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New superconformal models in six dimensions H. Samtleben et al.

1. Introduction

The understanding of six-dimensional superconformal theories in the context of multiple M5-
branes is one of the pressing questions in M-theory. Already the mere existence of such higher
dimensional non-trivial quantum field theories is an exciting result [2]. However, in general it is
believed that an explicit understanding of such theories is out of reach.

One problem in this context is the description of non-abelian tensor (two-form) gauge fields.
For example, a no-go theorem states that there exists no non-abelian extension of the abelian tensor
gauge symmetry [3]. In [1] it was shown how to circumvent this problem in the context of a tensor
hierarchy [4] by introducing additional form-degrees of freedom, in particular a non-propagating
three-form. The other problem is that the supposed (2,0) theory of multiple M5-branes is intrin-
sically strongly coupled, i.e. it has no free parameter for a weak coupling expansion which would
make the existence of a Lagrangian description or equations of motions plausible. This problem
is analogous to the situation of M2-branes. Also in this case, and for the same reason, it was be-
lieved that a Lagrangian description does not exist. Nevertheless, for the isolated case of an SO(4)
gauge group a Lagrangian description of a maximally supersymmetric three-dimensional Chern-
Simons-matter CFT (BLG-model) has been found [5, 6]. Subsequently, a more general class of
Lagrangian three-dimensional CFT’s, with gauge groups of arbitrary rank, has been formulated in
[7]1 (ABJM-models). The decisive observation in the latter case is that by placing the M2-branes at
an orbifold singularity instead of placing them in flat space one gains a dimensionless parameter
which allows for a weak coupling limit and thus makes a Lagrangian description possible. The
resulting CFT’s have the same field content as a maximally, i.e. .4~ = 8 supersymmetric theory
but realize only .4 = 6 supersymmetry. From the field theory point of view this means that the
reduced supersymmetry is less restrictive and therefore allows for a Lagrangian formulation.

The present article is based on the findings of [1] whose main idea is in the spirit of the ABJM-
models: Instead of considering the maximal supersymmetric case with .4~ = (2,0) supersymmetry
one considers .4 = (1,0) supersymmetry, with eventually the same field content as the .4 = (2,0)
theories. This led to an explicit dynamical description of superconformal non-abelian tensor mul-
tiplets through equations of motions or Lagrangians, respectively. Crucial in the implementation
of a non-abelian gauge and tensor gauge symmetry was the construction of a tensor hierarchy of
one-, two- and (non-dynamical) three-forms. The tensor hierarchy is formulated in terms of a
number of invariant tensors of the to be determined structure group. Consistency of this gauge
symmetry imposes several non-linear conditions on these invariant tensors, which represent gener-
alized Jacobi identities. These conditions play an essential role also in deriving the dynamics from
supersymmetry. Generically the dynamics is described by equations of motions only, but for a sub-
class also a Lagrangian formulation exists. Models defined by equations of motions but without a
proper Lagrangian description might be still of interest and give upon dimensional reduction to five
dimensions a Lagrangian dynamics with the correct inverse compactification radius behavior [8].

In the following we review the construction of [1] and in particular, we present the general
solutions to the generalized Jacobi identities for the case of semi-simple groups. We also discuss
the resulting classes of .4 = (1,0) superconformal models of non-abelian tensor multiplets.
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2. Non-abelian tensor fields in six dimensions

2.1 Review of general non-abelian vector/tensor systems

In this section, we review the results of [1] on the general structure of non-abelian vec-
tor/tensor systems in six dimensions, based on the non-abelian p-form tensor hierarchy, as worked
outin [4, 9, 10, 11]. We will be discussing gauge theories with field content given by the p-forms
{A], ,Buvl 7Cuvp,}, where the indices r and [ label the vector and the two-form tensors, respec-
tively. Anticipating six-dimensional dynamics with vector fields dual to antisymmetric three-form
tensors, we use a dual internal index r to label the latter fields.

For vector and two-form tensor fields, the full covariant non-abelian field strengths are given
by

Ty = 20,AT — fu AYAY + 11 B]

— 1
Ay = 3DBl, +6d

uv o

WOAY = 2fpg'd! Al AVAY + " Cuvpr (2.1)

in terms of the antisymmetric structure constants f" = f[;", a symmetric d-symbol d.,=d (rs)>
and the tensors g'”, h'; inducing general Stiickelberg-type couplings among forms of different
degree.! The covariant derivatives are defined as Dy =09y — Al X, with an action of the gauge
generators X, on the different fields given by X, - A* = —(X,)/ A", X, - Al = —(X,);,/A’, etc. The
field strengths (2.1) are defined such that they transform covariantly under the set of non-abelian
gauge transformations

8A}, = DyN — ' (A,
ABy, = 2Dy Ay —2d s N Ty, — & Ay

Acuvpr = 3D[,u vplr +3b1mﬁ[ A ]+b1,,s%l

A 1A+ 2.2)

where we have introduced the compact notation
[ _ spl 1 :
AB,, = 6By, —2d ,SA[ru 6A§,] ,

ACyvp, = 6Cuvp,—3b,,stW6AY] 2bpsd qu[uAP S5A?

ol - (2.3)

The ellipsis in the last line of (2.2) represent possible terms that vanish under projection with g/”.
The covariant field strengths (2.1) satisfy the modified Bianchi identities

r 1 r !
D[uf } :*h[%

3 pvp
1 3 I r g 1 Ir ap(4)
[ ‘%ﬂvpcr] = Ed ’Sﬂ[uvjpa] +Zg %Vpo‘ra (2.4)

where the non-abelian field strength jfu(é)pa, of the three-form potential is defined by the second
equation. In turn, its Bianchi identity is obtained from (2.4) as

Dy, 2% 2y Ty Kl - 2.5)

vport|r poT

IWe use canonical dimensions such that a p-form has mass dimension p and as a result all constant tensors fi”,
d',s, g, by, are dimensionless.
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where the ellipsis represents possible terms that vanish under projection with g/”. We finally note
that the general variation of the field-strengths is given by

8T}y = 2D, 8AY + 11 ABY, |

8H vy = 3DABY, +6d' s Tl 8A% + 8" ACyuvp,
8 M ypar = AD(ACypg), — Obyrs Fiy, AB i+ 4 by 0 BAL + . (2.6)

again with the ellipsis representing possible terms that vanish under projection with g'".

This vector/tensor gauge system is completely defined by the choice of the invariant tensors
gl " Wy, birs, d! s, and fr". Consistency of the tensor hierarchy, i.e. covariance of the field strengths
(2.1) requires that the gauge group generators in the various representations are given by

(XI’)SZ = (er)st = _frst+htld1rSa
X))’ = XN = 2d’ 50— ¢ by 2.7)

in terms of the invariant tensors parametrizing the system. Further constraints follow from closure
of the algebra (or generalized Jacobi identities)

[XraXs] = _(Xr)stXt ) (2.8)
and gauge invariance of the tensors d!, and by,

2(X) 0 d s — (X)) d g = 0, (2.9)
(X)p* brsg+ (Xe)g* brps + (Xe) ' bypg = 0. (2.10)

Using (2.7), (2.9) and (2.10) the generalized Jacobi identities (2.8) take the equivalent form

Wigh =0, (2.11)

frsth'r—d’ sl g =0, 2.12)

Fipg Fru’ = %hsz d ypfo =0, (2.13)

gl kb — 20 h kd’ s = 0, (2.14)

— [’ +d! 8" 8" g by = 0. 2.15)

2.2 Supersymmetry and field equations

It has been shown in [1] that the supersymmetrization of the non-abelian vector/tensor gauge
system is essentially unique and determines the equations of motion®. According to .4 = (1,0)
supersymmetry, the vector fields are embedded into off-shell vector multiplets {A”, A", Y%/}, while
the tensor fields become part of an on-shell self-dual tensor multiplet {Bﬂv, x1, 9"}, The three-
form tensor fields Cyyp - do not represent new dynamical degrees of freedom and do not introduce

2Generically certain projections of the Yang—Mills fields may remain off-shell.
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additional superpartners. The general supersymmetry transformation rules are

AL = —EpA”
, 1 1 .
B}Ltr — 77}4\/ o“r 8 _EYljr£]+Zhrl¢lela
SYUr — _g }’”D“/'Lj)r—l—Zhr[é(in)l,
So' =&x',

i 1 1 i 1 irg K
Syl = &yﬂvf’jflfvps +Zy’"‘D#¢’£ —Ed’,sy“l EnuA®,

ABLV = _é?’uvl )
8" ACuvpr = —8"byrs EYuvp A7 . (2.16)

They are obtained from the free field transformation rules by covariantizing and adding terms
proportional to A’; etc. such that the supersymmetry algebra closes on the fields of the tensor
multiplet, provided these fields in addition satisfy the field equations

a%ﬂu]v} = —dlrsir?’uvp/ls,

. 1 .
,},GDO_XII — Edlrs ar YGTAIS +2d1rsYl]rls (dlrshsj _ ZbJsrgIS) ¢J7Llr 7

1
DDy ¢! = —3d' o (T 1 —4Y[Y 4 82 P D)

—2(byorg” —8d" ks ) A —3d! sk 1k ¢ 9K (2.17)

The minimal conditions for supersymmetry to close on these equations are given by the following
equations for the Yang-Mills multiplet:

& birs (¥0" =2202))) = 0.

gKrblrs (y;iv(bI_Z)LSY,uVXI) = a0 Euvipor 8 r%( ) pcrr7

r s 1 s r S S nd
Kby ((P’y“D#?Li +2}/“7L,-Du¢’> = ¢5by,s <4 Tl [+ %’vﬂ“v"% Y5y

+ %h}q& 7+ 3dgvy”/1,.”1~*yw> . (2.18)
These are not standard field equations in the sense that they generically induce further constraints
on the fields, as we will discuss below for specific examples. In addition certain projections of
the auxiliary Yang—Mills field Y¥/ are undetermined by these equations such that the corresponding
multiplet remains off-shell.

A stronger version of these equations is given by the above equations without the contraction
with the tensor g&X”. However, in order that these equations close under supersymmetry the inclu-
sion of a four-form gauge potential is necessary. We refer to [1] for the details. Next we discuss
models which provide an action, in a certain sense, in which case one encounters equations that are
not contracted with the g&” tensor.
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2.3 Models admitting an action

The field equations described above can be derived from an action (modulo the standard sub-
tleties for the construction of six-dimensional actions for self-dual tensor fields, cf. [12, 13]), if the
parameters satisfy a number of further constraints:

W= nug”, brrs = 2Mpd’ s | Nd pud’ ) =0, (2.19)
with a non-degenerate symmetric metric 1y, . The Lagrangian is given by

1 1 1 L
L = —gD“(p,Du(p’ — 5l PDux' + Ebmqbf (T TR =4y Y + 80 ¥ Dy A")

L
9

1 = 1 1
+ 3 (brsr&r® —4bi1srgs®) 'A% + gbIrSngng o' o’ 9% — &zop

1 = 1 = g
jf’f‘/p %pvp - @blnw%ﬁvp Ar,yﬂvp)hs - Zblrsj[w As'}’”vxl + blrsYi;')L”Xﬂ

1 _ -
- ﬂblrsbluvlr’yuluks’yukv ) (220)

where the topological term .Z,, was described in [1]. For the tensor multiplet, this action has to be
supplemented with the first-order self-duality equation

Ay = —dL A Yuvp)® 221

to be imposed after having derived the second-order equations of motion, just as in the democratic
formulation of ten-dimensional supergravities [14].2

For the Yang-Mills multiplet the equations of motion take the form of (2.18), but the first and
the last equation occur without the contraction with the g% tensor. In addition, from the variation
w.r.t. the gauge field one obtains the second-order equation

birs DY (9" Z iy =24 v X") = (0'Du¢” = 22" yuxt”) Xr17 — 20" b1pg X I APy A
1

~ T3 Euvpior FYPs ol (2.22)

which can be obtained as the covariant derivative of the uncontracted duality equation for the two-
form and four-form field strength in (2.18), see [1] for more details.

The scalar kinetic term in the action (2.20) turns out not to be positive-definite. In order to
see if ghosts might appear as physical states and destroy unitarity a complete analysis of the huge
(tensor) gauge symmetry and the associated constraints is necessary. In addition, the equations
of motions can imply further constraints and eliminate (ghost) degrees of freedom. A priori the
action contains also a cubic and thus unbounded scalar potential, if the multiplying invariant tensor
structure exists for the considered group and representations. Such a non-positive potential is
consistent with supersymmetry exactly because the model might have ghost states. For the case
that the potential does not exist, its vanishing can be taken as an indication that it might be possible
to remove the ghost states consistently from the physical spectrum.

3 Alternatively, this self-duality can be implemented by using a non-abelian version [15] of the Henneaux-Teitelboim
action [12] that breaks manifest space-time covariance.
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The kinetic matrix of the Yang-Mills multiplet, K,; = (bl bys, shows that the Lagrangian def-
inition of the models is useful only in the conformal broken phase, where the scalar of the tensor
multiplet assumes a non-vanishing vev, which acts as an inverse Yang-Mills coupling. However,
the kinetic matrix (K,) = (¢!)b;,; may have null directions in which requires further analysis.

Similar structures as the couplings of (2.20) have appeared in generic 6d supergravity theories
and the discussion of conformal fixed points in six-dimensional gauge theories [16, 17, 18, 19, 20,
21, 22].

We conclude with a presentation of the superconformal symmetry transformations [23]. De-
noting the fields in the theory by ® = (¢, B}, x",A};,Y", A", Cpyp,), the conformal transforma-
tions are given by

O0cP =L+ A1pQP, (2.23)

where Z% is the Lie derivative with respect to the conformal Killing vector defined by B(MEV) =
Qnyy, which also defines Q, and Ap is the Weyl weight for ® given by (2,0,5/2,0,2,3/2,0).
The Lie derivative for the fermionic fields W = (y’,A"), in particular, takes the form Z;¥ =
oL + %8,46\,}/“"‘}’. The conformal supersymmetry transformations, on the other hand, in-
volve conformal Killing spinors, consisting of a pair (14,7-) that satisfy dyny — %yﬁn, =0.
The superconformal transformations take the form of supersymmetry transformations in which
the constant supersymmetry parameter € is replaced by 7., and the parameter 1)_ arises only in
On_ x = —%(j)’ n-. Note that the bosonic conformal transformation together with supersymmetry
ensures the full superconformal symmetry since the commutator of a conformal boost with super-
symmetry yields the special supersymmetry generator [24].

3. Solving the generalized Jacobi identities

Consistency of the non-abelian vector/tensor gauge system is encoded in the set of constraints
(2.9) — (2.15) which generalize the standard Jacobi identity of pure Yang-Mills theory. At first sight
these equations appear quite intractable, but some non-trivial solutions have been found in [1, 25].
Several of them are based on the group-theoretical considerations of gauged supergravity theories in
six dimensions which can be employed to derive particular solutions to the system of constraints.*
In this section, we will reduce the system (2.9) — (2.15) by an explicit choice of basis which allows
to exhibit the underlying structure and construct a rather large class of solutions.

For an arbitrary matrix 4";, we can choose a basis in the space of vector and two-form tensor

fields according to a split A}, — {A%, A%} and Byy' — {Byys,Buy}, such that the matrix i’

hot' pe, 00
hr = / == 5 31
! <h“b h%,) (0 5,3) (3-1)

with indices @ = 1,...,rkh and indices a, and a’ labeling the complement of the spaces of vector
and tensor fields, respectively. In this basis (2.11) is solved by

b o b
Ir 8a% 8u 8a” 8u
’ =(;m ;ab> - (“0 g), 62)

“4This does not necessarily imply that the resulting superconformal models can be embedded into supergravity.

takes diagonal form
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with arbitrary blocks g%, ga/b . In this basis the constraints (2.12) — (2.13) translate as follows: the
components f " are the structure constants of a Lie algebra g, satisfying standard Jacobi identities.
Moreover, we find that

1

fa’ =0, fu*=0, fuP=0, mf:—ﬂmm, (3.3)

and

1

dw =0, fmzimm% (3.4)

where Ty, are the generators of the Lie algebra g in some representation %, i.e.
[Tas Tg) = fop” Ty (3.5)
with dimension dim% = rk . From (2.14), it further follows that
gt =0, 2y = 8 bpra- (3.6)

while equation (2.15) states that the matrix g’” is gauge invariant under the action of the generators
(2.7). Together, we deduce that the generators (2.7) take the form

Xy = <_f(‘)"ﬁy K ‘E‘f,:)jbdbaﬂ> LX) =0, (3.7)
in the vector sector, and
X! = ( _gb’rba/j“ 0 b) ., Xx'=o, (3.8)
2dy ga — 8v'"bara (Ta)a
in the tensor sector. The Jacobi identity (2.8) reduces to
[Xa Xp] = fap”Xy - (3.9)

To summarize, we have reduced the original system of constraints (2.9) — (2.15) by an explicit
choice of basis without any loss of generality and the result is given by (3.1) — (3.6), where all
non-vanishing tensors are invariant under the action of the generators (3.7) and (3.8), forming the
Lie algebra g with structure constants f,”.

4. The class based on semi-simple Lie algebras

Under certain additional assumptions, we can explicitly solve the remaining constraints and
obtain a large class of solutions. Specifically, we will restrict to the case of a semi-simple Lie
algebra g and non-trivial representations Ty. In this case, by proper choice of basis, the matrices
Xq from (3.7), (3.8) can be taken to be block-diagonal, i.e.

f(Xﬁb =0 = dbaﬁ ) 2dyqa = gb’rbtlra7 .1
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and the generators take the form

—fap? 0 T (To)w 0

XY = . XTI = o , (4.2)
* ( 0 (Ta)d * 0 (Ta)d

with the matrices (T(;)“,b/ = —gy"b” 1o describing another representation %’ of g . The representa-

tion %’ can be only of a few different types: According to (3.2), a non-vanishing g’" requires the
representation %’ to contain the adjoint representation of g or the representation contragredient to
Z. For vanishing g'" on the other hand, the form of (3.8) shows that the representation %" is trivial.
In the following, we discuss separately these three cases.

4.1 Type I: % is trivial

This is the case, the matrix g’” vanishes identically and according to (2.19) the corresponding
model does not admit an action. In addition, there are no Stiickelberg-type couplings among two-
and three-form tensor fields, and the constants by, are g invariant but otherwise unconstrained.
To define a minimal model in this category we shall thus set b;,; = 0. In this case the only non-
vanishing components of the g, 4, f,d tensors are

1 1
f(xﬁy ) hy = 51? ) faab = _5 (Toc)ab ) dbaa = 5 (T(x)ab ) dc/ocﬁ = dc’rlocﬁ ) (4.3)

where fg7 and 14p are the structure constants and Cartan-Killing form of a semi-simple Lie
algebra g, respectively, and d. are arbitrary constants. As the 3-form potential €}y, does not
couple to the rest of the system, we shall set it to zero. The resulting model has the fields

(Ag A YT | (AS A YT B 2, 07) (4.4)

and a set of gauge singlet tensor multiplet fields (Byya, X, ¢r) Where the indices (o, a,d’) label
the adjoint representation, an irreducible representation % and singlets of g, respectively. The field
equations for the singlet tensor multiplet of fields are precisely those described long ago in [26],
and as they do not involve the fields of the tensor-YM multiplet, we shall leave them out and refer
to the resulting model as Type L.

The explicit bosonic field strengths arising in the Type I model are’

T = 20,A% — f,"ARAY = FZ

uv o
Tty = 2Dy Ay — (To) AR AY + By = 5y,
Hivp = 3D[M%3p]' (4.5)
The supersymmetry transformations of the off-shell YM multiplet are
SAZ — —é")@)ta,
31 o = g '}’lLvFl?vel - EY Jaej 5
SYU* = —gliytp, a0e (4.6)

SIn the particular case, when % is the adjoint representation, this gauge structure was considered in [25].
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and those of the tensor-YM multiplet are
69 = Ex*,
6:%2‘, = 2é ’)/[“Dv]la - éYuvxa 5

. 1 A 1 ;
8&10 — ng(%ﬁvgl_iy'l‘]agj_i_1¢agl’

ia 1 a i 1 ani 1 a i(ag
6y’ = EYMVP%WJE +Z7’“Du¢ € —E(Ta)b PA Al
Syt = —gliykp aia 4 2gliyia. (4.7)

The field equations for this model are

%av; = —(Ta)baib%wplav
o _ afl b oaia , | ib by b
IDX = (Ta)b (4’)/”‘/(%“‘,)[/ a+zyquﬁvl +2Y i Aj +§¢ A ,

DDy ¢ = (To)s" (—;%ZVF“VO‘ +2Yhyi* — 4l pA 4 81“)5”) . (4.8)

With the described choices for the invariant tensors this system closes under supersymmetry with-
out any on-shell condition for the vector multiplets, see (2.18). Hence, the Type I model does not
determine the complete dynamics of the system and either supersymmetric equations of motions
for the Yang-Mills multiplets should be imposed, or they should be treated as background fields.
However, for groups/representations which allow for non-vanishing tensors b;,s supersymmetric
equations for the Yang-Mills multiplets might be obtained in the context of extended models [1],
given by the uncontracted version of (2.18). See also the comments below (2.18) and around (2.22).

4.2 Type II: %' is in the adjoint representation

Taking %' in the adjoint representation implies that gg* = 5[‘;‘ and gg” = 0°. In this case the

only non-vanishing components of the g, 4, f,d, b tensors are’

1
hba:df, gaﬁ:&g, faﬁy7 faub:_i(Ta)ab7
1

dbaa = 5 (T(X)ab ) d(xﬁ7/7 daab ) d(bi ) baby ) baby

bPoo=far . Blar, bupa=2dpoa, baas=2daas, Dea - (4.9)

The undetermined tensors dy gy, daap> de i €tc. exist only for very particular choices of g and Z.
As the 3-form potential Cyyp, decouples from the rest of the system we shall set it to zero. Thus,
the fields of the model, which we shall refer to as Type II, are those listed in (4.4) together with

(Buvas 9as Xys Cuvpar) - (4.10)

The case in which also Z is the adjoint representation is included in the type IIl models described below.
7For % = 0, this corresponds to the example discussed in section 3.6 of [1].

10
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The field strengths, supersymmetry transformations and field equations for the fields (4.4) remain
exactly as in the previous section on the Type I model except that the adjoint Yang—Mills multiplet
is no longer off—shell. The explicit description of the Type II model also requires similar equations
for the additional fields listed in (4.10). These equations can be read off from the general expres-
sions given in (2.16), (2.17) and (2.18) by inserting the data summarized in (4.9). In the simplest
case when all undetermined tensors in (4.9) vanish the additional supersymmetry transformations
become

5(])06 - é%om
. 1 1 .
O0Xq = &YMVP %vpael‘i‘zyﬂl)ud)ael
AByuyo = —Emvx’,

ACuvpa = —fpa EVuvpAP ¢y, (4.11)

while the equations of motion are

u:/pa =0, YGDGXé = _2fﬁay¢71iﬁ ) D“Du 0o = _2fﬁayiﬁ)€y ) (4.12)

and

foa” (¥ 0220 29) = 0.

= 1 HA
fﬁay (yqu)}/_zlﬁ'}/uv}@) = Esuwlparjfog ) pG’L',

1 1 1 ‘
oo <¢’W”Du7f +5 1A Dm) = fpa <495v7’“v%7f + 5g Aot PAL — Y] ﬁ) '
4.13)

Here we can see explicitly the subtleties in the Yang—Mills sector alluded to earlier. From the first
equation it is clear that the auxiliary field Y/ is not completely fixed, it can for example be shifted
by a multiple of ¢. This implies that some of the Yang—Mills fields remain off—shell. The fact that
there are also constraints implied by these equations is easily seen by contracting this equation with
¢%* which gives

fﬁayqbo‘i(’f.xm 0. (4.14)

This constraint eliminates some of the physical degrees of freedom. Such constraints have to be
taken into account when studying the dynamics and degrees of freedom.

4.3 Type III: %' is in the contragredient representation to %

The remaining case corresponds to taking %’ in the contragredient representation to %, and
therefore set g,* = 0 and g,” = 8. This is the only case, in which an action is possible (in the
sense discussed above) and we will right away restrict to the case when the compatibility conditions
(2.19) are satisfied as well. In that case the metric %/ on the tensor sector is given by a matrix with
the off-diagonal blocks 1, = n?, = 8°. Taking into account (2.19), we deduce that the only

11



New superconformal models in six dimensions H. Samtleben et al.

nonvanishing components of the tensors g, 4, f,d, b are

1
hbazéfa gab:5¢11J ) faﬁy7 faab:_i(Ta)ab7

2
b 1 b
dape = d(abc) s daba = d(ab)oc s daﬁ'y y Ao = E(Ta)a )
b = b = (Ta)ba s baba =baap = 2d(ab)(x y bhea= 2d(abc) ) baﬁy = 2da(/3y) :

(4.15)

In particular, upon imposing these symmetry properties of d ;. and dpq, the last equation of (2.19)
is automatically satisfied as a consequence of g-invariance. Specifying a model within this class
thus corresponds to choosing a Lie algebra g with a representation %, and the g-invariant tensors

diapey s dabya s da(py) - (4.16)

Again, such tensors only exist for very particular choices of g and % . In the following, we will
present more explicitly the vector/tensor gauge system corresponding to this solution of the consis-
tency constraints. An interesting and straightforward generalization of this solution would be the
inclusion of abelian gauge factors and possible gauge group singlets among the vector and tensor
fields.

As the 3-form potential 6),yp o decouples from the rest of the tensor-YM system, we shall set
it to zero. With this understood, we shall refer to the model defined by (4.15) as Type III. Its field
content consists of the multiplets listed in (4.4) and the additional fields

(Buva; @a: XaCuvpa) - 4.17)
The explicit non-abelian field strengths are those given in (4.5) and

Hivpa = 3DuByp) a+6dars Al 0, Ay = 2fpq dars AL AVAL + Cuvpa = Cuvpa

Hivpoa = 4Dy Cypola— 6duap F LT

v 7 o) — 12daba T 1y By o) — 6 dabc By By - (4.18)

[uv (v

By construction, %y, and €},yp, are invariant under tensor gauge transformations and transform
covariantly under non-abelian vector gauge transformations. By eliminating A}, and Byy, from
the theory, we have thus changed the structure of the tensor gauge algebra, similar to choosing
the unitary gauge in the standard Higgs effect. While this may not be the right formulation for a
consistent quantization of the theory, it allows to illustrate the distribution of degrees of freedom in
this model.

Let us finally note that after the redefinitions, the only appearance of the constant tensors (4.16)
in the vector/tensor gauge system, is in the definition of the field strength .52 (4).

The action for the Type III model takes the explicit form

1 1 L
& = —ZD“q)a D¢ — Xa V' Dux‘ + gdm(pl (F Ly FHY =4y Y +8A DA

1 a 1 an 1 a r s
—gatt <Du=@w 3 (Tl A“yﬂvp/lb> — g dars Dy By AP
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1 roas ryis,j 1 a ar s
_Edlrsyuvl 'yﬂvxl“‘ZdlrsYijl Xﬂ_g(Toc)b darsl Y”lo% ’}/ulb

1 . . |
+ 5 (Ta)a” A% (9“2 —495X") = 3daba® A X" = 3danc0“A" X + Jdanc 9“9 9¢
1 UVPACT gpa o =B o ggb 1 b g
+§8 e%‘uv daaﬁ FPAFGT +dab(x pl%o-r_f’gdabc r%pkf@(yf . (419)

Sums over indices r, s still need to be split according to A" — {A% A}, F" — {F%, %"}, etc.
Note that only the self-dual part of the field €},yp, appears in the Lagrangian and acts as a
Lagrange multiplier for the self-duality equation

1 _
(D[u’%jﬁpo = _g(Ta)bala?’uvplb, (4.20)

which constitutes half of the additional first-order equations (2.21). The other half of (2.21) deter-
mines the anti-self dual part of €,y to be

Clvpa = —darsh YuvpA® - (4.21)

Since the anti-self-dual part %éfz,a does not show up in the action (4.19), we can impose (4.21) as
its definition in all previous formulas. Therefore we find that in contrast to the general Lagrangian
(2.20), the explicit Lagrangian (4.19) for this particular model implies all the field equations with-
out the need to impose additional first-order duality equations by hand!

In this model, the supersymmetry transformation rules are those given in (4.6), (4.7) and

5¢a = é%a )
SU = = E iy PP E YD 00— AT B A
Xo = 48 CHvpa 47 uPa 5 Yars Yur™,
8Cuvpa = —3EVuvDp|Xa — Odars Flyy EVpI A’ — 2d1as EYuvp L' . (4.22)

In fact, the relevant part of the last transformation is the projection onto its self-dual part, while its
anti-self dual part just describes the transformation of (4.21) into the field equation of ¥, .

It is worth noting that the cubic scalar potential of (4.19) contains at most half of the scalar
fields and is entirely triggered by the gauge invariant tensor d,;. . Moreover, the different d-tensors
exist only for particular choices of the Lie-algebra g and representations %. It is therefore natural
(and consistent) to consider generic models where we set all d-tensors to zero. In that case the
action simplifies to

< = _%D'uq)aD.u(pa - )_Ca 'YMDIJXQ + é(Ta)ba(ba (‘@ZVF“WX - 4Yi[}Yija + Sz(byﬂDHla))
1 1 = 1 .
=g (D, B+ S T A ph? ) - § (Tie B AP,
1 - - | _
~1 (Ta)p Fighy APV a4 2(T )" Y,-Sbl’“)xé ts (Ta)d” A% (¢“0p —40p2") . (423)

The tensor field equations for the multiplet in the representation % are the same as in (4.8).
For the tensor multiplet in the contragredient representation %’ one obtains,

Givna =0, Byl =—2(Tp) AP0, , D*Dyéy = —2(T3)" AP . (4.24)
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class 4 content dynamics | parameters

Type I | triv. Ve (VL T, Ty e.0.m. dy, by

TypelI | adj. | V%, (Tu,Co), (¥, T*) e.om. | dgs, b%py,
babc-;baby; byab

Typelll | ‘%=t | v, (v, T7%), (T, Cy) action | dupe, dapys davy

Table 1: The three types of models for semi-simple groups. The possible representations %’ are the trivial,
the adjoint and the to & contragredient representation.

This implies that the three-form %},y5, may be considered as a self-dual auxiliary form. In the
Yang—Mills sector, for example the auxiliary field equations become

(Ta)a” (Y 00— 245276) =0, (Ta)a (Y500~ 22327) =0. (429)

The equations for the Yang-Mills multiplet again imply algebraic conditions on the physical fields,
analogous to (4.14), which might eliminate some of the degrees of freedom. We leave a more
careful analysis of these issues for the future.

Let us finally give the supersymmetry transformation rules in this minimal case. They are
those given in (4.6), (4.7) together with

5¢a = é%a y
i 1) i 1 i
5Xa = @ /.vaa')’lllvp8 +ZY”D#¢GS )
8Cuvpa = =3 YuvDpXa — (Ta)a” EYuvp A%y - (4.26)

5. Conclusions

We reviewed the construction of a general class of six-dimensional (1,0) superconformal mod-
els with non-abelian vector and tensor multiplets as given in [1]. The formulation of the non-abelian
tensor gauge symmetry relies on a tensor hierarchy for one-, two and non-dynamical three forms.
Here, in particular, we solved for the case of semi-simple groups the generalized Jacobi identities
(2.15) of the various invariant tensors that appear in the tensor hierarchy.

The allowed tensor and vector multiplets are characterized by two representations % and %' of
the Lie algebra g, and its adjoint representation. This corresponds to the decomposition r = (&, a)
and I = (d’, a) of the respective indices, as given above (3.1). For a given representation % the
various models are classified by the possible representations %’. Denoting the vector and tensor
multiplets by ¥ = (Ay, A, Y;;) and 7 = (Byy, ¢, x') the respective models and their field and
representation content is summarized in table 1. The non-dynamical three-form is denoted by C

Besides the structure constants f,g” of the Lie algebra g, the parameters of the different types
of models are the various undetermined invariant b- and d-tensors in the respective representations.
For the type III models the d-tensors have to be symmetric in indices of the same kind. If some
of these tensors exist for certain groups and representations they allow for additional interactions

14
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but they can also be consistently set to zero. An interesting case is given by the type I model, for
which the Yang-Mills multiplets are off-shell for vanishing b-tensors. However, in the case of non-
vanishing b-tensors supersymmetric equations of motions are determined also for the Yang-Mills
multiplet, as discussed in the main text. For the type III models the equations of motions can be
derived from an action, contrary to the two other classes of models. In all models we used a field
redefinition (or classical gauge) that absorbs the vector in the representation % into the two-form,
ie. (A, Biy) — DBy
a three-form ),y invariant under tensor gauge transformations has been defined.

such that %}, is invariant under tensor gauge transformations. Similarly,

Given the hitherto lack of non-abelian models in six dimensions the very existence of these
models provide new and very intriguing structures that deserve more study, and it is clear that
there are several open questions that one still has to address. The action in the case of the type 111
models has non-positive definite kinetic terms in the vector and the tensor sector. It will require
further work to understand the fate of the resulting ghost states and if one can find a mechanism
to decouple them. In the analysis of physical degrees of freedom one also has to take into account
the algebraic constraints that are implied by the equations of motions of the vector multiplets.
Perturbatively the models are defined only in the conformal broken phase, where the vev of the
tensor multiplet scalar acts as an inverse Yang-Mills coupling constant. However, null-directions
in the kinetic term for the vector fields implies that the fields of the corresponding vector multiplets
become non-dynamical.

It remains to be investigated how much of the presented structures can be carried over to (2,0)
theories. As a first step in this direction, the inclusion of hypermultiplets to the (1,0) models has
been briefly discussed in [1]. Adding nt hypermultiplets with flat target space completes the present
field content from (1,0) to the (2,0) theories, in addition to the vector multiplets and the three-form
potentials. Although there is no propagating (2,0) vector multiplet, the present construction in
(1,0) models has illustrated the possible relevance of the inclusion of non-propagating degrees of
freedom. Of great relevance is the study of possible M-theory backgrounds for M5-branes that
lead to (1,0) supersymmetry and charged tensor multiplets. In general such backgrounds will be
singular spaces, which would also provide propagating vector fields as we have encountered them
in our analysis. A pending question is of course the quantization of the models, and the fate of
the conformal symmetry at the quantum level. Last but not least, the study of anomalies in the
generalized gauge symmetries of the models we have presented here is of great interest.

Finally we want to mention some relations to our results that appeared in the literature. For
example, the analysis of amplitudes for six-dimensional tensor and vector multiplets [27] produced
a number of interaction terms that we find also in our models and recently a very interesting con-
nection with seven-dimensional non-abelian Chern-Simons theories has been discussed [28].
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