1 0 0 1 1 0 0 0 0 −1 −1 −1 7 11 1 0 0 3 0
6 3520 64 10 0 0−1 −1 0 −2 0 0 0 1 1 1 1 0 0 0−8 0 0 −1 −1 0 0
7 45 −3 0 0 1 e+7 e−7 −1 0 1 0 0−e+7 −e−7 −1 −1 1 −1 1 3 5 0 e−7 e+7 −3 0
8 45 −3 0 0 1 e−7 e+7 −1 0 1 0 0−e−7 −e+7 −1 −1 1 −1 1 3 5 0 e+7 e−7 −3 0
9 990 −18 0 0 2 e+7 e−7 0 0 0 0 0 e+7 e−7 1 1 1 −1 −2 3 −10 0 e−7 e+7 6 0

10 990 −18 0 0 2 e−7 e+7 0 0 0 0 0 e−7 e+7 1 1 1 −1 −2 3 −10 0 e+7 e−7 6 0
11 1035−21 0 0 3 2e+7 2e−7 −1 0 1 0 0 0 0 0 0 −1 1 −1 −3 −5 0 −e−7 −e+7 3 0
12 1035−21 0 0 3 2e−7 2e+7 −1 0 1 0 0 0 0 0 0 −1 1 −1 −3 −5 0 −e+7 −e−7 3 0
13 1035 27 0 0−1 −1 −1 1 0 1 0 0 −1 −1 0 0 0 2 3 6 35 0 −1 −1 3 0
14 231 7 −3 1 −1 0 0 −1 1 0 e+15 e−15 0 0 1 1 0 0 3 0 −9 1 0 0−1 −1
15 231 7 −3 1 −1 0 0 −1 1 0 e−15 e+15 0 0 1 1 0 0 3 0 −9 1 0 0−1 −1
16 770 −14 5 0−2 0 0 0 1 0 0 0 0 0 e+23 e−23 1 1 −2 −7 10 0 0 0 2 −1
17 770 −14 5 0−2 0 0 0 1 0 0 0 0 0 e−23 e+23 1 1 −2 −7 10 0 0 0 2 −1
18 483 35 6−2 3 0 0−1 2 −1 1 1 0 0 0 0 0 0 3 0 3−2 0 0 3 0
19 1265 49 5 0 1−2 −2 1 1 0 0 0 0 0 0 0 0 0−3 8 −15 0 1 1−7 −1
20 2024 8 −1 −1 0 1 1 0−1 0 −1 −1 1 1 0 0 0 0 0 8 24 −1 1 1 8 −1
21 2277 21 0−3 1 2 2−1 0 0 0 0 0 0 0 0 0 2−3 6 −19 1 −1 −1 −3 0
22 3312 48 0−3 0 1 1 0 0 1 0 0 −1 −1 0 0 0−2 0 −6 16 1 1 1 0 0
23 5313 49−15 3 −3 0 0 −1 1 0 0 0 0 0 0 0 0 0−3 0 9 −1 0 0 1 1
24 5796−28 −9 1 4 0 0 0−1 −1 1 1 0 0 0 0 0 0 0 0 36 1 0 0−4 −1
25 5544−56 9 −1 0 0 0 0 1 0 −1 −1 0 0 1 1 0 0 0 0 24 −1 0 0 −8 1
26 10395−21 0 0−1 0 0 1 0 0 0 0 0 0 −1 −1 0 0 3 0−45 0 0 0 3 0

Table
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B. Monstrous Moonshine

Consider the Fourier expansion of the modular invariantJ-function

J(τ) : =
E4(τ)3

η(τ)24 −744

=
1
q
+196884q+21493760q2 +864299970q3 +O(q4) , (B.1)

whereE4(τ) is the Eisenstein series of weight 4 andη(τ) the Dedekind-eta function. In 1978
McKay and Thompson observed that the coefficients can be decomposed in the following manner

196884= 196883+1,

21493760= 21296876+196883+1,

864299970= 842609326+21296876+2·196883+2·1,

where the numbers that appear on the right are the dimensionsof the smallest irreducible repre-
sentations of the Fischer-Griess Monster groupM. This observation gives an intriguing hint to a
connection between modular forms and sporadic groups and suggests the existence of an infinite-
dimensional graded representation

V =V−1⊕V1⊕V2⊕V3⊕ . . . (B.2)

with Vn representations ofM such that

J(τ) = dim(V−1)q−1+
∞

∑
n=1

dim(Vn)q
n . (B.3)

In [40] a more generalized object thanJ(τ) was proposed in which the dimensions ofVn are re-
placed by characters chVn(g) = TrVn(g) for elementsg∈M

Tg(τ) := chV−1(g)q−1+
∞

∑
n=1

chVn(g)q
n . (B.4)

There are 171 distinct suchMcKay-Thompson serieswhich have been shown to be Hauptmoduls
of various genus 0 subgroupsΓ of SL(2,Z).13

There is an elegant explanation for these observations[53,46, 54]: J(τ) can be interpreted
as the partition function of a (bosonic) conformal field theory with central chargec= 24, whose
automorphism group is the Monster group. Indeed, the space of states of this CFT takes the form

V♮ =
∞
⊕

n=0

(Vn⊗H
Vir

h=n) , (B.5)

whereVn are representations of the Monster group, whileH Vir
h=n are representations of the Virasoro

algebra with conformal weighth.

13Genus zero in this context means thatH+/Γ has the topology of a sphere. The Hauptmodul is the correspond-
ing function which encodes the change of coordinates to the Riemann sphereC∪ {∞} (see [39] for a more detailed
discussion).
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