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1. Introduction

Progress in understanding duality between planarN =4 super Yang-Mills theory and super-
string theory inAdS5 × S5 based on integrability opens up the possibility of computing various
observables exactly in ‘t Hooft couplingλ or in string tension

√
λ

2π . Integrability controls scaling
dimensions∆i(λ ) of primary operatorsOi that determine the 2-point functions〈O(x(1))O(x(2))〉
[1]. The next step is to understand 3-point functions〈Oi(x(1))O j(x(2))Ok(x(3))〉 which, in addi-
tion to ∆i, are determined by non-trivial coefficient functionsCi jk(λ ). Higher-point correlation
functions, though in principle dictated by the OPE, are much more complicated. For example, con-
formal invariance implies that a 4-point correlator〈O1(x(1))...O4(x(4))〉 should, in general, contain
a non-trivial function of the two conformal cross-ratios (m = 0,1,2,3)

u1 =
|x(12)|2|x(34)|2
|x(13)|2|x(24)|2 , u2 =

|x(12)|2|x(34)|2
|x(14)|2|x(23)|2 , x(i j)

m ≡ x(i)
m − x( j)

m (1.1)

andλ . Correlators of primary operators are natural observables in CFT. Inaddition, in a gauge
theory, one may consider expectation values of Wilson loops. An important class of these, related
to gluon scattering amplitudes (see [2, 3, 4] and [5] for reviews), are expectation values of Wilson
loops in the fundamental representation〈Wn〉 corresponding to polygons built out of null lines with
n cusps (located at{x(i)

m }, i = 1, ...,n with |x(i,i+1)|2 = 0, x(n+1) ≡ x(1)). They were previously
studied at weak [6] and at strong [7, 2] coupling. Conformal invariance (broken by the presence
of the cusps in a controllable fashion) implies [9] that forn = 4,5 these expectation values are
fixed functions ofx(i) (depending on a fewλ -dependent coefficients, in particular, on the cusp
anomalous dimension [10, 11]) while forn > 5 they should depend on 3n−15 cross-ratios of the
cusp coordinates. The first non-trivial example is〈W6〉 which is expressed in terms of a function of
λ and three cross-ratios. As suggested in [15], there is a close relation between certain correlators
of local (BPS) operators and expectation values of cusped Wilson loops: a correlator

Kn = 〈Ô(x(1))...Ô(x(n))〉 (1.2)

of primary operators (e.g., the highest weight part of 20’ scalar) located at positions of the null cusps
is proportional to the expectation value of the null polygon Wilson loop in the adjoint representation
(or to 〈Wn〉2 in the planar approximation we will consider here). More precisely,

lim
|x(i,i+1)|→0

Kn/Kn0 = 〈Wn〉2, Kn0 ∼
n

∏
i=1

|x(i,i+1)|−2 + ... (1.3)

is the most singular term in the tree-level (λ = 0) part ofKn.
Here we shall review the study [16] of a new observable that involves both a local operator and

a cusped Wilson loop, i.e.〈WnO(a)〉 wherea is position of the local operator. One motivation is
that such correlators may lead to new simple examples where one may be able to interpolate from
weak to strong coupling. In particular, in the first non-trivial casen = 4 such correlator happens to
be a function of justone non-trivial conformal ratio formed from the coordinates of the cuspsx(i)

and the operatoram (for n > 4 it will be a function of 3n−11 conformal ratios). For comparison, in
the case of a circular Wilson loop (which, in fact, may be viewed as ann → ∞ limit of a regular null
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polygon) the dependence of the correlator〈W∞O(a)〉 on the location of the operatora is completely
fixed by conformal invariance. Determining such a function (both at weakand at strong coupling)
should be easier than the function of the two conformal ratios in the 4-point correlator case or the
function of the three conformal ratios in the 6-cusp Wilson loop case.

Another motivation to study such “mixed” correlators is that they may shed morelight on the
relation [15] between the correlators of null-separated operators and cusped Wilson loops men-
tioned above. That relation was verified at weak coupling, but checkingit explicitly at strong
coupling remains an important open problem. For example, one may start with a(n+1) -point cor-
relator and consider a limit in which onlyn of the locations of the operators become null-separated
and attempt to relate this limit to〈WnO(a)〉 with a = x(n+1).

More explicitly, since the derivative of a correlator over the gauge coupling brings down a
power of the super YM action which is the same as the integrated dilaton operator, the relation

〈Ô(x(1))...Ô(x(n))〉 ∼ 〈Wn〉2 (1.4)

implies that

〈Ô(x(1))...Ô(x(n))
∫

d4a Odil(a)〉 ∼ 2〈Wn〉〈Wn

∫

d4a Odil(a)〉 . (1.5)

Assuming that the integral overa can be omitted and, furthermore, the dilaton operator can be
replaced by a generic local operator one may conjecture that

〈Ô(x(1))...Ô(x(n)) O(a)〉 ∼ 〈Wn〉〈Wn O(a)〉 , (1.6)

i.e. that

lim
|x(i)−x(i+1)|→0

〈Ô(x(1))...Ô(x(n)) O(a)〉
〈Ô(x(1))...Ô(x(n))〉

∼ 〈Wn O(a)〉
〈Wn〉

. (1.7)

In Section 2, we shall use general symmetry considerations to determine the structure of the corre-
lator (2.1) of a nulln-polygon Wilson loop and a conformal primary operator. We shall explicitly
discuss the case ofn = 4 where the result will be expressed in terms of a functionF of only one
non-trivial conformal ratio (2.12) depending on the locations of the operator and the cusps. Taking
the |a| → ∞ limit then determines the corresponding OPE coefficient [12]. In Section 3 we shall
explicitly compute then = 4 correlator at strong coupling using semiclassical string theory methods
[12, 13], i.e. evaluating the vertex operator corresponding toO on the string surface [7, 2] ending
on the null quadrangle. We shall explicitly determine the strong-coupling form of the functionF
for the two cases: whenO is the dilaton or is a chiral primary operator. In Section 4 we turn to the
evaluation of this correlator at weak coupling, i.e. in perturbative gauge theory. In Section 5 we
shall mention some open questions.

2. Structure of correlation function of cusped Wilson loop and a local operator

Below we will consider the correlation function

C (Wn,a) =
〈WnO(a)〉

〈Wn〉
, (2.1)
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whereWn is a polygonal Wilson loop made out ofn null lines andO is a local scalar operator
inserted at a generic pointa = {am} = (a0,a1,a2,a3). While the expectation value〈Wn〉 of such
Wilson loops is known to have UV divergences due to the presence of the cusps [10, 11, 6] (en-
hanced in the null case) we will see that the ratio (2.1) is finite, i.e. does not require a regularization.

As follows from conformal symmetry, the non trivial part of〈Wn〉 depends only on the con-
formally invariant ratios constructed using the coordinates of the cusps [9]. The number of such
conformal ratios forn > 5 is 4n− n−15= 3n−15. Here 4n stands for the total number of co-
ordinates,n is the number of null conditions on the polygon lines and 15 is the dimension of the
conformal group. Furthermore, we expect (2.1) to be finite, since divergences from the numera-
tor will be canceled by divergences from the denominator. The number 3n− 15 of independent
conformal ratios is exactly the same as the one that would appear in a correlator of n ≥ 4 primary
operators located at the corners of a null polygon. In general, the structure of n-point correla-
tor 〈O(x(1))...O(x(n))〉 is fixed by conformal symmetry up to a function of conformal ratios. The
number of these conformal ratios is always given bycn = 4n− γn, where 4n is the total number of
coordinates andγn is the number of generators of the conformal group broken by the precense of the
local operators. Forn = 2, 3, 4 we haveγ2 = 8, γ3 = 12 andγ4 = 14 so thatc2 = 0, c3 = 0, c4 = 2.
A random configuration ofn > 4 points breaks the conformal group completely, i.e.γn = 15 and
thus forn > 4 we havecn = 4n−15. If the operators are located at the corners of a null polygon
we have to imposen additional constraints which givesdn = 3n− γn for the number of conformal
ratios, i.e.d4 = −2, d5 = 0 and thusdn = 3n−15 for n > 4. Adding an operatorO in (2.1) at a
generic point brings in 4 parameters so thatC (Wn,a) with n ≥ 4 should be a non-trivial function of
3n−11 conformally invariant combinationsζk constructed out of the coordinatesx(i)

m of then cusps
and the pointam. This is, of course, the same as the number of conformal ratios parametrising a
correlator ofn+1 operators with onlyn points being null-separated,

cn+1−n = 4(n+1)−15−n = 3n−11 . (2.2)

In general,C (Wn,a) should be a function ofn distances|a− x(k)| and 1
2n(n− 3) non-zero “di-

agonals” of the null polygon|x(i) − x( j)|, i 6= j ±1. We shall use the notation:|x− x′|2 = (xm −
x′m)2 = −(x0 − x′0)

2 + (x1 − x′1)
2 + (x2 − x′2)

2 + (x3 − x′3)
2. It should also transform like the op-

eratorO(a) with dimension∆ under (i) dilatations and (ii) inversions, i.e. (i)C → h−∆C under

x(i) → hx(i), a → ha, and (ii)C → |a|2∆C underam → am
|x|2 , x(i)

m → x(i)
m

|x(i)|2 . The large|a| behavior of
C can be fixed by consistency with the expected OPE expansion: for small Wilson loop one may
represent it in terms of a sum of local operators [12]

Wn

〈Wn〉
= 1+∑

k

ck r∆k Ok(0)+ ... , (2.3)

where r is the characteristic size of a loop,Ok are conformal primary operators with dimensions
∆k, and dots stand for contributions of their conformal descendants. Taking the positiona of the
operatorO to be far away from the null polygon one should then get

〈WnO(a)〉
〈Wn〉

∣

∣

∣

|a|→∞
∼ 〈O†(0)O(a)〉 ∼ 1

|a|2∆ , (2.4)
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whereO† conjugate toO is among the operators present in (2.3). Since all distances|a− x(k)|
between the operator and the cusps should appear on an equal footing this suggests the following
ansatz

C (Wn,a) =
F (a,x(i))

∏n
k=1 |a− x(k)| 2

n ∆
, (2.5)

whereF is finite in the|a| → ∞ limit, i.e. it may depend on|a− x(k)| only through their ratios.
The dependence ofF on |x(i) − x( j)| is constrained by the transformations under dilatations and
inversions mentioned above which implies that under these two transformationswe should have

(i) F → h∆
F , (ii) F → (|x(1)| . . . |x(n)|)− 2

n ∆
F . (2.6)

We are led to the following expression for (2.1)

C (Wn,a) =
∏n

i< j−1 |x(i)− x( j)|
2

n(n−3) ∆

∏n
k=1 |a− x(k)| 2

n ∆
F(ζ1, ...,ζ3n−11) . (2.7)

In general,∆ andF in (2.7) may depend also on the couplingλ , i.e. they may look different at
weak and at strong coupling, but the general structure (2.7) should beuniversal.

The same structure (2.7) follows also from the general form of the correlator of local operators
if the relation (1.7) is assumed to be true. As is well know, conformal invariance implies that a
correlator ofq primary operatorsOi(x(i)) of dimensions∆i at generic positions should be

〈O1(x
(1))...Oq(x

(q))〉 = Tq Fq(u1, ...,ucq) , Tq ≡
q

∏
i< j

|x(i)− x( j)|−γi j , (2.8)

γi j =
2

q−2

(

∆i +∆ j −
1

q−1

q

∑
k=1

∆k

)

, c4 = 2 , cq>4 = 4q−15 , (2.9)

where Fq is a function of conformally-invariant cross-ratios. Then Consideringq = n + 1 with n
operators being the same,Ok = Ô, ∆k = ∆̂ andOn+1 = O, ∆n+1 = ∆ we find

Tn+1

Tn
=

∏n
i< j |x(i)− x( j)|

2
n(n−1) ∆

∏n
k=1 |a− x(k)| 2

n ∆
, a ≡ x(n+1) . (2.10)

To get a non-trivial expression in the null-separation limit|x(i)−x(i+1)|→ 0 we will need to assume
thatn of such vanishing factors in numerator of (2.10) get cancelled against similar factors in some
cross-ratios contained in Fn+1/Fn. That will change the powers of the remaining1

2n(n−1)−n =
1
2n(n− 3) non-zero factors|x(i) − x( j)| in (2.10) and also reduce the total number of non-trivial
conformal ratios (now denoted byζr) by n as in (2.2). The result will then have the same form as in
(2.7). Indeed, the combination one needs to multiply (2.10) by to cancel the vanishing|x(i)−x(i+1)|
factors in the numerator and to match the prefactor in (2.7) withµi j = 2∆

n(n−3) is (x(n+1) ≡ x(1))

∏n
i< j−1 |x(i)− x( j)|

4
n(n−1)(n−3) ∆

∏n
k=1 |x(k)− x(k+1)|

2
n(n−1) ∆

. (2.11)

5



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
8
0

Correlation function of null Wilson loop A.A. Tseytlin

Let us now look in detail at the first non-trivial example:n = 4.1 Here the number of variablesζk

is 3×4−11= 1, i.e. F should be a function of asingle variableζ1 ≡ ζ . For n = 5 the number
of conformal ratios is already 4. This makes the correlation function (2.1) for n = 4 a particularly
interesting and simple case to study.

As it follows from the above discussion, this variableζ can be viewed as the unique conformal
ratio which one can build out of the coordinatesx(i)

m (i = 1, . . . ,4) of 4 cusps and the locationam

of the operatorO. Assuming that the null quadrangle is ordered asx(1),x(2),x(3),x(4) (i.e. |x(1) −
x(2)|2 = |x(2)− x(3)|2 = |x(3)− x(4)|2 = |x(4)− x(1)|2 = 0) it is easy to see that the unique non-trivial
conformally-invariant combination of these 5 points is

ζ =
|a− x(2)|2 |a− x(4)|2 |x(1)− x(3)|2
|a− x(1)|2 |a− x(3)|2 |x(2)− x(4)|2 . (2.12)

In this case there is also a unique choice for thex(i)-dependent factor in (2.7):(|x(1) − x(3)||x(2) −
x(4)|)∆/2 that ensures the right dimensionality of the result. We conclude that the correlation func-
tion (2.1) forn = 4 should have the following general form

C (W4,a) =
(|x(1)− x(3)||x(2)− x(4)|)∆/2

∏4
i=1 |a− x(i)|∆/2

F(ζ ) , (2.13)

where∆ is the dimension of the operatorO andζ is given by (2.12).
As discussed above, the same conclusion applies also to a correlator of 4 equivalent null-

separated operators and an extra operatorO. Indeed, forn = 4 it is easy to see that (2.10) is to be
multiplied, according to (2.11), by

(|x(1)− x(3)||x(2)− x(4)|)∆/3

∏4
k=1 |x(k)− x(k+1)|∆/6

, (2.14)

which is a product of two cross-ratios in power∆/6.
It is interesting to note that depending on justone conformal ratio, then = 4 correlator (2.13)

is an “intermediate” case between a 3-point function〈O(x(1))O(x(2))O(x(3))〉 which is completely
fixed by conformal invariance (up to a function of the coupling) and a generic 4-point function
〈O(x(1))...O(x(4))〉 which depends on two conformal ratios.

In the limit when|a| → ∞ we get

C (W4,a)|a|→∞ =
C

|a|2∆ , (2.15)

C≡ (|x(1)− x(3)||x(2)− x(4)|)∆/2 F(ζ∞) , ζ∞ =
|x(1)− x(3)|2
|x(2)− x(4)|2 , (2.16)

where C thus determines the corresponding OPE coefficient in (2.3).
Another special limit is when the position of the operator approaches the location of one of

the cusps, e.g.,a → x(1). Settingam = x(1)
m + εαm, ε → 0, and using that the vectorsx(1)− x(2) and

x(1)− x(4) are null we find from (2.12) thatζ is, generically, finite in this limit and is given by

ζa→x(1) =
4α · (x(1)− x(2)) α · (x(1)− x(4))

α2 |x(2)− x(4)|2 , am = x(1)
m + εαm . (2.17)

1The case ofn = 3 is trivial as there is no solution for coordinates of a null triangle in real 4dMinkowski space.
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Similarly, the limit of the pre-factor in (2.13) is

4

∏
i=1

|a− x(i)|∆/2
a→x(1)

→ 4ε∆ α · (x(1)− x(2)) α · (x(1)− x(4)) |x(1)− x(3)|2 . (2.18)

Thus

C (W (reg)
4 ,a)

a→x(1)
∼ 1

|a− x(1)|∆ . (2.19)

Note that this is the same behavior that would be expected if the Wilson loop werereplaced by a
product of 4 same-type operators (e.g., scalar operators as in [15]) at the positions of the cusps:
〈W4O(a)〉 → 〈Ô(x(1))...Ô(x(4)) O(a)〉. Then the limita → x(1) would be determined by the OPE,
Ô(x(1)) O(a) ∼ 1

|a−x(1)|∆ Ô(x(1)). One can explicitly verify [16] the general form (2.7),(2.13) of the
correlator (2.1) at leading orders in the strong-coupling (section 3) andthe weak-coupling (section
6) expansions and compute the corresponding functionF .

3. Correlation function of 4-cusp Wilson loop with a local operator at strong
coupling

Here we will compute (2.1) forn = 4 corresponding to the 4-cusp Wilson loop at strong cou-
pling. The result will have the expected form (2.13) and we will explicitly determine the function
F(ζ ). We shall always consider the planar limit of maximally supersymmetric Yang-Millstheory
and assume that the operatorO is such that for large ‘t Hooft couplingλ its dimension∆ is much
smaller than

√
λ . In particular,O will be chosen as the dilaton operator or the chiral primary op-

erator. We shall follow the same semiclassical string theory approach that was used in the case of
the circular Wilson loop in [12, 13] (see also [23, 24, 22, 26, 14]). In string-theory description the
local operatorO(a) is represented by a marginal vertex operator [27]

V(a) =
∫

d2ξ V [X(ξ );a] , (3.1)

whereX stands for the 2d fields that enter theAdS5×S5 superstring action. In general, (2.1) is then
given by

C (Wn,a) =
1

〈Wn〉

∫

[dX ] V(a) e−I[X ] . (3.2)

HereI is the string action proportional to the tensionT =
√

λ
2π and the path integral is performed over

the euclidean world-sheets with topology of a disc (we consider only the planar approximation)
and the boundary conditions set out by the Wilson loop atz = 0. Considering the limit when√

λ ≫ 1 and assuming that the operator represented by V is “light” [22] (i.e. the corresponding
scaling dimension and charges are much smaller than

√
λ ) one concludes that this path integral

is dominated by the same semiclassical string surface as in the absence of V, i.e. as in the case of
〈Wn〉. The resulting leading-order value of (3.2) is then given by (3.1) evaluated on this classical
solution, i.e.

C (Wn,a)√
λ ≫1

=
(

∫

d2ξ V [X(ξ );a]
)

semicl.
. (3.3)

7
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One simple case is when the local operatorO is the dilaton operatorOdil ∼ tr(F2
mnZ j) + ...

(where we included also the R-chargej dependence). The corresponding vertex operator has the
form [22]

Vdil(a) = cdil

∫

d2ξ
[ z

z2 +(xm −am)2

]∆
X j Udil , (3.4)

X j =
(

cosθ eiϕ) j
, ∆ = 4+ j , (3.5)

where j ≪
√

λ is an angular momentum alongS1 in S5. The operatorUdil equals theAdS5× S5

Lagrangian

Udil = L = LAdS5 +LS5 + fermions, LAdS5 =
1
z2 [(∂αz)2 +(∂αxm)2] . (3.6)

Furthermore,cdil is the normalization coefficient given by [12, 23, 22]

cdil =

√
λ

8πN

√

( j +1)( j +2)( j +3) . (3.7)

In the case ofj = 0

j = 0 : ∆ = 4 , cdil =

√
6
√

λ
8πN

. (3.8)

Let us start with the case when the Wilson loop is the regular (i.e. equal-sided) quadrangle with 4
cusps. The classical euclidean world-sheet surface inAdS5 ending on this Wilson loop was found
in [2] and is given by2

z =
r

coshu coshv
, x0 = r tanhu tanhv ,

x1 = r tanhu , x2 = r tanhv , x3 = 0; u,v ∈ (−∞,∞) . (3.9)

Herez is the radial direction of the Poincare patch ofAdS5 andxm = (x0,x1,x2,x3) are the coordi-
nates on the boundary. The parameter r corresponds to the overall scale of the loop. To simplify
later formulas we will set r= 1 (it is easy to restore r by simply replacingz → r−1z, xm → r−1xm).
The cusps correspond to(u,v) → (±∞,±∞) and thus are located at

x(1) = (1, 1, 1, 0) , x(2) = (−1, 1,−1, 0) ,

x(3) = (1,−1,−1, 0) , x(4) = (−1,−1, 1, 0) , (3.10)

Substituting (3.10) into (2.12) gives the following explicit form of the conformal ratio ζ that is
expected to appear in the correlator

ζ =
(1

2q−a0−a1 +a2)(
1
2q−a0 +a1−a2)

(1
2q+a0−a1−a2)(

1
2q+a0 +a1 +a2)

, (3.11)

q≡ 1−a2
0 +a2

1 +a2
2 +a2

3 . (3.12)

Substituting the classical solution (3.9) into (3.4) we obtain3

Cdil(W
(reg)
4 ,a) = 2cdil

∫ ∞

−∞
dudv

[ (coshu coshv)−1

q−2a1 tanhu−2a2 tanhv+2a0 tanhu tanhv

]4
, (3.13)

2Here(u,v) cover the full plane, but since infinity is not identified the world sheet has topology of a disc.
3Below in this section the expression for a correlator will always stand for itsleading

√
λ ≫ 1 value.
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where q is given by (3.12) and we used the fact that on the solution (3.9) one hasUdil = 2 (note
also that here

∫

d2ξ =
∫

dudv). The integral is straightforward to do and we get

Cdil(W
(reg)
4 ,a) = cdil

16a1a2−8qa0− (q2 +4a2
0−4a2

1−4a2
2) logζ

12(qa0−2a1a2)3 . (3.14)

where we have used (3.11). The result is thus finite, in contrast to the area of the 4-cusp surface
that requires a regularization [2]. The result (3.14) is indeed consistent with eq. (2.13) for∆ = 4
with

F(ζ ) =
cdil

3
ζ

(ζ −1)3 [−2(ζ −1)+(ζ +1) logζ ] . (3.15)

In the limit |a| → ∞ (see (2.15)) we getζ∞ = 1 and thus

Cdil(W
(reg)
4 ,a)|a|→∞ =

32cdil r4

9 |a|8 . (3.16)

which determines the OPE coefficient ofOdil in the expansion (2.3) of the Wilson loopW (reg)
4 .4

In the limit whena approaches a cusp (am = x(1)
m + εαm, ε → 0) (see (2.17),(2.18)) we get

Cdil(W
(reg)
4 ,a)a→x(1) → − 2

3ε4

1

[−3α2
0 +α2

3 +(α1−α2)2 +2α0(α1 +α2)]2

×
[

1− α2
3 +(α1 +α2−α0)

2

−3α2
0 +α2

3 +(α1−α2)2 +2α0(α1 +α2)
log

α2
1 +α2

2 +α2
3 −α2

0

2(α0−α1)(α0−α2)

]

. (3.17)

The behaviorε−∆ = ε−4 is in agreement with the general expression (2.19).
The above calculation can be generalized to the case of an irregular quadrangle, i.e. the one

with unequal diagonalss 6= t. The corresponding solution can be found by applying a conformal
transformation to (3.9) [2]

z = f (u,v) coshu coshv , x0 =
√

1+b2 f (u,v) tanhu tanhv ,

x1 = f (u,v) tanhu , x2 = f (u,v) tanhv , x3 = 0,

f (u,v) ≡ r
1+b tanhu tanhv

, |b| ≤ 1 . (3.18)

b = 0 corresponds to the regular quadrangle case (3.9). The cusps are found by taking(u,v) →
(±∞,±∞) and are located at (cf. (3.10); here we set r= 1)

x(1)
m = (

√
1+b2

1+b
,

1
1+b

,
1

1+b
, 0) , x(2)

m = (−
√

1+b2

1−b
,

1
1−b

,
−1

1−b
, 0) ,

x(3)
m = (

√
1+b2

1+b
,

−1
1+b

,
−1

1+b
, 0) , x(4)

m = (−
√

1+b2

1−b
,

−1
1−b

,
1

1−b
, 0) . (3.19)

The Wilson loop is the quadranglex(1),x(2),x(3),x(4). After the same steps as in the case of the
regular quadrangle we find that the resulting expression for the Wilson loop can indeed be written

4The same expression can be obtained by taking|a| large directly in (3.4) and doing the resulting simple integral
∼ |a|−8∫

d2ξ z4.
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as (2.13), where∆ = 4, x(i)’s are given by (3.19) and

|x(1)− x(3)|2|x(2)− x(4)|2 =
64r4

(1−b2)2 , (3.20)

F(ζ ) =
cdil

3
ζ

(ζ −1)3 [−2(ζ −1)+(ζ +1) logζ ] . (3.21)

The functionF(ζ ) is thus the same as in (3.15), as expected.
The above discussion can be generalized also to the case when the dilaton operator (3.4) carries

an angular momentumj alongS1 ⊂ S5. Here

Cdil(W
(irreg)
4 ,a0) =

2πcdil

(1−a2
0)

∆

( Γ[∆
2 ]

Γ[∆+1
2 ]

)2
2F1(

1
2
,
∆
2
,
∆+1

2
,ρ2) , (3.22)

where2F1 is the hypergeometric function andρ is a function ofa0 given by

ρ ≡ 2ã0

1−a2
0

=
2a0

√
1+b2−b(1+a2

0)

1−a2
0

. (3.23)

To extractF in (2.13) we have to multiply (3.22) by the factor

|x(1)− x(3)|−∆/2|x(2)− x(4)|−∆/2
4

∏
i=1

|x(i)
m −am|∆/2 .

This gives

F(ζ (ρ)) = 2−
3
2∆+1π cdil

( Γ[∆
2 ]

Γ[∆+1
2 ]

)2
(1−ρ2)∆/2

2F1(
1
2
,
∆
2
,
∆+1

2
,ρ2) . (3.24)

Finally, we can expressρ in terms ofζ

ρ =
1−

√

ζ
1+

√

ζ
. (3.25)

One can check that settingj = 0, i.e.∆ = 4, gives back our earlier expression (3.21).
A similar computation can be done with the chiral primary operatorO j = trZ j instead of the

dilaton operator. The bosonic part of the corresponding vertex operator [12, 23, 22] can be written
in a form similar to (3.4)

V j(a) = c j

∫

d2ξ
[ z

z2 +(xm −am)2

]∆
X j U , (3.26)

∆ = j , c j =

√
λ

8πN

√

j( j +1) , (3.27)

where Xj is the same as in (3.4) while the 2-derivativeU part is more complicated [26]

U = U1 +U2 +U2 , U1 =
1
z2

[

(∂αxm)2− (∂αz)2]−LS5 , (3.28)

U2 =
8

(z2 + |x−a|2)2

[

|x−a|2(∂αz)2− [(xm −am)∂αxm]2
]

,

U3 =
8(|x−a|2− z2)

z(z2 + |x−a|2)2 (xn −an)∂αxn ∂αz . (3.29)
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For simplicity, we will consider the case of the regular 4-cusp Wilson loop; thecorresponding
solution (3.9) does not deepend onS5 coordinates so Xj = 1.

To find the functionF(ζ ) in (2.13) it is sufficient, as in section 3.1.3, to choose the special
case ofa = (a0,0,0,0). Then

C j(W
(reg)
4 ,a0) =

2c j

(1−a2
0)

j

∫ ∞

−∞
dudv

[ (coshu coshv)−1

1+ρ tanhu tanhv

] j+2

×
[

1+ρ2−
(

sinhu sinhv+ρ coshu coshv
)2

]

(3.30)

For an arbitraryj this integral is rather complicated but can be easily done for specific valuesof j.
For instance, forj = 2 we obtain:

C2(W
(reg)
4 ,a0) =

4c2

3(1−a2
0)

2ρ
log

ρ +1
ρ −1

. (3.31)

As a result, we find (cf. (3.15))

j = 2 : F(ζ ) =
c2

3

√

ζ
ζ −1

logζ . (3.32)

4. Correlation function of cusped Wilson loop with dilaton operator at weak
coupling

Let us now consider the computation of the correlator (2.1)

C (Wn,a) =
〈WnO(a)〉

〈Wn〉
, (4.1)

in the weakly coupled planarSU(N) N = 4 supersymmetric gauge theory. Here the expectation
values are computed using gauge theory path integral and5

Wn =
1
N

tr P eig
∮

γ Amdxm
, (4.2)

Here we rescaled the fields with the coupling constantg (with λ = g2N) so that theN = 4 La-
grangian is

LN =4 = −1
4

tr(F2
mn + . . .) (4.3)

with g appearing only in the vertices. We use the conventions

Am = Ar
mT r , tr(T rT s) = δ rs , r,s = 1, . . . ,N2−1. (4.4)

The pathγ in (4.2) is the union ofn null segments of the form

γ(i)
m (t) = x(i)

m + t(x(i+1)
m − x(i)

m ) , t ∈ [0,1] , (4.5)

5The additional coupling to the scalars in the locally-supersymmetric Wilson loop [33] drops out because the null
polygon contour consists of null lines.

11



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
8
0

Correlation function of null Wilson loop A.A. Tseytlin

wherex(i)
m (i = 1, ...,n) denote the locations of the cusps. The dilaton operator (which is a supersym-

metry descendant of trZ2) is essentially theN = 4 gauge theory Lagrangian up to a total derivative
(see, e.g., [34])6

Odil = ĉdil tr(F2
mn +ΦI∂ 2ΦI + ψ̄γ ·∂ψ + . . .) , (4.6)

whereΦI are the scalars andψ are the fermions and we did not write explicitly the terms of order
g andg2. The normalization coefficient ˆcdil is given by [35]

ĉdil =
π2

4
√

3N
. (4.7)

The leading order contribution to (4.1) (to which we will refer as the “tree level” one) is propor-
tional tog2 as one can easily see from (4.1), (4.2). To compute (4.1) to this order we have to expand
Wn to orderg2. Hence, we can setg = 0 in the Lagrangian (4.3) and in the dilaton operator (4.6).
Therefore, for the purpose of computing the leading order term in (4.1) we can take

Odil → ĉdil trF2
mn = 2ĉdil (∂mAr

n∂ mAnr −∂mAr
n∂ nAmr) . (4.8)

The gluon propagator in the above conventions is

〈Ar
m(x)As

n(0)〉 = − 1

4π2|x|2
ηmnδ rs . (4.9)

We will see that just like at strong coupling, the weak coupling correlator (4.1) is finite, i.e. we do
not need to introduce a UV regularization in (4.9). Also note that to compute (4.1) to orderg2 we
can replace〈Wn〉 in the denominator with unity. Therefore, we obtain

C
(g2)
dil (Wn,a) = 〈WnOdil(a)〉tree

= −2ĉdil g2

N
〈P

∮

As
k(x)dxk

∮

As
l (x

′)dx′l(∂pAr
q∂ pAqr −∂pAr

q∂ qApr)(a)〉 . (4.10)

The path ordering symbolP means thatx′ in the second integral is placed between the origin (an
arbitrary point along the loop, for instance one of the cusps) andx. Now using that

〈Ar
k(x)∂pAs

q(a)〉 = − 1
4π2

∂
∂ap

ηkqδ rs

|a− x|2 = − 1
2π2

(a− x)pηkqδ rs

|a− x|4 , (4.11)

and performing the Wick contractions we obtain (λ = g2N)

C
(g2)
dil (Wn,a) = − ĉdil λ

π4 P

(

∮ ∮

[(a− x) · (x− x′)
|a− x|4|a− x′|4 dx ·dx′

−(a− x) ·dx′

|a− x|4
(a− x′) ·dx
|a− x′|4

])

. (4.12)

Let us now specify ton = 4. Computing theP-ordered integrals in (4.12) we obtain for generic
locations of 4 null cusps

Cdil(W
(reg)
4 ,a) = − ĉdil λ

2π4

|x(1)− x(3)|2 |x(2)− x(4)|2

∏4
i=1 |a− x(i)|2

. (4.13)

6Up to the scalar and the fermion equation of motion termsOdil is thus given by the YM Lagrangian plus the
Yukawa and the quartic scalar interaction terms.
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This agrees with the expected structure (2.13) of the correlator (for the dilaton ∆ = 4) with the
leading weak-coupling term in the functionF(ζ ) thus being simply a constant

F(ζ ) = − ĉdil λ
2π4 . (4.14)

Note that the structure of (4.13) is exactly the same as the one appearing in the1-loop correction
to the 4-cusp Wilson loop〈W4〉 (given by a scalar box diagram). Indeed, integrating (4.13) overa
we get the integrated dilaton operator or gauge theory action insertion into theWilson loop, which
is proportional to derivative of〈W4〉 over gauge coupling [9, 11]. This observation may allow one
to extract higher order corrections to (4.13) by comparing to integrands of higher-order corrections
to 〈W4〉.

When computing the analogs of the integrals in (4.12) forn > 4 we have two different types of
contributions. The first one is when the two line integrals are taken along the same segment. Let us
call this contributionTii where thei-th segment is parametrized by (4.5). After some computation
we obtain (up to the obvious factor− ĉdil λ

π4 )

Tii(a) = −1
2

[(a− x(i)) · (x(i+1)− x(i))]2

[(a− x(i)) · (a− x(i)))2((a− x(i)) · (2x(i+1)−a− x(i))]2
. (4.15)

The other type of contribution appears when the two contractions are made indifferent segments.
In this case we obtain

Ti j =
(a− x(i)) · (a− x( j)) (x(i+1)− x(i)) · (x( j+1)− x( j))

|a− x(i)|2 |a− x( j)|2 (a− x(i)) · (a+ x(i)−2x(i+1)) (a− x( j)) · (a+ x( j)−2x( j+1))

− (a− x(i)) · (x( j+1)− x( j)) (a− x( j)) · (x(i+1)− x(i))

|a− x(i)|2 |a− x( j)|2 (a− x(i)) · (a+ x(i)−2x(i+1)) (a− x( j)) · (a+ x( j)−2x( j+1))
.

(4.16)

These expressions are completely general. Hence, the full answer (which is rather lengthy) will be
the sum of such contributions.

Let us specify (4.15), (4.16) to the case of regular polygons with evenn sides with the cusps
located at

x(i) =
(

(−1)i

√

1−cos2π
n

1+cos2π
n

,
cos(π

n (2i+1))

cosπ
n

,
sin(π

n (2i+1))

cosπ
n

, 0
)

. (4.17)

The problem is purely combinatorial, but there does not seem to be a simple universal formula for
genericn. It is relatively easy, however, to compute the OPE coefficient by placingthe operator
very far from the loop: taking|a| large we obtain (cf. (2.4),(2.15))

Cdil(W
(reg)
n ,a)|a|→∞ =

Cn

|a|8 , Cn = −2ĉdilλ
π4 n2 tan2 π

n
. (4.18)

For generic location of the dilaton operator one can check that the result isconsistent with the gen-
eral expectation (2.7). For instance, forn = 6 and the case of a regular polygon the result depends
on three conformal ratios (since the polygon is regular only three cross-ratios are independent) and
we obtain

F(ζ1,ζ2,ζ3) = − ĉdil λ
2π4

ζ1ζ2ζ3(ζ3−1)+ζ 2
3 −ζ 3

2
[

ζ1ζ 2
2 ζ 2

3 (ζ2−ζ3)2
(

ζ1ζ3(ζ2−1)−ζ 2
2 +ζ3

)]1/3
, (4.19)
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where the conformal ratios are defined by

ζ1 =
|x(1)− x(3)|2|a− x(5)|2
|x(1)− x(5)|2|a− x(3)|2 , ζ2 =

|x(2)− x(4)|2|a− x(6)|2
|x(2)− x(6)|2|a− x(4)|2 ,

ζ3 =
|x(1)− x(4)|2|a− x(3)|2|a− x(6)|2
|x(3)− x(6)|2|a− x(1)|2|a− x(4)|2 . (4.20)

5. Concluding remarks

Here we considered, following [16], the correlator (2.1) of a nulln-polygon Wilson loop with
a local operator, such as the dilaton (Odil ∼ trF2

mn + ...)or a chiral primary operator. Based on sym-
metry considerations we determined its general form (2.7), expressing it interms of a functionF
of 3n−11 conformal ratios involving the position of the operator and the positions ofthe cusps.
In the first non-trivial case ofn = 4 this functionF depends on just one conformal ratioζ making
the corresponding correlator (2.1),(2.13) one of the simplest non-trivial observables that one would
like eventually to compute exactly for all values of the ‘t Hooft couplingλ . The value ofF deter-
mines, in particular, the corresponding OPE coefficient (2.16) in the expansion (2.3) of the Wilson
loop in terms of local operators.

We have found the leading terms inF both at strong coupling (using semiclassical string
theory) and at weak coupling (using perturbative planar gauge theory). At leading order at strong
coupling we find thatF ∼

√
λ and has non-trivial dependence onζ (3.15) while at leading order in

weak couplingF ∼ λ and is constant (4.14). In the case of more general dilaton operator with non-
zero R-chargej (with ∆ = 4+ j) the strong-coupling expression forF is given by a hypergeometric
function (3.24). Similar results were found in the case of the chiral primary operator (3.30),(3.32).

It would be important to compute subleading terms in the two respective expansions:

Fλ≫1 =
1
N

[

√
λ f0(ζ )+ f1(ζ )+

1√
λ

f2(ζ )+ ...
]

, (5.1)

Fλ≪1 =
1
N

[

λh0 +λ 2h1(ζ )+λ 3h2(ζ )+ ...
]

. (5.2)

Another open problem is the extension to the case of then > 4 cusped Wilson loop.
Let us note that in the case of the dilaton operator integrating (2.1) over the point a we get the

insertion of the action and so the resulting correlator should be proportional to a derivative overλ
of the logarithm of the null-polygon Wilson loop. Thus, in particular, the knowledge of〈Wn〉 at
higher orders inλ provides a constraint on integral of (2.1) at lower order order inλ ; in general,
this is not, however, enough to determine the functionshn(ζ ) in (5.2).

Part of the original motivation for the present work was to shed more light onthe relation
[15] between a correlator of null-separated local operators and the square of corresponding cusped
Wilson loop. We conjectured a more general relation (1.7) connecting correlators with one extra
operator at an arbitrary position to the correlator (2.1) we considered in this paper. It would be
interesting to try to verify the relation (1.7) forn = 4 at weak coupling.

There are several possible extensions of our present work. One mayconsider the case when
the local operatorO is not “light” at strong coupling but is allowed to carry a large charge (e.g.,
R-charge or angular momentum inS5 so that∆∼

√
λ ). As in the circular loop case in [13], then the
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semiclassical surface will need to be modified to account for the presenceof the sources provided
by the vertex operator V in the string path integral (see also [14]).

One may consider also a correlator of a Wilson loop with several “light” (∆ ≪
√

λ ) oper-
ators. At leading order in strong-coupling expansion such a correlatorshould factorize like in
the case of the correlators two “heavy” (∆ ∼

√
λ ) operators and several “light” ones [22, 26], i.e.

〈WnO(a1)O(a2)〉∼ 〈WnO(a1)〉〈WnO(a2)〉. This follows from the fact that for
√

λ ≫ 1 these corre-
lators are found, like in (3.3), by evaluating the corresponding vertex operators on the world surface
ending on the null polygon that definesWn.7 The study of such more general correlators may be
of interest in trying to understand better the relation [15] between the correlator of null-separated
local operators and the square of corresponding cusped Wilson loop.

Finally, let us mention some recent related work that appeared in [36, 37, 38].
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