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1. Approaches to heterotic string phenomenology

Heterotic strings [1, 2] provide promising candidates for unifying descriptions of gravity and
particle physics. There has been a huge effort over the past years in identifying Minimal Super-
symmetric Standard Model (MSSM) candidates within this framework. There are two traditional
approaches which have been vigorously pursued to find interesting heterotic string compactifica-
tions:

a. Calabi–Yau model building

A general approach for heterotic string model building is the compactification on smooth
Calabi–Yau (CY) threefolds [3] with stable vector bundles [4, 5]. Given that smooth CY spaces
with stable bundles are difficult to obtain, finding the MSSM–like models has proven extremely
laborious, especially because of the issue of bundle stability [6]. Ongoing efforts of refs. [7 – 11]
have resulted in MSSM-like candidates [12 – 15].

b. Orbifold model building

The other possibility of heterotic model building is the compactification on toroidal orbifolds,
i.e. discrete quotients of six dimensional tori [16 – 18]. Inthe so–called “mini–landscape” study
on theT6/Z6–II orbifold a large number of models has been identified, which upon switching on a
certain number of vacuum expectation values (VEVs) lead to MSSM–like spectra [19 – 23].

Model building on orbifold resolutions

This means that both approaches become dynamically related: The orbifold theory is driven
away from the orbifold point resulting in a (partially) smoothed out CY geometry. In order to un-
derstand the properties of the resulting CY and the gauge backgrounds it can support, one needs to
systematically study the blow–up process. In refs. [24 – 27]the topology of the smooth CY result-
ing from orbifold resolutions was discussed using toric geometry methods [28, 29]. Abelian gauge
fluxes (line bundles) on both non-compact and compact resolutions have been obtained in [30 – 33];
sometimes they can even be constructed explicitly [34 – 36].

For the “mini–landscape” models these results imply that this blow–up process can never
lead to a completely smooth CY geometry since the hypercharge (or the weakSU(2)) would be
broken [33]. To avoid this in full blow–up another interesting MSSM realization was constructed
on aZ2×Z2 orbifold (see e.g. [37]) as anSU(5) GUT that was subsequently broken down to
the MSSM using a freely actingZ2,free involution [38]. This model can in principle be blown up
completely without breaking the hypercharge [39].

2. Heterotic orbifold resolutions as GLSMs

Why GLSMs?

Unfortunately, the above description of the blow-up procedure has some severe limitations.
The main problem is that one uses different frameworks in different regimes: On the one hand, one
has an orbifold theory which can be studied using conformal field theory (CFT) techniques. To
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Figure 1: Matching of orbifold and resolution models is hampered at least by the fact that we are comparing
different regions in the moduli space.

describe a resolution one then investigates the consequences of presumably marginal operators to
characterize the blow–up procedure. As we have seen above these operators correspond to VEVs
of twisted states, hence only when they are small, a perturbative treatment of the orbifold resolution
process is possible. On the other hand, in a CY compactification the metric is Ricci flat at leading
order in theα ′ expansion. Hence, in order to be able to work with these theories one has to study
the supergravity limit of heterotic string theory where higher orderα ′ corrections are negligible.
This only allows for partial access to the low energy data of the theory. Seen as a perturbation
theory in the string scale, the validity of the supergravityapproach can only be guaranteed in the
large volume limit. If one instead ones to consider an orbifold limit, one has to include an infinite
set of higher orderα ′ corrections. These difficulties when compare orbifold CFTswith VEV
deformations and smooth heterotic CY compactifications areillustrated in Figure 1.

In addition, there is the practical complication that oftena single orbifold can be related to
many smooth CYs which are distinguished by their intersection numbers: Even though a toric
resolution of an orbifold singularity is well understood mathematically, it often does not offer an
uniquely determined geometry, because the resolution allows for various triangulations. For the
T6/Z6-II orbifold this gives us millions of smooth CYs to consider [33]; and there are many orders
of magnitude more resolutions of the orbifoldT6/Z2×Z2 [39]. In the light of this, it would be
extremely useful to have a framework that treats all these resolutions of a single orbifold on equal
footing.

Two dimensional gauged linear sigma models (GLSMs) providea formalism that can deal
with all these issues [40]. In this proceedings we are only concerned with (2,0) GLSMs. An impor-
tant ingredient of such a GLSM is the Fayet-Iliopoulos (FI) parameter, which has the geometrical
interpretation of a Kähler parameter. When this parameter tends to minus infinity, the worldsheet
gauge symmetry is dynamically broken to a finite discrete subgroup, i.e. in this limit the GLSM
describes an orbifold [40, 41]. The opposite limit leads to alarge volume description, which can be
compared with a supergravity treatment. GLSMs are also capable of describing vector bundles and
their deformations [42 – 45]. Interest in the subject of (2,0) GLSMs have recently been revived, see
e.g. [46 – 49].
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superfield bosonic DOF fermionic DOF

type notation dimension charge on off on off

chiral Ψa 0 qa
I za - ψa -

chiral-Fermi Λα 1/2 Qα
I - hα λ α -

gauge (V,A)I (0,1) 0 AI
σ ,A

I
σ̄ D̃I φ I -

Table 1: The superfield content of a generic (2,0) GLSM and their physical on- and off-shell degrees of
freedom (DOF).

Twisted states VEVs on orbifolds

From the target space perspective the VEVs of twisted statesof the orbifold CFT generate
the blow-up; i.e. we expect that the twisted state VEVs specifies which GLSM should be used.
Therefore, we briefly recall some basics of twisted states inheterotic orbifolds, details can be
found in the refs. [16 – 18, 50].

We consider non-compact orbifoldsC3/ZN defined by the action

za→ e2π iva
za , ψa→ e2π iva

ψa , (2.1)

for a= 1,2,3 on the coordinatesza of C3 and their superpartnersψa with N va ∈Z and∑i v
a/2≡ 0.

TheZN action on the gauge fermionsλ I parameterized by the shift vectorV = (V1, . . . ,V16) as

λ α → e2π iV α
λ α , α = 1, . . . ,16 . (2.2)

These entries are required to satisfyNV ∈ Λ16, with Λ16 the Spin(32)/Z2 lattice.

Each twisted state|Tr〉= |pr ,Pr〉, α̃a
−ṽr
|pr ,Pr〉, etc., is characterized by shifted left– and right–

moving momentapr = p+vr , andPr = P+Vr in a given twisted sectorr 6= 0. Herep takes values
in the vector latticeΛ4 of SO(8) and P in the direct sumΛ16 of the root and spinor lattices of
SO(32). In addition, a number of left-moving oscillators,α̃a

−ṽr
andα̃a

−ṽr
, may hit the vacuum state

|pr ;Pr〉. The twisted number operator

Ñr = ∑
a
(na

r − n̄a
r ) ṽr a (2.3)

counts the number of such excitations weighted by ˜vr a. For example the state|α̃a
−ṽr
|pr ,Pr〉 hasÑr

equal to ˜vr a. The right– and left–moving masses of the twisted state|Tr〉 are given by

M2
R =

1
2

p2
r −

1
2
+δcr , M2

L =
1
2

P2
r −1+δcr + Ñr , (2.4)

whereδcr =
1
2− 1

2 ṽ2
r defines the shift in the vacuum energy in that twisted sector.The formulae

above together with the level matching conditionM2
R = M2

L implies that

P2
r = 1+ p2

r −2Ñr , p2
r = ṽ2

r (2.5)
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|pr ,Pr〉 → (qr,Qr)

blow down large volume
br → ∞-∞← br

charge assignment

Gauge Bundle
on CY

GLSM
CFT

Orbifold

Figure 2: The dashed line schematically indicates that by selecting some blow-up modes|pr ,Pr〉 within
the twisted orbifold CFT spectrum, we can define a specific GLSM with given gauging of the chiral and
chiral-Fermi multiplets encoded by the charges(qr ,Qr). In the blow down limit (br →−∞) of this GLSM
we recover the orbifold theory back, while in the large volume limit (br → ∞) we obtain a non–compact CY
with a line bundle.

(2,0) GLSM Superfields

The field content of a generic (2,0) GLSM can be encoded in a number of superfields which
are collected in Table 1. As can be seen from Table 1 a chiral superfieldΨa contains a complex
scalarza and a holomorphic (or right-moving) fermionψa. A chiral-Fermi superfieldΛα only
contains a physical anti-holomorphic (or left-moving) fermion λ α . The worldsheet theory of the
free heterotic string has labelsa = 1,2,3 andα = 1, . . . ,16, respectively. These multiplets are
charged w.r.t. gauge multiplets(V,A)I . Their combined action reads

S=

∫
d2σd2θ+

{ i
4

ΨaDΨa− 1
4

ΛαΛα +
1

2e2 F I FI

}
+

∫
d2σdθ+ ρI (Ψ)FI +h.c. , (2.6)

whereD = ∂̄ + 2i(A− i∂̄V)I qI is the gauge covariant derivative andFI = −1
2D+(A− i∂̄V). eI

define the gauge couplings and the complex Fayet–Iliopoulos(FI) parameterρI = bI + iβI . This
action results in a scalar potential

V = ∑
I

e2
I

2

(
∑
a

qa
I |za|2−bI

)2
. (2.7)

For consistency such a GLSM has to fulfill at least the following conditions:

1. Cancellation of pure and mixed anomalies:

∑
α

Qα
I Qα

J = ∑
a

qa
I qa

J . (2.8)

2. Vanishing of sums of chiral superfield charges:

∑
a

qa
I = 0 . (2.9)

The first set of conditions reflects the target space condition c2(V) = c2(TX), while the second one
the conditionc1(TX) = 0 [43].

Characterization of a resolution GLSM

Next we give a precise recipe how to associate a GLSM to an heterotic orbifold model with cer-
tain blow–up modes switched on [51]: In a nutshell, the charges of the superfields in the GLSM are

5
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determined by the shifted momenta of the twisted blow–up modes. This identification is inspired
by our recent findings that the vectors that characterize line bundle embeddings are identical to
the shifted momenta of certain twisted states in the orbifold spectrum [33]. The relations between
the orbifold CFT, the GLSM and the supergravity descriptions are schematically summarized in
Figure 2.

The charges of the chiral superfields are assigned as follows: We promote the shifted right–
moving momenta(pr)

a to charges of anU(1)r gauge symmetry. Since this gauge symmetry can be
used to remove one chiral superfield, one introduces one additional chiral superfieldΨ-r . (We use
the index notation -r to denote the additional exceptional chiral superfield; itslowest component
we callxr = Ψ-r |.) Its charge is chosen such that the total sum of charges is zero (2.9):

(qr )
a = (pr)

a = (ṽr)
a , (qr)

-r =−1 (2.10)

The resulting scalar potential

V ⊃ e2
r

2

(
q1

r |z1|2+q2
r |z2|2+q3

r |z3|2−|xr |2−br

)2
, (2.11)

has to vanish in order to preserve worldsheet supersymmetry. This leads to two phases: Forbr < 0
z-r takes a non–zero VEV. As the charge ofxr is−1 while the chargesqa of theza are fractional,
the gauge transformations that preserve〈xr〉 generate a residualZnr gauge action onza, with nr =

N/gcd(r,N) is the order of the twisted sectorr. In the opposite case,br > 0, the zero locus of the
potential (2.11) can be written as

q1
r |z1|2+q2

r |z2|2+q3
r |z3|2 = br + |xr |2 . (2.12)

This shows that at least oneza needs to take a non-vanishing VEV in order that the potentialis zero.
Moreover, the exceptional divisorEr := {xr = 0} defines a symplectic quotientS5/U(1) with an
effective radius

√
br for br > 0. This justifies to interpretbr as a Kähler parameter (or a blow–up

parameter) which measures the size of the exceptional four–cycleEr .
Inspired by this simple recipe on the right–moving side, we take the chargesQr of the chiral–

Fermi multiplets equal to the left–moving shifted momentumPr of the twisted state,|Tr〉= |pr ,Pr〉:

(Qr)
α = (Pr)

α . (2.13)

By the level matching condition (2.5) this satisfies the pureanomaly cancellation condition (2.8):

∑
α
(Qα

r )
2 = P2

r = 1+ p2
r = ∑

a=1,2,3,-r

(qa
r )

2 . (2.14)

This assigment can be extended for states with oscillator excitations, see Ref. [51] for details.

3. Anomalies on resolutions ofC3/Z2×Z2

To illustrate these methods we consider the GLSM description of resolutions of the orbifold
C

3/Z2×Z2. The orbifold group contains four elements, apart from the identity we have

θa :

{
za→ za ,

zb→−zb , b 6= a ,
(3.1)

6
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divisor exists when

D1 always
D2 always
D3 always

E1 b1≥ 0
E2 b2≥ 0
E3 b3≥ 0

curve exists when

E1E2 b1,b2 ≥ 0 , b3≤ b1+b2

E2E3 b2,b3 ≥ 0 , b1≤ b2+b3

E1E3 b1,b3 ≥ 0 , b2≤ b1+b3

D1D2 b3≤ 0
D1D3 b2≤ 0
D2D3 b1≤ 0

curve exists when

D1E1 b1≥ 0 , b1≥ b2+b3

D2E2 b2≥ 0 , b2≥ b1+b3

D3E3 b3≥ 0 , b3≥ b1+b2

D1E2,3 b2≥ 0 , b3≥ 0
D2E1,3 b1≥ 0 , b3≥ 0
D3E1,2 b1≥ 0 , b2≥ 0

Table 2: This Table indicates under which restrictions of the Kählerparametersbr the various divisors and
curves exist.

for a= 1,2,3. There exist six heterotic orbifold models distinguishedby the choice of gauge shifts
Va, a= 1,2,3; the orbifold standard embedding corresponds to the assignment:

V1 =
1
2
(0, -1, -1,013) , V2 =

1
2
( -1,0, -1,013) , V3 =

1
2
( -1, -1,0,013) . (3.2)

TheZ2×Z2 orbifold models have three distinct twisted sectors, with shifted right–moving mo-
mentap1 = (0, 1

2,
1
2), p2 = (1

2,0,
1
2), p3 = (1

2,
1
2,0), respectively. Hence, we consider the following

chiral superfields:
superfield Ψ0 Ψ1 Ψ2 Ψ3 Ψ-1 Ψ-2 Ψ-3

q1 0 0 1/2 1/2 −1 0 0
q2 0 1/2 0 1/2 0 −1 0
q3 0 1/2 1/2 0 0 0 −1

This leads to the worldsheet potential

V =
e2

1

2

(
|z2|2+|z3|2

2 −|x1|2−b1

)2
+

e2
2

2

(
|z1|2+|z3|2

2 −|x2|2−b2

)2
+

e2
3

2

(
|z1|2+|z2|2

2 −|x3|2−b3

)2
. (3.3)

Phases ofC3/Z2×Z2 orbifold resolutions

By studying the phases defined by this potential we can get a lot of information about the
topologies of the corresponding geometries. In particularthe existence of the divisorsDa := {za =

0} andEr := {xr = 0} and the curves obtained by their intersections depend on theparametersbr ,
see Table 2. Using this information one concludes that thereare 14 phases in total. These different
phases can be represented by toric diagrams: Dots in a toric diagram represent the existing divisors,
lines existing curves and cones existing triple intersections. The 14 toric diagrams are depicted in
Figure 3. Only four phases correspond to complete smooth geometries and therefore can be treated
using supergravity methods. All the other phases correspond to singular geometries: Apart from
the orbifold phase, where theC3/Z2×Z2 geometry is recovered, there are nine partially resolved
phases in which not all three possible exceptional divisorsexist.

Pure and mixed GLSM anomalies

There are three pure and three mixed anomaly conditions for the GLSM that describes resolu-
tions of aC3/Z2×Z2 orbifold model:

Q2
1 = Q2

2 = Q2
3 =

3
2
, Q1 ·Q2 = Q2 ·Q3 = Q3 ·Q1 =

1
4
. (3.4)

7
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orbifold phase:
no exceptional divisors

b1≤ 0
b2≤ 0
b3≤ 0

D3

D2D1

partial resolution:
one exceptional divisor

b1≥ 0
b2≤ 0
b3≤ 0

E1

D3

D2D1

partial resolution:
two exceptional divisors

b1≥ b2≥ 0

b3≤ 0

E2 E1

D3

D2D1

b2≥ b1≥ 0

b3≤ 0

E2 E1

D3

D2D1

full resolution: three exceptional divisors

b1, b2≥ 0

b3≥ b1+b2

E2

E3

E1

D3

D2D1

b1, b3≥ 0

b2≥ b1+b3

E2

E3

E1

D3

D2D1

b2, b3≥ 0

b1≥ b2+b3

E2

E3

E1

D3

D2D1

b1+b2≥ b3≥ 0
b1+b3≥ b2≥ 0
b2+b3≥ b1≥ 0

E2

E3D1

D3

E1

D2

Figure 3: This table gives the 14 phases of the GLSM associated with theC3/Z2×Z2 orbifold. We have
not displayed all the partial resolutions: The others are obtained by cyclic permute of the labels 1,2,3.

The orbifold standard embedding model can be blown up by a single blow–up mode in each
of the three twisted sectors without oscillators. This can be realized by the left–moving shifted mo-
menta:P1 = (0, 1

2,
1
2, -1,0,0,010), P2 = (1

2,0,
1
2,0, -1,0,010), P3 = (1

2,
1
2,0,0, -1,010), respectively.

Taking the chargesQ1,Q2,Q3 of the chiral–Fermi multiplets equal to these shifted momenta, one
sees that they fulfill all pure and mixed anomaly cancellation conditions (3.4) simultaneously.

Bianchi identities on different triangulations

One can consider heterotic supergravity on one of the four complete resolutions. The fun-
damental consistency relations for geometrical compactifications are the Bianchi identities. For
resolutions of theC3/Z2×Z2 orbifold these conditions strongly depend on the triangulation [31],
because the intersection numbers do. In the symmetric triangulation “S" we find three Bianchi
identities on the three exceptional divisorsE1, E2 andE3

Q2
1+2Q2 ·Q3 = 2 , Q2

2+2Q1 ·Q3 = 2 , Q2
3+2Q1 ·Q2 = 2 , (3.5)

8
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while in the asymmetric triangulation “E1" we obtain

Q2
2+Q2

3 = 3 , Q2
2−2Q1 ·Q3 = 1 , Q2

3−2Q1 ·Q2 = 1 . (3.6)

(The results in the other two asymmetric triangulations areobtained by cyclic permutations of the
labels.) Each of these sets of conditions separately are weaker than (3.4). However, when we
combine all four sets of Bianchi identities together, we have a set of equations that are equivalent
to the anomaly cancellation conditions (3.4) of the GLSM.

The fact that the anomaly conditions (3.4) of the GLSM contains all the possible Bianchi iden-
tities of the supergravity models on the four resolutions, should not come as a surprise: The GLSM
formalism allows us to smoothly move in moduli space betweenthe various phases, including the
four geometrical phases described by these triangulations. Therefore a consistent string model
should at least produce consistent supergravity models in each of these full resolutions. Even
though from the supergravity perspective alone, one can argue that the various Bianchi identities
that arise in the different triangulations should be superimposed: Even if a flop–transition itself is
beyond the range of supergravity validity, in each of the resolutions associated with the different
triangulations supergravity should be applicable. Since neither the flux nor any of the exceptional
divisors have disappeared during the flop transition, the Bianchi identities on the different resolu-
tions have to be imposed on the same gauge flux.

4. Green–Schwarz mechanism on the worldsheet

We have seen that the GLSM anomaly conditions (2.8) can be very restrictive. One may
wonder whether it is possible to alleviate the resulting restrictions. In ten dimension there is a
possibility to do: In the so–called Green–Schwarz mechanism certain types of anomalies can be
cancelled by an anomalous variation of the Kalb–Ramond two–form. It is therefore natural to
ask whether a similar construction is possible in two dimensional GLSMs. This idea has been
pursued by Adams et al. [52]: They introduced a chiral superfield which transforms as a shift under
Abelian gauge symmetry. To ensure that the target space was compact they assumed that the scalar
component of this superfield lives on a torus. For compactification applications this means that
one has already lost two real coordinates. However, it is possible to generalize their description by
allowing for general field dependent FI–terms.

Field dependent Fayet–Iliopoulos terms

For the gauge superfields we can write down FI–terms

WFI =
1

2π
ρJ(Ψ)FJ , (4.1)

where the FI–parametersρJ have become holomorphic functions of chiral superfieldsΨa. Let us
assume that the FI–parametersρI transform as

ρJ→ ρJ +TIJ ΘI , (4.2)

9
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with TIJ some constants. These constants are in general not symmetric under the interchange of
the gauge indicesI andJ. (A single ρJ may be charged under variousU(1) gauge symmetries
simultaneously.) Consequently, the FI–superpotential transforms as

WFI→WFI +
1

2π ∑
I

TII ΘI F I +
1

2π ∑
I<J

(
TIJ ΘI FJ+TJI ΘJ F I

)
. (4.3)

These variations are very similar to the anomalous variation of the effective action and can thus be
used to arrive and more general anomaly conditions [53, 54]:

Pure anomalies: TII =
1
2

(
QI ·QI −qI ·qI

)
, I = J , (4 a)

Mixed anomalies: TIJ = (1−cIJ)(QI ·QJ−qI ·qJ) , I < J , (4 b)

TJI = cIJ (QI ·QJ−qI ·qJ) , I > J . (4 c)

Here we have included the freedom to shift mixed anomalies around by making specific choices
for the coefficientscIJ . As observed above, the GS–coefficientsTIJ are often not symmetric, hence
we need thecIJ freedom in order to increase the chance to cancel the anomalies.

Let us give one particular example of aWFI: Given that the chiral multipletsΨa generically
transform with chiral superfield phases, we obtainρJ that transform as shifts under gauge transfor-
mations. By taking

Wlog FI =
1

2π
ρJ(Ψ)FJ , ρJ(Ψ) = ρ0

J +TXJ lnRX(Ψ) , (4.5)

we obtain the GS–coefficients

TIJ = rX
I TXJ . (4.6)

Hereρ0
J are constants andRX(Ψ) are homogeneous polynomials withU(1) chargesrX

I . For sim-
plicity we take belowRX(Ψ) = Ψa so thatrX

I = (qI )
a.

Looking at the conditions (4 a)–(4 c), one might get the impression that one is able to cancel
any kind of worldsheet gauge anomaly in this way be choosing the GS–coefficientsTIJ. This is not
the case, because the GS–coefficientsTIJ are subject to stringent quantization conditions. They are
often incompatible with the anomaly conditions (4 a)–(4 c).To see how the quantization conditions
on the GS–coefficientsTIJ arise, we first recall some basic facts concerning gauge instantons in
two dimensions [55, 56]: For an Euclidean one–instanton solution the scalarza vanishes at a single
point on the worldsheet, sayσ = 0, and the phase ofzb winds non–trivially around this zero. The
worldsheet gauge flux is then quantized as

∑
J
(qJ)

b
∫

f J
E2

2π
= 1 , (4.7)

where f J
E2 = f J

E21dσ2dσ1. Now the logarithmic FI terms (4.5) have to be well–defined under
trivial phases transformationsza→ e2π iza. Since,

∫
d2σdθ+Wlog FI+h.c.⊃ iTaJ

∫
Im(lnza)

f J
2

2π , (4.8)

10
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the anomaly coefficients are quantized as

TaJ

∫
f J
2

2π
∈ Z , (4.9)

under the assumption thatRX(Ψ) = Ψa.

Possible interpretation: Torsion and NS5–branes

The next question we would like to address is what is the interpretation of such logarithmic
FI–terms on the worldsheet. The Kalb–Ramond two–formB2 can be expanded asB2(z) = βI(z)F I

2

in harmonic two–formsF I
2 . The coefficientsβI (z) can be interpreted as axions with a non–trivial

background over the target space geometry. Given that the axionsβI (z) = Im(ρI (z)) transform with
shifts under the worldsheet gauge transformations (4.2), the three–form field strengthH3 of B2 has
to be modified to [52]

H3 =
(
dβJ+ rX

I TXJAI
1

)
FJ

2 , (4.10)

in order to be globally well–defined. This is the GLSM realization of the effect discussed in [57,
58]: The anomalies in transformations of the worldsheet fermions induce the target space GS–
mechanism. The target space is no longer Kähler, i.e. there is torsion, sinceH3 = i(∂̄ − ∂ )J2 6= 0
implies that the fundamental two–formJ2 is no longer closed.

The logarithmic worldsheet FI–terms lead to a more drastic modification of the target space
geometry. The Kalb–Ramond Bianchi identity reads

dH3 = X4+ trR2
2− trF 2

2 , (4.11)

whereR2 and F2 are the curvature and the gauge field strength, respectively. The additional
contributionX4 = d(dβJ)FJ

2 arises whenβI can become singular. As it measures the failure in the
exactness of trR2

2− trF 2
2 , it signals the presence of NS5 branes [59, 60] (also sometimes referred

to as H5 branes [61, 62]). Apparently, even though the perturbative heterotic worldsheet theory is
incapable of describing the NS5 brane dynamics, it definitely feels their effects.

Consequences for the geometry

The logarithmic FI–term (4.5) the worldsheet D–term potential become

VD =
e2

I

2

(
(qI )

a |za|2+(qI )
m |zm|2− 1

2π
(b0

I +TXI ln |RX(z)|)
)2

. (4.12)

In particular, whenRX(Ψ) = Ψa, this implies that it is not possible anymore to setza = 0. This
means that the corresponding divisorDa := {za = 0} no longer exists: The infinitely thin NS5
brane is replaced by a non–trivial modification of the targetspace geometry near the cycle that this
brane used to wrapped.

The logarithm in potential (4.12) can have further consequences: Depending on the relative
signs of the charges and the FI–parameterTXI the geometry can even decompactify [53, 54]. In this
case we interpret the singular FI–terms to describe the presence of anti–NS5 branes.
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5. Conclusions

In this proceedings we have reported on recent progress on heterotic compactification using
gauged linear sigma models. There are two main approaches toobtained interesting models for
string phenomenology fro the heterotic string: Exact orbifold constructions or large volume Calabi–
Yau compactifications. Even though it is expected that thesetwo approaches are closely related,
their precise relation has so far not been fully understood.

In this work we propose to use (2,0) GLSMs to smoothly interpolate between non–compact
heterotic orbifold models and large volume Calabi–Yau compactifications. The charges of these
GLSMs are determined from the shifted momenta that characterize the twisted states that take
VEVs that generate the blow–up.

To allow for more flexibility to obtain solutions to the worldsheet anomaly cancellation con-
ditions we can consider a worldsheet version of the Green–Schwarz mechanism involving field
dependent Fayet–Iliopoulos terms. We show that such worldsheet modifications describe torsion
target spaces in general. By investigating consequences for the target spaceB–field Bianchi identity
we establish that singular field dependent FI–terms describe NS5 branes, which can have drastic
effects on the target space geometry.
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