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1. Approaches to heterotic string phenomenology

Heterotic strings [1, 2] provide promising candidates foifying descriptions of gravity and
particle physics. There has been a huge effort over the gassyn identifying Minimal Super-
symmetric Standard Model (MSSM) candidates within thisnfeavork. There are two traditional
approaches which have been vigorously pursued to find Bttegeheterotic string compactifica-
tions:

a. Calabi-Yau model building

A general approach for heterotic string model building ie tompactification on smooth
Calabi—Yau (CY) threefolds [3] with stable vector bundlds%]. Given that smooth CY spaces
with stable bundles are difficult to obtain, finding the MSSide-models has proven extremely
laborious, especially because of the issue of bundle &tafll. Ongoing efforts of refs. [7—11]
have resulted in MSSM-like candidates [12 —15].

b. Orbifold model building

The other possibility of heterotic model building is the quantification on toroidal orbifolds,
i.e. discrete quotients of six dimensional tori [16 —18].tte so—called “mini—landscape” study
on theT®/Zg_, orbifold a large number of models has been identified, whigbnuswitching on a
certain number of vacuum expectation values (VEVs) lead 88M—like spectra [19 - 23].

Model building on orbifold resolutions

This means that both approaches become dynamically rel&texiorbifold theory is driven
away from the orbifold point resulting in a (partially) sntbed out CY geometry. In order to un-
derstand the properties of the resulting CY and the gaugagbaands it can support, one needs to
systematically study the blow—up process. In refs. [24 t@&topology of the smooth CY result-
ing from orbifold resolutions was discussed using toricrgetsy methods [28, 29]. Abelian gauge
fluxes (line bundles) on both non-compact and compact résokihave been obtained in [30 - 33];
sometimes they can even be constructed explicitly [34 — 36].

For the “mini—-landscape” models these results imply thi& How—up process can never
lead to a completely smooth CY geometry since the hypereh@gthe weakSU(2)) would be
broken [33]. To avoid this in full blow—up another interestiMSSM realization was constructed
on aZp x Z; orbifold (see e.g. [37]) as aBU(5) GUT that was subsequently broken down to
the MSSM using a freely acting e involution [38]. This model can in principle be blown up
completely without breaking the hypercharge [39].

2. Heterotic orbifold resolutions as GLSMs

Why GLSMs?

Unfortunately, the above description of the blow-up prasedhas some severe limitations.
The main problem is that one uses different frameworks iieidint regimes: On the one hand, one
has an orbifold theory which can be studied using conforneddl iheory (CFT) techniques. To
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Figure 1: Matching of orbifold and resolution models is hampered asiéy the fact that we are comparing
different regions in the moduli space.

describe a resolution one then investigates the consegsi@ipresumably marginal operators to
characterize the blow—up procedure. As we have seen abese tperators correspond to VEVs
of twisted states, hence only when they are small, a petivebi@eatment of the orbifold resolution
process is possible. On the other hand, in a CY compactditalie metric is Ricci flat at leading
order in thea’ expansion. Hence, in order to be able to work with these theane has to study
the supergravity limit of heterotic string theory wheretrég ordera’ corrections are negligible.
This only allows for partial access to the low energy datahef theory. Seen as a perturbation
theory in the string scale, the validity of the supergra@pproach can only be guaranteed in the
large volume limit. If one instead ones to consider an ot@ifnit, one has to include an infinite
set of higher orden’ corrections. These difficulties when compare orbifold CKith VEV
deformations and smooth heterotic CY compactificationsllarsrated in Figure 1.

In addition, there is the practical complication that oftesingle orbifold can be related to
many smooth CYs which are distinguished by their intersactiumbers: Even though a toric
resolution of an orbifold singularity is well understood tiematically, it often does not offer an
uniquely determined geometry, because the resolutiowslfor various triangulations. For the
T8/Ze.yi orbifold this gives us millions of smooth CYs to consider[3d there are many orders
of magnitude more resolutions of the orbifdld/Z, x Z, [39]. In the light of this, it would be
extremely useful to have a framework that treats all theseluéons of a single orbifold on equal
footing.

Two dimensional gauged linear sigma models (GLSMs) progdermalism that can deal
with all these issues [40]. In this proceedings we are onhcemed with (2,0) GLSMs. An impor-
tant ingredient of such a GLSM is the Fayet-lliopoulos (Fdfameter, which has the geometrical
interpretation of a Kéhler parameter. When this parametaild to minus infinity, the worldsheet
gauge symmetry is dynamically broken to a finite discretegsulp, i.e. in this limit the GLSM
describes an orbifold [40, 41]. The opposite limit leads karge volume description, which can be
compared with a supergravity treatment. GLSMs are alsoltagd describing vector bundles and
their deformations [42 —45]. Interest in the subject of ;0 SMs have recently been revived, see
e.g. [46 —49].
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superfield bosonic DOF| fermionic DOF
type notation|| dimension| charge| on off on off
chiral pa 0 q? A - s -
chiral-Fermi  A“ 1/2 Qr - h® A -
gauge (V,A) (0,1) 0 |A,LAL D ¢ -

Table 1: The superfield content of a generic (2,0) GLSM and their piatsin- and off-shell degrees of
freedom (DOF).

Twisted states VEVs on orbifolds

From the target space perspective the VEVs of twisted st#Htdse orbifold CFT generate
the blow-up; i.e. we expect that the twisted state VEVs d@scivhich GLSM should be used.
Therefore, we briefly recall some basics of twisted statekeierotic orbifolds, details can be
found in the refs. [16 — 18, 50].

We consider non-compact orbifold¥ /Zy defined by the action

2NV A YR ™ yR, (2.1)

for a=1,2,3 on the coordinatez of C2 and their superpartners® with N2 € Z andy; v?/2 = 0.
The Zy action on the gauge fermios parameterized by the shift vectdr= (V1,...,V1) as

AT @iy a g —1....16. (2.2)

These entries are required to satiBfy/ € A1, with A1 the Spir{32) /Z; lattice.

Each twisted statély) = |pr,R), 0% [pr, P), etc., is characterized by shifted left— and right—
moving momenta; = p+ vy, andR = P+V; in a given twisted sectar# 0. Herep takes values
in the vector lattice\s of SO(8) and P in the direct sum\; of the root and spinor lattices of
SQ(32). In addition, a number of left-moving oscillaton*s;"}\7r and&%vr, may hit the vacuum state
|pr;P). The twisted number operator

Ny = Z(nra_ ) Vra (2.3)

a

counts the number of such excitations weighted/y For example the staté&?; |pr,P) hasN;
equal tov;,. The right— and left-moving masses of the twisted sfBteare given by

1 -
M3 == p?— =+ 8¢, ME:EPr2—1+6Cr—|—Nr, (2.4)

wheredc, = 3 — 17 defines the shift in the vacuum energy in that twisted sedtbe formulae
above together with the level matching conditidig = MZ implies that

Po1tp-28N, =7 (2.5)

r
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charge assignment

i Ipr,Pr) — (ar, Qr) ‘v

Orbifold blow down GLSM large volume Gauge Bundle
—_— —_—
CFT -00 + by by — o on CY

Figure 2: The dashed line schematically indicates that by seleciimgesblow-up mode$p, P) within
the twisted orbifold CFT spectrum, we can define a specific u@th given gauging of the chiral and
chiral-Fermi multiplets encoded by the charggs Q). In the blow down limit b, — —o) of this GLSM
we recover the orbifold theory back, while in the large voéulimit (b, — o) we obtain a non—compact CY
with a line bundle.

(2,0) GLSM Superfields

The field content of a generic (2,0) GLSM can be encoded in aoenrof superfields which
are collected in Table 1. As can be seen from Table 1 a chiprfield W2 contains a complex
scalarz2 and a holomorphic (or right-moving) fermior?. A chiral-Fermi superfield\” only
contains a physical anti-holomorphic (or left-moving)mfeon A9. The worldsheet theory of the
free heterotic string has labets= 1,2,3 anda = 1,...,16, respectively. These multiplets are
charged w.r.t. gauge multiplet¥,A)'. Their combined action reads

S= / d?cd?6* {}F@Wa - }KO,/\“ +

1 _
. @F|F|}—|—/d20d6+p|(q-’) F+hc,  (2.6)

where 7 = 9 + 2i(A— ia_V)|q| is the gauge covariant derivative aff= —%B+(A— i5V). e
define the gauge couplings and the complex Fayet-lliopalHhsparametep, = by +if;. This
action results in a scalar potential

vzzﬁ(;qﬂzﬂz—b.)z. @7)

For consistency such a GLSM has to fulfill at least the follayvconditions:

1. Cancellation of pure and mixed anomalies:
T QIQY =Y el (2.8)
a a
2. Vanishing of sums of chiral superfield charges:
>a'=0. (2.9)
a
The first set of conditions reflects the target space comditioV) = c,(T X), while the second one
the conditionc, (T X) = 0 [43].

Characterization of a resolution GLSM

Next we give a precise recipe how to associate a GLSM to andiieterbifold model with cer-
tain blow—up modes switched on [51]: In a nutshell, the chamf the superfields in the GLSM are
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determined by the shifted momenta of the twisted blow—upesod his identification is inspired
by our recent findings that the vectors that characterize hindle embeddings are identical to
the shifted momenta of certain twisted states in the onthigglectrum [33]. The relations between
the orbifold CFT, the GLSM and the supergravity descripgi@me schematically summarized in
Figure 2.

The charges of the chiral superfields are assigned as folldespromote the shifted right—
moving momentdp; )2 to charges of abl (1), gauge symmetry. Since this gauge symmetry can be
used to remove one chiral superfield, one introduces ondi@uli chiral superfield®™". (We use
the index notationr-to denote the additional exceptional chiral superfield|atgest component
we callx’ = W™|.) Its charge is chosen such that the total sum of chargesaq2®):

(@)% = (pr)?=(%)?, ()" =-1 (2.10)

The resulting scalar potential

2
Vo S (AR + @IZR + IR - - b), @41)
has to vanish in order to preserve worldsheet supersymnigiry leads to two phases: Har< 0
Z™" takes a non-zero VEV. As the chargexbfis —1 while the chargeg? of the 72 are fractional,
the gauge transformations that presef¥e generate a residudl, gauge action oz®, with n, =
N/gcd(r,N) is the order of the twisted sector In the opposite casé; > 0, the zero locus of the

potential (2.11) can be written as
G 2P+ F 2P+ 127 =+ X7 (2.12)

This shows that at least o@@needs to take a non-vanishing VEV in order that the poteistizgro.
Moreover, the exceptional divisd; := {x" = 0} defines a symplectic quotie&®/U (1) with an
effective radiusy/b, for by > 0. This justifies to interprely, as a Kahler parameter (or a blow—up
parameter) which measures the size of the exceptionaldgcieE;.

Inspired by this simple recipe on the right—-moving side, aletthe charge®; of the chiral—
Fermi multiplets equal to the left-moving shifted momentdof the twisted statd;T,) = |pr, R ):

Q)" =(R)*. (2.13)
By the level matching condition (2.5) this satisfies the pamemaly cancellation condition (2.8):
YO =R =1epi= 5 (@7 (2.14)
a a=123,-r

This assigment can be extended for states with oscillatcitagbons, see Ref. [51] for detalils.

3. Anomalies on resolutions ofC3/Z, x Z»

To illustrate these methods we consider the GLSM descripgiforesolutions of the orbifold
C3/Zyx Z,. The orbifold group contains four elements, apart from tretity we have

272,
6, : (3.1)
{zb—>—zb, b+#a,
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|divisor| exists wheficurve] exists when | curve||  exists when

D1 always = =) bl,bz >0, bs <by+by|D1E; ||by >0 , b1 >by+bs
D, always |ExEz |bo,b3 >0, by <b,+bsz|D2E, ||b >0, by >by+Dbs
D3 always |EiEz|b1,b3 >0, by <b;+bs|D3Es ||b3>0, bs>by+b,
E: b1 >0 |DiD2|| b3<O D1Eo3||bo>0,b3>0

E, b, >0 |DiD3|| b2<O DoEy3(|b1 >0,b3>0

Es b3 >0 |D2D3|| b1 <0 D3E;p||b1 >0, >0

Table 2: This Table indicates under which restrictions of the Kapkerameters, the various divisors and
curves exist.

fora=1,2,3. There exist six heterotic orbifold models distinguistgdhe choice of gauge shifts
Va, a= 1,2, 3; the orbifold standard embedding corresponds to therassgt:

Vl = %(07 '17 '17 013) ) V2 = %(-17 07 '17 013) ) V3 = %(-17 '17 07 013) . (32)

TheZ,xZ, orbifold models have three distinct twisted sectors, whiifted right—-moving mo-
mentap; = (0,3,3), p2 = (3,0,3), ps = (3, 3,0), respectively. Hence, we consider the following
chiral superfields:

|superfield W0 W1 W2 @s[lpT w23
Q1 0 0 1/21/2)-1 0 O
a2 012 0 /2 0 -1 O
03 0 1/21/2 0| 0 0 -1
This leads to the worldsheet potential

& (122022 a2 \2, S PR 22 p )2 BEPZR a2 )2
v_§<f—|x| ~by) +E(f—|x| ~by) +§(f—lx3l ~bs)". (3.3)

Phases ofC3/Z, x Z, orbifold resolutions

By studying the phases defined by this potential we can get af lmformation about the
topologies of the corresponding geometries. In particilarexistence of the diviso3, := {Z# =
0} andE; := {X' = 0} and the curves obtained by their intersections depend opetteneters;,
see Table 2. Using this information one concludes that thexd 4 phases in total. These different
phases can be represented by toric diagrams: Dots in a tagradn represent the existing divisors,
lines existing curves and cones existing triple intersesti The 14 toric diagrams are depicted in
Figure 3. Only four phases correspond to complete smootimgis and therefore can be treated
using supergravity methods. All the other phases corrasposingular geometries: Apart from
the orbifold phase, where tH@&®/Z, x Z, geometry is recovered, there are nine partially resolved
phases in which not all three possible exceptional diviegist.

Pure and mixed GLSM anomalies

There are three pure and three mixed anomaly conditiontiéoGt. SM that describes resolu-
tions of aC3/Z; x Z, orbifold model:

3 1
A=F=F=5. QA Qu=QQB=0Qw =7 (3.4)
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partial resolution:
two exceptional divisors

orbifold phase:

no exceptional divisors
Ds Ds
b <0 b1 >0, >0 g Ex
s
3 - Dl D2 DliDz
. - D3
partial resolution:
one exceptional divisor by >0y 20 e E1
Ds b3 <0
by >0 i Z b
b, <0 '
b3 <0
D1 Dz
full resolution: three exceptional divisors
D3 D3
b17 b2 2 0 Ex E; b27 b3 Z 0 E E;
bz > by + by b1 >by+bs
D & D D E D
D3 D3
b17 b320 Ez E1 b1+b22b320 E =]
bi1+b3>b,>0
by > by +bs bo+b3>by >0

Dy

Es

D2

D;

Es D>

Figure 3: This table gives the 14 phases of the GLSM associated witlT#i&, x Z, orbifold. We have
not displayed all the partial resolutions: The others ataiobd by cyclic permute of the labels 1,2,3.

The orbifold standard embedding model can be blown up byglesislow—up mode in each
of the three twisted sectors without oscillators. This camdalized by the left-moving shifted mo-

11

menta:P, = (0, 3, 3,

-1,0,0,01%), P, = (3,0, 3,0,-1,0,0%), P; = (

2

11
202

0,

0, -1,0%°), respectively.

Taking the charge®:,Q», Qs of the chiral-Fermi multiplets equal to these shifted motagane
sees that they fulfill all pure and mixed anomaly cancelfatonditions (3.4) simultaneously.

Bianchi identities on different triangulations

One can consider heterotic supergravity on one of the fompdete resolutions. The fun-
damental consistency relations for geometrical compeatifins are the Bianchi identities. For
resolutions of theC3/7Z, x Z, orbifold these conditions strongly depend on the trianiua[31],
because the intersection nhumbers do. In the symmetriggtrlation “S' we find three Bianchi
identities on the three exceptional divis&g E, andEs

QZ+2Q Q=2

QB+2Q1- Qg =2,

Q+2Q1- Q@ =2,

(3.5)
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while in the asymmetric triangulatiorEi" we obtain

B+RB=3, Q3-2Q1-Q=1, Q3-2Q:-Q=1. (3.6)

(The results in the other two asymmetric triangulationsadrtained by cyclic permutations of the
labels.) Each of these sets of conditions separately argewdhan (3.4). However, when we
combine all four sets of Bianchi identities together, weehawset of equations that are equivalent
to the anomaly cancellation conditions (3.4) of the GLSM.

The fact that the anomaly conditions (3.4) of the GLSM cortaill the possible Bianchi iden-
tities of the supergravity models on the four resolutiohsusd not come as a surprise: The GLSM
formalism allows us to smoothly move in moduli space betwibenvarious phases, including the
four geometrical phases described by these triangulatidieerefore a consistent string model
should at least produce consistent supergravity modelsagdh ef these full resolutions. Even
though from the supergravity perspective alone, one cameaitgat the various Bianchi identities
that arise in the different triangulations should be suppdsed: Even if a flop—transition itself is
beyond the range of supergravity validity, in each of thelggns associated with the different
triangulations supergravity should be applicable. Sirgigher the flux nor any of the exceptional
divisors have disappeared during the flop transition, ttené&hi identities on the different resolu-
tions have to be imposed on the same gauge flux.

4. Green-Schwarz mechanism on the worldsheet

We have seen that the GLSM anomaly conditions (2.8) can be restrictive. One may
wonder whether it is possible to alleviate the resultingriegt®ons. In ten dimension there is a
possibility to do: In the so—called Green—Schwarz mecharertain types of anomalies can be
cancelled by an anomalous variation of the Kalb—Ramond fovoa- It is therefore natural to
ask whether a similar construction is possible in two dinmred GLSMs. This idea has been
pursued by Adams et al. [52]: They introduced a chiral suglerfivhich transforms as a shift under
Abelian gauge symmetry. To ensure that the target spaceamasact they assumed that the scalar
component of this superfield lives on a torus. For compaatifio applications this means that
one has already lost two real coordinates. However, it isiptesto generalize their description by
allowing for general field dependent Fl-terms.

Field dependent Fayet—lliopoulos terms

For the gauge superfields we can write down Fl-terms

1

P (W)FY, (4.1)

Wr =

where the Fl-parametes have become holomorphic functions of chiral superfiélds Let us
assume that the Fl-parametgydransform as

Py — Py+ 0", (4.2)
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with 97; some constants. These constants are in general not symmedier the interchange of
the gauge indices andJ. (A single p’ may be charged under variolg1) gauge symmetries
simultaneously.) Consequently, the Fl-superpotentsiorms as

1 | =1 1 | =J J|
WF|—>VVF|+5TZ<%@F +5T.;(‘%@F +%.9F). (4.3)

These variations are very similar to the anomalous vanaifdhe effective action and can thus be
used to arrive and more general anomaly conditions [53, 54]:

Pure anomalies: 7} = % (Q| QI —q -q|) , l=J, (4 a)
Mixed anomalies: 75 = (1-¢3)(Q-Qs—0a - ), I <J, (4 b)
Tn=a3(Q-Q—0q-d), 1 >J. (4c)

Here we have included the freedom to shift mixed anomaliesrat by making specific choices
for the coefficients;. As observed above, the GS—coefficieffs are often not symmetric, hence
we need the;; freedom in order to increase the chance to cancel the anesnali

Let us give one particular example oi&,: Given that the chiral multiplet¥? generically
transform with chiral superfield phases, we obtajrthat transform as shifts under gauge transfor-
mations. By taking

1
Wog F1 = E_[PJ(qJ)FJ , p3(W) = pd+ Txs INRY(W) , (4.5)

we obtain the GS—coefficients
r7|‘]:|’|XT)(J. (46)

Herepj’ are constants an@* (W) are homogeneous polynomials with{1) charges . For sim-
plicity we take belowRX (W) = W2 so thatr{* = (g )2.

Looking at the conditions (4 a)—(4 c), one might get the irspi@n that one is able to cancel
any kind of worldsheet gauge anomaly in this way be choosiedxS—coefficientsj;. This is not
the case, because the GS—coefficierigsare subject to stringent quantization conditions. They are
often incompatible with the anomaly conditions (4 a)—(4T@) see how the quantization conditions
on the GS—coefficients]; arise, we first recall some basic facts concerning gaugaritests in
two dimensions [55, 56]: For an Euclidean one—instantontswl the scalar® vanishes at a single
point on the worldsheet, say = 0, and the phase @ winds non-trivially around this zero. The
worldsheet gauge flux is then quantized as

g«mb fep 1, (4.7)

21T

where f1, = f2,,do?do!. Now the logarithmic FI terms (4.5) have to be well-definedlem
trivial phases transformatiorz8 — ¥ 2. Since,

/d2ade+wog f+h.c.o iTaJ/Im(In 22 (4.8)

10
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the anomaly coefficients are quantized as

fJ
Taj/ée z, (4.9)
under the assumption that (W) = W2,

Possible interpretation: Torsion and NS5-branes

The next question we would like to address is what is the pnétation of such logarithmic
Fl-terms on the worldsheet. The Kalb—Ramond two—f8nean be expanded &(2) = 3 (2) F,
in harmonic two—forms=). The coefficients3, (z) can be interpreted as axions with a non-trivial
background over the target space geometry. Given that thasf3; (z) = Im(p, (z)) transform with
shifts under the worldsheet gauge transformations (h@)three—form field strengtis of B, has
to be modified to [52]

Hz = (dBy+ i Txa AL FS | (4.10)

in order to be globally well-defined. This is the GLSM rediiaa of the effect discussed in [57,
58]: The anomalies in transformations of the worldsheemiens induce the target space GS—
mechanism. The target space is no longer Kéhler, i.e. tei@sion, sincéHz =i(d —9)J, #0
implies that the fundamental two—forda is no longer closed.

The logarithmic worldsheet Fl-terms lead to a more drastdification of the target space
geometry. The Kalb—Ramond Bianchi identity reads

dHs = Xg+ tr%5 — tr.72 | (4.11)

where %, and .%, are the curvature and the gauge field strength, respectiviihe additional
contributionXy = d(dBJ)FZJ arises wherf, can become singular. As it measures the failure in the
exactness of ﬁ% —trﬁ’zz, it signals the presence of NS5 branes [59, 60] (also sorastieferred

to as H5 branes [61, 62]). Apparently, even though the peative heterotic worldsheet theory is
incapable of describing the NS5 brane dynamics, it definfestls their effects.

Consequences for the geometry

The logarithmic Fl-term (4.5) the worldsheet D—term pasiiecome

Vo= 5 (@) 12 + (@) 22— = (60 + T MRA(2)) (4.12)
In particular, wherRX (W) = W2, this implies that it is not possible anymore to g&t= 0. This
means that the corresponding dividog := {2 = 0} no longer exists: The infinitely thin NS5
brane is replaced by a non—trivial modification of the tagpetce geometry near the cycle that this
brane used to wrapped.

The logarithm in potential (4.12) can have further consaqas: Depending on the relative
signs of the charges and the Fl-param@&jgithe geometry can even decompactify [53, 54]. In this
case we interpret the singular FI-terms to describe thepoesof anti-NS5 branes.

11
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5. Conclusions

In this proceedings we have reported on recent progressterolie compactification using
gauged linear sigma models. There are two main approachastamed interesting models for
string phenomenology fro the heterotic string: Exact albitonstructions or large volume Calabi—
Yau compactifications. Even though it is expected that tivseapproaches are closely related,
their precise relation has so far not been fully understood.

In this work we propose to use (2,0) GLSMs to smoothly int&afgbetween non—compact
heterotic orbifold models and large volume Calabi—Yau caatifications. The charges of these
GLSMs are determined from the shifted momenta that charaetéhe twisted states that take
VEVSs that generate the blow—-up.

To allow for more flexibility to obtain solutions to the woskleet anomaly cancellation con-
ditions we can consider a worldsheet version of the Gredmw#&z mechanism involving field
dependent Fayet-lliopoulos terms. We show that such wweekttsmodifications describe torsion
target spaces in general. By investigating consequencéssftarget spacd—field Bianchi identity
we establish that singular field dependent Fl-terms dasd&i®5 branes, which can have drastic
effects on the target space geometry.
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