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1. Introduction

The low energy dynamics of Goldstone bosons is described by a Nonlinear Sigma Model
(NLSM), which is perturbatively nonrenormalizable in four dimensions. The theory is expected to
break down at the characteristic energy scale 4π fφ , where fφ is a coupling which in four dimensions
has dimension of mass (the so-called “pion decay constant”). At this scale the interactions become
strong, and perturbative unitarity is violated. In spite of this, there have been suggestions that this
theory may hold also beyond this limit and might perhaps be well behaved up to arbitrarily high
energy due to nonperturbative effects. There are two main proposals. The first is nonperturbative
renormalizability, a.k.a “asymptotic safety” [1]. It is based on the possibile existence of a nontrivial
Fixed Point (FP) for the Renormalization Group (RG), which implies that trajectories ending (in the
UV) at this FP do not exhibit unphysical divergences when energy goes to infinity. Such trajectories
are called “renormalizable” or “asymptotically safe”. If the UV basin of attraction of the FP is finite
dimensional, the condition that the theory be described by a renormalizable trajectory leaves only a
finite number of free parameters. All the others are fixed by the theory and thus provide predictions
that could be experimentally verified. An asymptotically safe theory of this type is therefore as
well-behaved and as predictive as QCD. This idea has been discussed especially in the context of
gravity [2], but it could apply also to the case of Goldstone bosons [3].

The other possibility is that the scattering of Goldstone bosons is dominated by the formation
of classical intermediate states called “classicalons”, which would typically decay into a large num-
ber of low energy particles and would thus suppress the cross section for hard scattering with few
highly energetic final states. This would lead to unitarization of Goldstone boson scattering. This
scenario, which has been called “classicalization”, has also originated in a gravitational context [4],
and subsequently extended to models of Goldstone bosons [5]. Various aspects of classicalization
have been also considered in [6, 7, 8, 9].

Both possibilities, being intrinsically nonperturbative, are hard to establish rigorously. So far
several calculation in simplified settings have shown that these are at least plausible scenarios. A
natural question, which has been put forward in [10], is whether they are really different or just
two facets of the same physical phenomenon. At first this sounds quite implausible, due to the
very different mechanisms invoked. Still, one may note that the final observable result may not be
dissimilar; the details of what happens in the interaction region are not directly observable and thus
perhaps not so important.

In order to analyze this question one would have to compare physical observables. This is
hampered by the fact that so far calculations with asymptotic safety have been concerned mainly
with the existence of a FP for the RG of coupling constants, viewed as parameters in the La-
grangian. It is generally believed that a FP for these couplings would correspond also to a FP for
couplings defined more physically in terms of observables. A suggestive argument, based on the
lowest order Lagrangian for the NLSM, goes as follows. The tree level scattering amplitude of
Goldstone bosons behaves as p2/ f 2

φ
, where p2 is some quadratic combination of the external mo-

menta. The statement that this theory has a FP means that when the cutoff Λ tends to infinity, the
coupling scales as fφ ∼ Λ. If we were to identify the cutoff with p, the amplitude would tend to a
constant. Unfortunately so far there is no proper calculation of n-point functions that can be used
to convalidate this argument. Thus, asymptotic safety and classicalization are, at the moment, quite
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complementary: the first deals with Lagrangian couplings, the second with scattering amplitudes.
Eventually one will have to compare them directly at the level of observables.

We will review here the main aspects of asymptotic safety, classicalization and the possible
connection between the two. Section 2 is a review of work on asymptotic safety in NLSMs done
by the first author in collaboration with A. Codello, O. Zanusso, F. Bazzocchi, M. Fabbrichesi, A.
Tonero, L. Vecchi. It covers Lagrangians that are quadratic in derivatives [11], quartic in derivatives
[12], the coupling to gauge fields [13, 14] and to fermions [15]. In section 3 we examine classi-
calization in scattering processes, extending the results of [10] to arbitrary dimensions. Section 4
contains comparison of the results and discussion.

2. Asymptotic safety

2.1 Functional Renormalization

In order to study the asymptotic safety (or lack thereof) of the theory of Goldstone bosons, one
needs a tool that can be reliably applied in a nonperturbative context. Our preferred tool is the exact,
Functional Renormalization Group Equation (FRGE) which provides a convenient implementation
of Wilson’s idea of integrating out degrees of freedom one momentum shell at the time. We start
from a bare Euclidean action S[φ ], and we add to it a suppression term ∆Sk[φ ] that is quadratic in
the field. In momentum space it is of the form

∆Sk[φ ] =
1
2

∫
dqφ(−q)Rk(q2)φ(q) . (2.1)

The kernel Rk(z) will be called “the cutoff”. It is arbitrary, except for the general requirements of
being a monotonically decreasing function both in z and k, tending to zero for z� k2 and to k2 for
z� k2. These conditions ensure that the contribution to the functional integral of field modes with
momenta q2� k2 are suppressed, while the contribution of field modes with momenta q2� k2 are
unaffected. We define a k-dependent generating functional Wk

e−Wk[J] =
∫

Dφ exp
{
−S[φ ]−∆Sk[φ ]−

∫
dxJφ

}
(2.2)

and a k-dependent “effective average action”

Γk[φ ] =Wk [J]−
∫

dxJφ −∆Sk[φ ] , (2.3)

by Legendre transform and subtraction of ∆Sk[φ ]. This functional satisfies the Wetterich equation
or FRGE [16, 17]

k
dΓk

dk
=

1
2

Tr
[

δ 2Γk

δφδφ
+Rk

]−1

k
dRk

dk
, (2.4)

where the trace in the r.h.s. contains a volume and a momentum integration.
One can gain some feeling for this equation by considering the one loop effective average

action. Given a bare action S, the one loop effective action is Γ(1) = S+ 1
2 Trlog

[
δ 2S

δφδφ

]
. Adding to
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S the cutoff term (2.1), we obtain “one loop effective average action” Γ
(1)
k = S+ 1

2 Trlog
[

δ 2S
δφδφ

+Rk

]
which satisfies the equation

k
dΓ

(1)
k

dk
=

1
2

Tr
[

δ 2S
δφδφ

+Rk

]−1

k
dRk

dk
. (2.5)

This is formally identical to (2.4) except that in the r.h.s. the bare action S appears in place of
Γk. Thus the FRGE is a “RG improved” one-loop equation, where the bare couplings have been
replaced by the running couplings.

The r.h.s. of (2.4) can be regarded as the “beta functional” of the theory, giving the k–
dependence of all the couplings of the theory. To see this let us assume that Γk admits a derivative
expansion of the form

Γk(φ ,gi) =
∞

∑
n=0

∑
i

g(n)i (k)O(n)
i (φ) , (2.6)

where g(n)i (k) are coupling constants and O
(n)
i are all possible operators constructed with the field

φ and n derivatives, which are compatible with the symmetries of the theory. We have

k
dΓk

dk
=

∞

∑
n=0

∑
i

β
(n)
i O

(n)
i . (2.7)

where β
(n)
i (g j,k) = k dg(n)i

dk =
dg(n)i

dt are the beta functions of the couplings. Here we have introduced
t = log(k/k0), k0 being an arbitrary initial value. If we expand the trace on the r.h.s. of (2.4)
in operators O

(n)
i and compare with (2.7), we can read off the beta functions of the individual

couplings.
The trace on the r.h.s. of the FRGE is free of UV and IR divergences, because the derivative

of the cutoff kernel goes rapidly to zero for q2 > k2, and k also acts effectively as a mass. So, given
a “theory space” which consists of a class of functionals of the fields, one can define on it a flow
without having to worry about regularizations. All the beta functions are finite. Then, one can pick
an initial point and study the trajectory passing through it in either direction. The issue of the UV
divergences is now related to the behavior of the trajectory for k→∞. If there are none, the chosen
trajectory is a renormalizable one. In the other direction, studying the limit k→ 0 one obtains the
usual effective action Γ[φ ].

2.2 Two derivatives

One convenient way of approximating the FRGE is the derivative expansion. In the case of
the NLSM, the lowest order term is quadratic in derivatives and has the general form

S(ϕ) =
1

2γ2

∫
dx∂µϕ

α
∂

µ
ϕ

β hαβ (ϕ) . (2.8)

Since h, the metric in the target space, is in general a nonpolynomial function of the target space
coordinates, this action already contains, in general, infinitely many couplings.

Quantization of the NLSM requires splitting the field ϕα into a background and a quantum
field δϕα . For notational simplicity in the following we will call the background ϕα . Since the
difference of two coordinates has no simple transformation property, it is convenient to use instead
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of δϕα a variable ξ α such that (ϕ + δϕ)(x) = Expϕ(x)ξ (x), where Exp is the exponential map
[18]. A map such as ξ that assigns to each point x a vector tangent to the target space at ϕ(x) is
called a “vectorfield along ϕ”. Let Γα

β
γ be the Christoffel symbols of h and Rαβ

γ
δ its Riemann

tensor. The covariant derivative of a vectorfield along ϕ is ∇µξ α = ∂µξ α + ∂µϕγΓγ
α

β ξ β . The
curvature of the pullback connection is the pullback of the curvature of the Levi-Civita connection:
[∇µ ,∇ν ]ξ

γ ≡Ωµν
γ

δ ξ δ = ∂µϕα∂νϕβ Rαβ
γ

δ ξ δ .
Further using an orthonormal frame field ea

α the quadratic part of the action (1) is

1
2γ2

∫
dxξ

a (−∇
2
δab−Mab

)
ξ

b , (2.9)

where Mab = eα
a eβ

b ∂ µϕγ∂µϕδ Rαγβδ . It is convenient to choose a cutoff kernel of the form Rk,ab =
1
γ2 δabRk(−∇2). In this way the modified inverse propagator is 1

γ2 (Pk(−∇2)δab −Mab), where
Pk(z) = z+Rk(z). Introducing in (2.5) we have

k
dΓ

(1)
k

dk
=

1
2

Tr
Ṙk1

Pk1−M
. (2.10)

Expanding in M, extracting the term with two derivatives of the background and performing the
momentum integration, one can read off the beta function for the metric [11]

k
d
dk

(
1
γ2 hαβ (ϕ)

)
= 2cdkd−2Rαβ . (2.11)

where cd = 1
(4π)d/2Γ(d/2+1) . This agrees with old results when d = 2+ ε [19] or d = 3 [20].

Let us now suppose that the metric hαβ has some Killing vectors, generating a Lie group
G. Since the cutoff is defined by means of the G–invariant Laplacian −∇2, it preserves the G
invariance. Therefore if the initial point of the flow is an invariant metric, the flow takes place
within the restricted class of invariant metrics. We will focus our attention to two classes of models:
The O(n+1) and the chiral SU(N) models.

The O(n+1) model has target space Sn = O(n+1)/O(n). Invariance under SO(n+1) com-
pletely fixes the metric up to a scale. Its Riemann and Ricci tensors are given by

Rαβγδ = hαγhβδ −hαδ hβγ ; Rαβ = (n−1)hαβ ; R = n(n−1) .

Introducing in (2.11) we find a flow equation for the single coupling γ2, which we can write in the
form:

k
d
dk

1
γ2 = 2cd(n−1)kd−2 . (2.12)

Passing to the dimensionless coupling γ̃2 = kd−2γ2 we find the beta function

dγ̃2

dt
= (d−2)γ̃2−2cd(n−1)γ̃4 (2.13)

which, for d > 2, has a FP at γ̃2
∗ =

1
2cd

d−2
n−1 .
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The chiral SU(N) model has the group SU(N) as target space. Up to rescalings, there is a
unique Ad-invariant inner product in the Lie algebra, which we choose as hab = 2TrTaTb = δab

1.
Then the corresponding biinvariant metric is

hαβ = La
αLb

β
δab , (2.14)

so that the left-invariant vectorfields La can also be regarded as a vierbein. The Riemann and Ricci
tensors and the Ricci scalar of h are given by

Rαβγδ =
1
4

La
αLb

β
Lc

γLd
δ

fab
e fecd ; Rαβ =

1
4

Nhαβ ; R =
1
4

N(N2−1) . (2.15)

Repeating the previous steps we find the beta function

dγ̃2

dt
= (d−2)γ̃2− Ncd

2
γ̃

4 . (2.16)

which, for d > 2, has a FP at γ̃2
∗ =

2(d−2)
Ncd

.
In both cases, in the present approximation the derivative of the beta function at the FP is

β ′(γ̃∗) = 2− d < 0, so this FP is UV attractive. We refer to [11] for further discussion of this
model. Note for later reference that according to equation (2.11) a FP at positive coupling requires
quite generally positive curvature.

2.3 Four derivatives

In this section we restrict ourselves to four dimensions. The most general Lorentz- and parity-
invariant action containig up to four derivatives is:

1
2
∫

d4x
[

∂µϕ
α

∂
µ

ϕ
β h(2)

αβ
(ϕ)+�ϕ

α�ϕ
β h(4)

αβ
(ϕ)

+∇µ∂νϕ
α

∂
µ

ϕ
β

∂
ν
ϕ

γAαβγ(ϕ)+∂µϕ
α

∂
µ

ϕ
β

∂νϕ
γ
∂

ν
ϕ

δ Tαβγδ (ϕ)
]
. (2.17)

The tensors h(2), h(4) are assumed to be positive definite metrics. We will use h(4) to raise and lower
indices, while h(2) is treated as any tensor. The tensor A can be assumed to be totally symmetric
without loss of generality. The tensor T must have the symmetry properties Tαβγδ = Tβαγδ =

Tαβδγ = Tγδαβ . One can derive general beta functions for these tensors. For example, the beta
function of the metric h(4) is again a Ricci flow [12]

k
d
dk

h(4)
αβ

=
1

8π2 Rαβ . (2.18)

We will not discuss the problem at this level of generality but rather restrict ourselves to target
spaces that are spheres or special unitary groups.

1Here the matrices are in the fundamental representation. The Cartan-Killing form just differs by a constant: Bab =

Tr(Ad(Ta)Ad(Tb)) = Nδab.

6



P
o
S
(
C
O
R
F
U
2
0
1
1
)
1
0
0

Goldstone bosons Roberto Percacci

2.3.1 The spherical models

There is only one O(n+ 1)-invariant metric on the sphere, there is no invariant rank three
tensor and there are only two invariant rank four tensors with the desired index symmetries, up to
overall constant factors. If we regard Sn as embedded in Rn+1, we call hαβ the metric of the sphere
of unit radius. Both h(2) and h(4) must be proportional to h, and T is a combination of h’s:

h(2)
αβ

=
1
γ2 hαβ ; h(4)

αβ
=

1
λ

hαβ ; Tαβγδ =
`1

2
(
hαγhβδ +hαδ hβγ

)
+ `2hαβ hγδ .

Here γ2 has mass dimension−2, while λ , `1, `2 are dimensionless. It is convenient to regard 1/λ as
the overall factor of the fourth order terms; then we define the ratios between the three coefficients
of the four-derivative terms as f1 = λ`1 and f2 = λ`2. For the reader’s convenience we rewrite the
action of the Sn models:∫

d4x

[
1

2γ2 hαβ ∂µϕ
α

∂
µ

ϕ
β +

1
2λ

(
hαβ�ϕ

α�ϕ
β +∂µϕ

α
∂

µ
ϕ

β
∂νϕ

γ
∂

ν
ϕ

δ ( f1hαγhβδ + f2hαβ hγδ )
)]

(2.19)
One then finds the following beta functions:

βλ = −n−1
8π2 λ

2 (2.20)

β f1 =
λ

48π2

(
(n+21) f 2

1 +20 f2 f1 +4 f 2
2 +6(n+3) f1 +24 f2 +8

)
(2.21)

β f2 =
λ

8π2

(
n+15

12
f 2
1 +

3n+17
3

f1 f2 +
6n+7

3
f 2
2 − (n+3) f1− (3n+1) f2 +n− 7

3

)
(2.22)

βγ̃2 = 2γ̃
2 +

γ̃4

16π2 ((5+n) f1 +(2+4n) f2 +4(1−n))− λ γ̃2

16π2 ((5+n) f1 +(2+4n) f2 +2(1−n))(2.23)

The beta function of λ depends only on λ and the solution is

λ (t) =
λ0

1+λ0
n−1
8π2 (t− t0)

, (2.24)

where λ0 = λ (t0). We assume λ0 > 0, thus λ is asymptotically free. The beta functions of f1 and
f2 do not depend on g, so their flow can be studied independently. Here we do not discuss general
solutions but merely look for FPs. The overall factor λ in these beta functions can be eliminated
by a simple redefinition t = t(t̃) of the parameter along the RG trajectories: d

dt̃ =
1
λ

d
dt . Since t̃ is a

monotonic function of t, the FPs for f1 and f2 are the zeroes of the modified beta functions

β̃ fi =
d fi

dt̃
=

1
λ

β fi .

They are just polynomials in f1 and f2. The model has no real FP for n = 2, but there are FPs for all
n > 2. For n = 3,4,5,6 they are given in the fifth and sixth column in Table I. One can then insert
the FP values of f1 and f2 in βγ̃2 and look for FP of γ̃2. In each case there are two solutions, one at
γ̃2 = 0, the other at some nonzero value. These solutions are reported in the fourth column in Table
I, for n = 3,4,5,6. The first solution describes the Gaussian FP (GFP), where all the couplings γ̃2,
λ , 1/`1, 1/`2 are zero, the others non Gaussian FP’s (NGFP) where γ̃2 has finite limits instead.
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n γ̃
(III)
∗ FP γ̃∗ f1∗ f2∗ θ1 θ2

3 8.886 NGFP1 6.626 -0.693 0.453 0.094 -0.0121
3 NGFP2 6.390 -1.042 0.615 0.103 0.0119
3 GFP1 0 -0.693 0.453 0.094 -0.0121
3 GFP2 0 -1.042 0.615 0.103 0.0119
4 7.255 NGFP1 5.877 -0.479 0.398 0.105 -0.0412
4 NGFP2 5.442 -1.555 0.852 0.132 0.0392
4 GFP1 0 -0.479 0.398 0.105 -0.0412
4 GFP2 0 -1.555 0.852 0.132 0.0392
5 6.283 NGFP1 5.310 -0.400 0.400 0.118 -0.0608
5 NGFP2 4.924 -1.875 0.988 0.154 0.0567
5 GFP1 0 -0.400 0.400 0.118 -0.0608
5 GFP2 0 -1.875 0.988 0.154 0.0567
6 5.620 NGFP1 4.883 -0.350 0.408 0.131 -0.0780
6 NGFP2 4.577 -2.131 1.091 0.171 -0.0717
6 GFP1 0 -0.350 0.408 0.131 -0.0780
6 GFP2 0 -2.131 1.091 0.171 0.0717
6 GFP3 0 -0.814 1.369 -0.161 -0.0539
6 GFP4 0 -2.363 2.091 -0.164 -0.0617

Table 1: Gaussian and non-Gaussian FPs of the Sn model at one loop. The first column gives the dimension
n. The second column gives the position of the NGFP in the two-derivative truncation, using a type III cutoff.
The rest of the table refers to the four-derivative truncation, also using a type III cutoff. The third column
gives the name of the FP. Columns 4,5,6 give the position of the NGFP, columns 7,8 the critical exponents,
as defined in the text. The coupling λ , not listed, goes to zero and is marginal in this approximation.

Each FP can be approached only from specific directions in the space parametrized by λ , `1, `2,
i.e. the ratios f1 and f2 take specific values. For each NGFP these values are unique, while for the
GFP there may be several possible values: two if n = 3,4,5 and four if n = 6.

When one considers the linearized flow around any of the GFPs, one finds as expected that the
critical exponents, defined as minus the eigenvalues of the matrix ∂βi

∂g j
, are (-2,0,0,0), correspond-

ing to the canonical dimensions of the couplings. The critical exponents at the NGP are instead
(2,0,0,0). Thus the dimensionless couplings are marginal, and of the two FPs, the trivial one is IR
attractive and the nontrivial one UV attractive for g̃. For λ it is clear that the FP is UV attractive
(if we had chosen λ < 0 it would be IR attractive). In order to establish the attractive or repulsive
character of f1 and f2, one can look at the linearized flow in the variable t̃, which is described

by the 2× 2 matrix ∂ β̃ fi
∂ f j

. We define the “critical exponents” θ1,2 to be minus the eigenvalues of
this matrix. They are reported in the last two columns of table I, for n = 3,4,5,6. It is important
to realize that even for the GFP the eigenvectors of the stability matrix are not the operators that
appear in the action but mixings thereof. We do not report the eigenvectors here.

The FP exists for all n > 2. For large n one can study the FPs analytically, to some extent.
There are four FPs for the system of the fi’s, which are: f1 = 0, f2 = 1 with critical exponents

8
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θ1 = 6, θ2 = 12; f1 = 0, f2 = 1/2 with critical exponents θ1 = 6, θ2 =−12; f1 =−6, f2 = 5/2 with
critical exponents θ1 =−6, θ2 = 12; f1 =−6, f2 = 2 with critical exponents θ1 =−6, θ2 =−12.
The numerical values at finite n do indeed tend towards these limits for growing n.

2.3.2 The chiral models

Next we consider the case where the target space is the group SU(N). In this case it is custom-
ary to denote U(x) the matrix (in the fundamental representation) that corresponds to the coordi-
nates ϕα . The theory is invariant under left and right multiplications U(x) 7→ g−1

L U(x)gR, forming
the group SU(N)L×SU(N)R (“chiral symmetry”). Further we demand that the theory be invariant
under the discrete symmetries U(x) 7→ UT (x), which corresponds physically to charge conjuga-
tion, to the simple parity x1 7→ −x1, to the involutive isometry Φ0 : U→U−1 and hence to “Parity”,
defined as U(x1,x2,x3,x4) 7→U−1(−x1,x2,x3,x4).

Let Ta be hermitian, traceless N×N matrices forming a basis of the algebra in the fundamental
representation. We fix the normalization of the basis by the equation

TaTb =
1

2N
δab +

1
2
(dabc + i fabc)Tc . (2.25)

The tensors dabc and fabc are a totally symmetric and a totally antisymmetric Ad-invariant three
tensor in the algebra. (In the case of SU(3) these matrices are one half the Gell-Mann λ matrices.)
There is a one to one correspondence between biinvariant tensors on SU(N) and Ad-invariant ten-
sors in the Lie algebra of SU(N), where Ad is the adjoint representation. Given an Ad-invariant
tensor tab...

cd... on the algebra, the corresponding biinvariant tensorfield on the group is

tαβ ...
γδ ... = tab...

cd...La
αLb

β
. . .Lγ

cLδ
d . . .

where La
α are the components of the left-invariant Maurer Cartan form L =U−1dU = La

αdyα(−iTa)

and Lα
a are the components of the left-invariant vectorfields on SU(N). The matrix Lα

a is the inverse
of La

α . (In this construction we could use equivalently right-invariant objects.)
As with the sphere, we define h(2)

αβ
= 1

γ2 hαβ , h(4)
αβ

= 1
λ

hαβ . In principle chiral invariance would

permit a term in the action with Aαβγ = La
αLb

β
Lc

γdabc; but this can be forbidden by requiring Parity
invariance [12].

For T there are several candidates:

T (1)
abcd =

1
2
(δacδbd +δadδbc) ; T (2)

abcd = δabδcd ; T (3)
abcd =

1
2
( face fbd

e + fade fbc
e) ;

T (4)
abcd =

1
2
(dacedbd

e +dadedbc
e) ; T (5)

abcd = dabedcd
e . (2.26)

They are not all independent, however. The identity (2.10) of [21] implies that

2
N

T (1)− 2
N

T (2)+T (3)+T (4)−T (5) = 0 , (2.27)

so that T (5) can be eliminated. In the case N = 3 the identity (2.23) of [21], together with the
preceding relation, further implies

T (2)−T (3)−3T (4) = 0 , (2.28)

9
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so that we can also eliminate T (4). Finally in the case N = 2 the tensor dabc is identically zero, so
we can keep only T (1) and T (2) as independent combinations, and use T (3) = T (2)−T (1).

The action of the generic SU(N) models can then be written in the form:∫
d4x

[
1

2γ2 hαβ ∂µϕ
α

∂
µ

ϕ
β +

1
2λ

hαβ�ϕ
α�ϕ

β +
1
2

∂µϕ
α

∂
µ

ϕ
β

∂νϕ
γ
∂

ν
ϕ

δ
4

∑
i=1

`iT
(i)

αβγδ

]
(2.29)

and the sum stops at i = 3 for N = 3 and i = 2 for N = 2. As in (2.19), it will be convenient to use
instead of the couplings `i the combinations fi = λ`i.

We do not give here the beta functions for general N, which are very long. Suffice it to say
that one finds no nontrivial FP for N > 3 [22, 12]. The only nontrivial cases to discuss are N = 3,2,
where only three, respectively two, of the couplings fi are independent. In the case N = 3 one can
eliminate f4 in favor of the other three couplings. Then one can obtain

β f1 =
λ

768π2

[
464 f 2

1 +64 f 2
2 +180 f 2

3 +320 f1 f2−96 f1 f3 +72 f1−108 f3 +9
]
,

β f2 =
λ

1536π2 ×[
368 f 2

1 +3520 f 2
2 +180 f 2

3 +2624 f1 f2 +480 f1 f3 +1728 f2 f3−144 f1−432 f2−108 f3 +9
]
,

β f3 =
λ

32π2

[
2 f 2

3 +16 f1 f3 +8 f2 f3−4 f1−4 f2−3 f3
]
.

This system of the fi’s has two FPs at

FP1 : f1∗ =−0.154 ; f2∗ = 0.050 ; f3∗ = 0.085 ;

FP2 : f1∗ =−0.108 ; f2∗ = 0.043 ; f3∗ = 0.061 .

The attractivity properties in the space spanned by the fi’s is given, as in the spherical case, by
studying the modified flow with parameter t̃. The critical exponents at FP1 are: 0.0303 with eigen-
vector (0.411, 0.630, 0.658); 0.0123 with eigenvector (0.515, -0.570, 0.640); 0.00289 with eigen-
vector (0.869, -0.148, -0.473), whereas at FP2 they are: 0.0280 with eigenvector (0.366, 0.618,
0.695); 0.0108 with eigenvector (0.513, -0.575, 0.638) and -0.00293 with eigenvector (0.887, -
0.125, -0.445). Therefore FP1 is attractive in all three directions, while FP2 is attractive in two
directions. For each of these two FP’s, the beta function of g̃ has two FP’s: the trivial FP, which
has always critical exponents -2, and a nontrivial FP, which is located at g̃ = 11.17 for NGFP1 or
11.50 for NGFP2, and having critical exponent 2 in both cases.

Finally, the case N = 2 is identical to the S3 model that was already discussed above.

2.4 Coupling to gauge fields

We will consider now a chiral SU(N) NLSM when only SU(N)L is gauged, and call Aµ the
corresponding gauge field. The covariant derivative and the gauge field strength are defined to be:

Dµϕ
α = ∂µϕ

α +Aa
µRα

a (ϕ) Fa
µν = ∂µAa

ν −∂νAa
µ + fbc

aAb
µAc

ν . (2.30)

Restricting our attention to terms containing two derivatives of the fields, the Euclidean action of
this gauged NLSM, in d dimensions, reads

S =
1

2γ2

∫
ddxhαβ Dµϕ

αDµ
ϕ

β +
1

4g2

∫
ddxFa

µνFµν
a , (2.31)
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where γ and g are couplings. We choose the background gauge fixing term:

Sg f =
1

2αg2

∫
ddxδabχ

a
χ

b with χ
a = Dµaa

µ +β
g2

γ2 Ra
αξ

α , (2.32)

where D is the background covariant derivative, α and β are parameters and aa
µ is the quantum

fluctuation of the gauge field around the background. The case α = β is a “background Rξ -gauge”.
Moreover, for α = β = 1 we have the generalization of the ’t Hooft-Feynman gauge fixing. The
ghost action is Sgh = SghF +SghI , where

SghF =
∫

ddx c̄a
(
−D2 +β

g2

γ2

)
ca (2.33)

is the free ghost action and SghI are interaction terms.
Let us now choose α = 1. The beta functions for 1/g2 and 1/γ2 are:

d
dt

1
g2 = − 1

(4π)d/2

N
3

1
Γ
(d

2 −1
) kd−4

1+ g̃2

γ̃2

d− 7
4
+

ηξ

4 +dηa

d−2
− 192

d(d−2)
1+ ηa

d+2

(1+ g̃2

γ̃2 )2

 , (2.34)

d
dt

1
γ2 =

1
(4π)d/2

N
2

1
Γ
(d

2 +1
) kd−2

(1+ g̃2

γ̃2 )2

1+
ηξ

d +2
+

4g̃2/γ̃2

1+ g̃2

γ̃2

(
2+

ηξ +ηa

d +2

) . (2.35)

Here ηξ = −2∂t logγ and ηa = −2∂t logg. Omitting the terms containing them in the right hand
sides one obtains the one loop beta functions. In general, expressing ηξ and ηa one can solve these
algebraic equations and obtain the beta functions proper of the (generally) dimensionful couplings.
The corresponding beta functions of the dimensionless combinations γ̃2 = γ2kd−2 and g̃2 = g2kd−4

can be obtained by simple algebra.
Note the appearance of the factors 1/(1+ g̃2/γ̃2) which represent threshold effects: for k2�

g2/γ2 these factors tend to one, whereas for k2� g2/γ2 the denominators become large and sup-
press the running, reflecting the decoupling of the corresponding massive field modes. The flow
equations in general Rξ -gauge have been given in [13].

Let us now restrict our attention to the case d = 4. If one considers the regime k2 � g2/γ2,
where thresholds can be neglected, the beta function of g is given by:

dg
dt

=−1
2

A2g3 ; (2.36)

with a universal coefficient A2 =
N

(4π)2
29
4 . Note that 29/4 differs from the coefficient 22/3 of the

pure gauge theory by the Goldstone boson contribution−1/12. This contribution is quite small and
does not spoil the asymptotic freedom of g. On the other hand, in the same limit the beta function
of γ̃ becomes

dγ̃

dt
= γ̃− 1

2
A1γ̃

3 (2.37)

with A1 =
1

(4π)2
N
4 . This beta function has a nontrivial FP at γ̃∗ =

√
2/A1.

In d > 4, due to the nontrivial dimensionality of the gauge coupling, one finds also a nontrivial
FP for the gauge coupling. One would expect it to be there also in the presence of the Goldstone
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bosons. At one loop and in the limit k2� g2/γ2, there is a FP at

γ̃∗ =

√
d−2

A1
; g̃∗ =

√
d−4

A2
. (2.38)

For a detailed discussion we refer the reader to [23]. We conclude by mentioning that gauging also a
U(1) subgroup of SU(N)R does not change the results in a very significant way. This more realistic
model has been discussed in [14], where it has been shown to be compatible with electroweak
precision data.

2.5 Coupling to fermions

We continue with the chiral SU(N) model. It will be convenient to use as a variable the matrix
U = exp(iγπaTa) where πa are the pion fields. The Lagrangian (2.8) can be rewritten as

Lσ =
1
γ2 Tr

(
U†

∂µUU†
∂

µU
)
. (2.39)

We couple the Goldstone bosons to left- and right-handed fermions ψ ia
L and ψ ia

R carrying the
fundamental representation of SU(N)L and SU(N)R respectively (corresponding to the indices
i = 1, . . . ,N), and also the fundamental representation of a color group SU(Nc) (corresponding
to the indices a = 1, . . . ,Nc). In the real world the latter group is gauged; here we merely retain it
as a global symmetry to count fermionic states. We couple the fermions in a chiral invariant way
to the U field by adding to the NLSM lagrangian the fermion kinetic and the Yukawa terms:

Lψ2 = ψ̄Liγµ
∂µψL + ψ̄Riγµ

∂µψR−
2h
f

(
ψ̄

ia
L U i j

ψ
ja

R +h.c.
)
, (2.40)

where we have explicitly written out the group indices in the interaction.
Using a sharp cutoff regularization, one gets the following one-loop RG equations [15]:

dγ̃

dt
= γ̃− N

64π2 γ̃
3 +

Nc

4π2 h2
γ̃ , (2.41)

dh
dt

=
1

16π2

(
4Nc−2

N2−1
N

)
h3 +

1
64π2

N2−2
N

hγ̃
2 . (2.42)

These β -functions have been obtained by assuming that the mass of the fermions is much smaller
than the cut-off scale; this sets a condition k > h/γ for their validity.

The system of equations (2.41)-(2.42) admits a number of possible UV FPs. There is a formal
Gaussian FP γ̃ = 0, h = 0 which is outside the domain of our approximation. In the following we
study only RG trajectories for energy scales larger than 1/γ , which corresponds to γ̃ > 1. There is
also a nontrivial FP at h∗ = 0, γ̃∗ = 8π/

√
N for which γ̃ is a relevant (UV attractive) direction and h

is marginally irrelevant. Requiring that it is reached in the UV implies the triviality of the Yukawa
coupling at all scales. We therefore reject this choice as uninteresting.

A physically interesting trajectory requires nonvanishing h and γ̃ . If h is treated as a t-
independent constant, the β -function for γ̃ has a zero at γ̃∗ = 4

√
(4π2 +Nch2)/N, which is a

deformation of the one appearing in the pure bosonic model. The existence of a nontrivial FP
for the coupled system thus hinges on the existence of a nontrivial zero in the β -function of h. This
requires that the first term in the right hand side of eq. (2.42) be negative, which is true for N > 2Nc.
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Unfortunately this condition is not satisfied for the phenomenologically most important case
N = 2, Nc = 3. In this case the first term on the right hand side of eq. (2.41) is initially dominant,
leading to linear growth of γ̃ . The second term then grows in absolute value and at some point
nearly balances the first one, leading to an approximate FP behavior in some range of energies.
Eventually h, whose β -function is everywhere positive, becomes large and the third term domi-
nates leading to a Landau pole. These trajectories are not asymptotically safe. The scale at which
destabilization occurs is very sensitive to the initial conditions and for the Yukawa couplings cor-
responding to light fermions no destabilization takes place up to very large energies. We conclude
that this model is not AS in the case N = 2, Nc = 3, in the one loop approximation. For it to be AS,
either the one loop approximation must break down, or else new physical effects must enter in the
fermion sector at some energy scale.

It is interesting to compare this behavior to similar models. In the linear sigma model and
therefore also in the SM the quadratically divergent term proportional to γ̃2h is absent: it is can-
celed by diagrams containing loops of the Higgs field. In this case the Yukawa coupling is per-
turbative up to very high scales [24]. A study of the linear version of the model in the context of
functional renormalization has been presented in [25] for QCD. Another strictly related model is
the linear sigma model coupled to one right-handed and NL left-handed fermions, studied in [26].
Our Goldstone modes are contained in their scalar sector, with the VEV υ = 2/γ corresponding to
the minimum of the scalar potential. There it was found that the scalar potential and the Yukawa
coupling admit a FP for 1 ≤ NL ≤ 57. The results quoted above differ due both to the different
fermion content and to the non-linear boson-fermion coupling. For realistic matter content the situ-
ation could be improved by adding four-point fermion interactions [27, 28, 15]. For related results
see also [29].

3. Classicalization

In this section we will consider again derivatively coupled theories which are employed to
describe the low energy dynamics of Goldstone bosons and we examine the classical propagation
of waves [5]. We will follow the arguments of [10] but generalize them to arbitrary dimensions.
Since we want to disentangle classical from quantum effects, throughout this discussion we will
not choose units such that h̄ = 1. Thus everything will have dimensions of powers of length and
mass.

3.1 Goldstone boson scattering

We begin by considering a model of a single Goldstone boson with higher derivative interac-
tion lagrangian of the form:

L =
1
2
(∂φ)2 +

gm−1
4
2m

(
(∂φ)2

)m
, (3.1)

for some integer m > 1. The field has canonical dimension M1/2L(3−d)/2 and the coupling g4 has
dimension Ld−1M−1. It defines a characteristic length scale L∗ = (g4h̄)1/d and a characteristic
energy scale E∗ = h̄/L∗ = (h̄d−1/g4)

1/d . The equation of motion coming from this lagrangian is

�φ +gm−1
4 ∂

µ

[
∂µφ

(
(∂φ)2)m−1

]
= 0 . (3.2)
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Assuming that free asymptotic states exist, the solution of the nonlinear equation (3.2) can be
constructed perturbatively. We consider solutions with (d − 2)-spherical symmetry. The initial
ingoing unperturbed free wave, solving the equation �φ0 = 0, has the form

φ0(t,r) =
√

h̄ψ(ω(t + r))r(d−4)/2
0 /rd−3 , (3.3)

where ψ(z) = Asin(z)+Bcos(z) is dimensionless. Notice that in dimensions d 6= 4 the canonical
dimension of the field is not equal to the power of r that is needed to solve the free Laplace equa-
tion, hence the appearance of the arbitrary radius r0, which should be seen as a free parameter of the
unperturbed solution. We will assume that the wavelength ω−1 is small compared to the radius r,
so that we can think of the solution as a harmonic function with a slowly-varying r-dependent am-
plitude. The first order perturbation φ1 must satisfy �φ1 =−gm−1

4 ∂ µ

[
∂µφ0

(
(∂φ0)

2
)m−1

]
. Making

the ansatz
φ1(t,r) =

√
h̄η(ω(t + r))r(d−4)/2

0 f (r) (3.4)

we find the following equation

−
2ω
√

h̄r(d−4)/2
0

r(d−2)/2 η
′
(

f r(d−2)/2
)′

= −2m−1(m−1)gm−1
4 ω

mh̄(2m−1)/2(d−3)m−1×

r(d−4)(2m−1)/2
0

r(2d−5)m+3−d
ψ

m−1
ψ
′m−2 [(3d−8)ψ ′2 +(d−3)ψψ

′′] ,(3.5)

where a prime denotes derivative of a function with respect to its argument.
The solution of this equation for d 6= 3 can be expressed as

φ1 =
2m−1(m−1)(d−3)m−1gm−1

4 Em−1
√

h̄
2(5−2d)m+3d−6

r(d−4)(m−1/2)
0

r(2d−5)m+2−d
η(ω(t + r)) (3.6)

where E = h̄ω and η(z) =
∫ z

ψm−1ψ ′m−2
[
(d−3)ψψ ′′+(3d−8)ψ ′2

]
dz′. The function η is again

dimensionless and periodic with period 2π , which means that the scattered wave has the same
frequency as the incoming one. Since η ∼ ψ ∼ 1, the ratio of the amplitudes |φ1/φ0| is

| f (r)rd−3| ' 2m−1(m−1)(d−3)m−1

2(5−2d)m+3d−6
gm−1

4 Em−1r(d−4)(m−1)
0

r(2d−5)(m−1) '
(r∗

r

)(2d−5)(m−1)
, (3.7)

where in the last step we defined the “classicalization radius”

r∗ =
2d−5
√

2|d−3|g4rd−4
0 E . (3.8)

Notice that it does not depend on m.
The meaning of this radius can be understood as follows. At low energy (i.e. E � E∗) the

theory can be treated as an effective field theory. Due to the uncertainty relations, an incoming wave
with energy E can only probe distances of order h̄/E. When one gets close to the characteristic
energy scale E∗ one would normally expect the effective field theory to break down. What one sees
here is that the scattered wave becomes significant at radius of order r∗, and therefore cannot resolve
smaller distances. Since r∗ grows with energy, there is a turnover energy where this bound becomes
stronger than the one set by the uncertainty principle. Let us call Eopt this energy and Lopt = h̄/Eopt
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the corresponding resolving power. At E > Eopt the resolving power decreases with energy. This
is called “classicalization”. In this regime the scattering is dominated by the production of classical
states with high occupation number, which will typically decay into many low energy particles
[9]. The hard scattering of few particles into few particles will be suppressed and unitarity will be
restored [5]. In this way classicalization may provide a form of UV completion of an effective field
theory that does not necessitate the introduction of new weakly coupled degrees of freedom.

Details of this process depend on the dimension. First we observe that it can only occur when
d > 5/2. For lower dimensions, the first perturbation grows with radius faster than the unperturbed
wave, in contrast to our initial assumptions. In fact, the initial free wave solution doesn’t decrease
with radius. In particular, classicalization cannot take place in d = 2.

From equation (3.3) one sees that the case d = 3 requires a separate treatment. This is be-
cause in three dimensions a free wave has a logarithmic dependence on radius φ0 =

√
h̄ψ(ω(t +

r))r−1/2
0 log(r/r1), where r1 is another free parameter. Solution of the appropriate equations of mo-

tion in this case can be expressed as a digamma function, having log(r/r1) as one of its arguments.
The ratio of the first perturbation to the initial logarithmic solution increases when the center of the
scattering is approached, and becomes large, actually blowing up at r = r1. Note that this sets a
bound on the resolving power which is independent of energy. One may call this a weak form of
classicalization.

For dimensions d ≥ 4 all the formulas written above hold. Note however that d = 4 is special
in that the classicalization radius is independent of r0. For d > 4 the scale Eopt decreases when r0

increases, and Lopt increases when r0 increases. If we set r0 = L∗, the characteristic length scale
of the theory, the classicalization radius is r2d−5

∗ = 2(d−3)L2d−5
∗ L∗ω and one finds Eopt ≈ E∗ and

Lopt ≈ L∗. In four dimensions these relations are always true, because r0 does not appear in the
formula for the classicalization radius.

3.2 Nonlinear sigma model with 2 derivatives

Generic theories of Goldstone bosons have interactions that can be seen geometrically as aris-
ing from the curvature of the target space. In the preceding subsection we have considered for
simplicity a single Goldstone boson. In this case the target space is one-dimensional, and since
a one-dimensional space is flat the interactions we have considered were of a non-geometrical
nature. They necessarily involved higher derivative terms. We are now going to consider more
general theories where the target space is curved. There are then interaction terms containing just
two derivatives. This is the type of terms we consider in this subsection. In the next we will
consider terms with both two- and four-derivative interactions.

For definiteness we consider nonlinear sigma models with values in maximally symmetric
spaces: for positive curvature the target space is a sphere Sn, for negative curvature a hyperboloid.
We adopt a specific coordinate system in target space such that the lagrangian has the form

L =
1
2

[
(∂
−→
φ )2± (

−→
φ ·∂−→φ )2

f 2
φ
∓−→φ 2

]
(3.9)

Here
−→
φ = (φ 1, . . . ,φ n) are canonically normalized fields of dimension (d−2)/2 and fφ is a cou-

pling with the same dimension as the field. If we define the dimensionless fields ϕa = φ a/ fφ , the
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action takes the form (2.8) with γ = 1/ fφ . The two signs in (3.9) correspond to the sign of the
curvature. The equations of motion are

�φ
a± φ a ∂ (

−→
φ ·∂−→φ )

f 2
φ
∓−→φ 2

± φ a (
−→
φ ·∂−→φ )2

( f 2
φ
∓−→φ 2)2

= 0 (3.10)

As in the preceding section, we are going to look for perturbative solution in the form
−→
φ =

−→
φ 0 +−→

φ 1 + . . .. We will study the extent to which
−→
φ 1 can be treated as a small perturbation.

Without much loss of generality we will work with a general spherically symmetric incoming
free wave

φ
a
0 (t,r) =

√
h̄ψa(ω(t + r))r(d−4)/2

0 /rd−3 , (3.11)

where all components have the same frequency ω , the same arbitrary parameter r0 and we assume
ωr� 1, as before. The first order perturbation will be written in the form φ a

1 (r, t) =
√

h̄ηa(ω(t +
r))r(d−4)/2

0 f (r). To leading order in 1/rω we find

−
2ω
√

h̄r(d−4)/2
0

r(d−2)/2 ( f r(d−2)/2)′η ′a =∓
2ω h̄3/2r3(d−4)/2

0 (d−3)
f 2
φ

r3d−8

ψa~ψ~ψ ′(
1∓ h̄~ψ2rd−4

0
f 2
φ

r2(d−3)

)2 . (3.12)

We note that in contrast to equation (3.5) the ω-dependence cancels out. Instead, the behavior
of the solution is governed by the new dimensionless parameter κ = fφ rd−3/(

√
h̄r(d−4)/2

0 ). As long
as κ � 1, (which is naturally expected for the perturbations far away from the center in d > 3) the
denominator in the r.h.s. can be approximated by one and the equation can be solved by separation
of variables. Now we can notice that after the separation the radial equation for f is the same for
all components of φ a

1 , therefore the choice f a(r) = f (r) is justified. The solution can be written in
the form

φ
a
1 =∓

√
h̄

2(d−3)h̄r3(d−4)/2
0

(5d−16) f 2
φ

r3d−9 ηa(ω(t + r)) , (3.13)

where ηa(z) =
∫ z

ψa−→ψ−→ψ ′dz′.
In contrast to the case of the preceding section, the amplitudes of these oscillations of the scat-

tered wave are independent of ω . For d > 3 the ratio between the amplitude of the first perturbation
and the incoming wave is

∣∣ f (r)rd−3∣∣= 2(d−3)h̄rd−4
0

(5d−16) f 2
φ

r2(d−3) =
(r∗

r

)2(d−3)
, (3.14)

with the classicalization radius

r∗ '

(√
h̄r(d−4)/2

0
fφ

) 1
d−3

(3.15)

independent on the frequency or energy of the incoming wave packet. Again, incoming waves with
arbitrarily high frequency do not probe distances shorter than r∗, but in contrast to the preceding
case r∗ does not increase with frequency, so we have a weaker form of classicalization.

Let us now consider the effect of curvature, which (aside from the immaterial overall sign) is
contained in the denominator of the r.h.s. of (3.12). We observe that since 0≤ ~ψ2 is of order one,
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the effect of the denominator is to enhance the amplitude of the scattered wave for positive curva-
ture (upper sign) and to decrease it for negative curvature (lower sign). In fact, with the positive
curvature the amplitude reaches a pole for some r ≈ r∗, strengthening the case for classicalization
of the preceding analysis. In the case of negative curvature, the arguments for classicalization are
considerably weaker.

Again the case d ≤ 3 is special. Far from the origin we expect that κ � 1 and in equation
(3.12) we can neglect the unity in the denominator in the r.h.s. and the equations can be solved by
separation of variables. The ratio |φ1/φ0| is∣∣ f (r)rd−3∣∣= 2

3−d
4−d

= const (3.16)

for d < 3 and ∣∣∣∣ f (r)
log(r/r1)

∣∣∣∣= 2
log(r/r1)

(3.17)

for d = 3. We see that for d < 3 classicalization doesn’t occur in these NLSM, because the ratio
of the first perturbation to initial free wave solution is in the first approximation constant. This
reflects the fact, that the free solution does not vanish at spatial infinity. In the special case of three
spacetime dimensions this ratio acquires a value of order one for r ≈ r1 and this could be taken
as a classicalization radius r∗. However here the r−dependence is not a power law, like in the all
previously considered examples, but logarithmic.

3.3 Nonlinear sigma model with 2 and 4 derivatives

In a maximally symmetric NLSM a general four derivative interaction has the form

L
(4)

int = g4(`1habhcd + `2hachbd)∂µφ
a
∂

µ
φ

b
∂νφ

c
∂

ν
φ

d , (3.18)

where `1 and `2 are dimensionless couplings of order one and g4 has dimension Ld−1M−1. We will
not be interested in the detailed dependence of results on `1 and `2. The overall coupling g4 can be
treated as an independent coupling. However, in effective field theory one expects the coefficients
of operators with different number of derivatives to be all proportional to powers of the same scale
fφ in natural units. Then one may identify g4 = h̄2/(d−2) f−(2d)/(d−2)

φ
, where fφ is as in the previous

section. We will discuss both points of view below.
When this interaction is added to the two-derivative Lagrangian (3.9), the background solution

will still have the form (3.11) and we are led to the following equation for the first perturbation:

�φ
a
1 =∓

2ω h̄3/2r3(d−4)/2
0 (d−3)
f 2
φ

r3d−8

ψa~ψ~ψ ′(
1∓ h̄~ψ2rd−4

0
f 2
φ

r2(d−3)

)2 (3.19)

−
4ω2h̄3/2g4r3(d−4)/2

0 (d−3)
r3d−7

[
(`1 +3`2)ψa~ψ

′2 +(3`1 +5`2)ψ
′
a~ψ
′~ψ +(`1 + `2)ψa~ψ

′′~ψ + `2ψ
′′
a ~ψ

2]
One cannot solve this equation by separation of variables unless one of the two terms can be

neglected. However, we can get a reasonable estimate of the size of the terms involved by simply
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setting to one all the factors η in the l.h.s. and the terms involving ψ in the r.h.s.. The resulting
equation for f (r) can then be easily integrated and we find

| f (r)rd−3| = ∓
h̄rd−4

0

f 2
φ

r2(d−3) −
Eg4rd−4

0
r2d−5 −

h̄2r2(d−4)
0

f 4
φ

r4(d−3) + . . . (3.20)

=∓
(r2∗

r

)2(d−3)
−
(r4∗

r

)2d−5
−
(r2∗

r

)4(d−3)
+ . . . (3.21)

where the first and third term come from the expansion of the two-derivative term and the second
comes from the four-derivative term. We have defined the classicalization radii

r2∗ =

(
h̄
f 2
φ

) 1
d−2

; r4∗ =
(

Eg4rd−4
0

) 1
2d−5

=

Eh̄
2

d−2 rd−4
0

f
2d

d−2
φ

 1
2d−5

. (3.22)

The radius r4∗ has been written in two possible equivalent ways, the first in terms of the generic
parameter g4 defined in (3.18), the second when g4 is expressed in terms of fφ . All the terms in
the expansion of the two-derivative term correspond to the same classicalization radius r2∗. These

terms are dominant for E < d−2
√

h̄d−3 f 2
φ

. For higher energy the four-derivative terms dominate
and the system behaves like several copies of the single Goldstone boson model of section 3.1, in
the special case with 2m = 4 derivatives. In fact, the formula for r4∗ agrees with (3.8). Strong
classicalization occurs for ω > r−1

4∗ regardless of the sign of the curvature. We see here that adding
higher derivatives for d ≤ 3 brings us back to the case analyzed in section 3.1 with the same
conclusions, namely that when d = 2 classicalization doesn’t occur and for d = 3 we have its weak
form with r∗ = r1.

4. Discussion

Goldstone bosons are ubiquitous in low energy effective field theories and in particular the
chiral models have important phenomenological applications both to strong interactions (“chiral
perturbation theory” [30]). and electroweak interactions (“electroweak chiral perturbation theory”
[31]). The two implementation differ mainly in their characteristic energy scale, which is fφ = 93
MeV for the low energy QCD and fφ = 246 GeV for the electroweak case. These theories are
generally assumed to break down at momenta of order 4π fφ , which is where perturbative unitarity
fails. Beyond this energy “new physics”, generally in the form of new weakly coupled degrees of
freedom, is expected to manifest itself. Interestingly, already in perturbation theory there are signs
that in some cases the effective field theory can self-unitarize even in the absence of new weakly
coupled degrees of freedom [32]. This would extend the applicability of the effective field theory
to somewhat higher energies than generally believed. If either asymptotic safety or classicalization
or both occur in the chiral NLSM, the domain of applicability of these theories could extend much
further, possibly up to arbitrarily high energy. In practice the first and most important sign would
be the unitarization of the scattering amplitudes. A plausibility argument for this has already been
mentioned in the introduction for the two-boson to two-boson scattering. A proper discussion of
this issue requires a detailed calculation of the scattering amplitude as a function of the external
momenta, which is not yet available.
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In the meantime, we can compare and contrast the results of section 2, for the existence of
a nontrivial FP, to those of section 3, for classicalization, with the aim of understanding whether
there could be some relation between these apparently very different phenomena. We begin by the
observation that in a general NLSM there can be several classes of interactions: those that have
more fields than derivatives, those that have equal number of fields and derivatives and those that
have more derivatives than fields. Interactions that are due to the curvature of the target space
metric, such as arise from the expansion of the metric in (2.8), belong to the first class. We have
also considered here interaction monomials where all fields appear under exactly one derivative;
they belong to the second class. For short we will refer to the former as curvature interactions and
the latter as higher derivative interactions. We have not considered in this paper interactions with
more derivatives than fields, nor more generally interactions with two or more derivatives acting
on a single field.

The first case to discuss is that of a single Goldstone boson. A one dimensional space cannot
have intrinsic curvature, so any interaction must necessarily contain higher derivatives. In dimen-
sion d ≥ 4 this model exhibits a strong form of classicalization. A detailed analysis of the RG flow
of this theory, containing arbitrarily high powers of derivatives, is not yet available, but it is not
expected to possess a nontrivial FP. For example, neglecting possible effects due to the topology of
the target space, we can specialize the results of section 2.3.1 to the case n = 1; then we find no FP.
Classicalization of this model seems unlikely to have to do with asymptotic safety.

Consider now general models with several Goldstone bosons parametrizing a curved target
space. In two spacetime dimensions the NLSM is asymptotically free and a nontrivial FP appears
as soon as one goes to 2+ε dimensions [19]. Its existence in three dimensions is well known [20],
and it is widely believed to be in the same universality class of the Wilson-Fisher FP. One can thus
study its properties also in the linear realization of the theory. In four dimension the existence of a
FP is much less certain. The calculations presented in section 2 show that if one restricts oneself
to truncations with two derivatives, positive scalar curvature is sufficient to give a FP, whereas
addition of four derivative terms imposes tighter restrictions.

Let us now see, how this compares to classicalization. In two dimensions classicalization does
not occur in any of the models considered. This seems to agree with the absence of a nontrivial
FP there. In three dimensions a weak (logarithmic) form of classicalization takes place. However,
the classicalization radius cannot be expressed as a function of the couplings: it is instead a free
parameter of the unperturbed solution of the wave equations. The general formulas that we have
given in section 3 hold in four and higher dimensions. We find that curvature interactions, as
already present in the two-derivative NLSM, give rise to a weak form of classicalization, whose
classicalization radius contains h̄. One may therefore reasonably argue that this particular form
of classicalization is really a quantum phenomenon and it may be an alternative way of looking at
asymptotic safety. Another piece of evidence in favor of this interpretation is that positive curvature
strengthens the case for classicalization, while negative curvature weakens it. This is reminiscent
of the fact that a nontrivial FP requires positive curvature.

Interactions due to higher derivative terms, whether including the effect of curvature or not,
give instead rise to a strong form of classicalization, in the sense that the classicalization radius
grows with some power of the energy. If one uses the parameterization of the action in term of
the coupling g4, the classicalization radius is independent of h̄, justifying its name. The available
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evidence therefore suggests that curvature interactions give rise to a weak form of classicalization
that may be a manifestation of a nontrivial FP, whereas higher derivative interactions give a strong
form of classicalization, which seems to be a different phenomenon.

This interpretation, though reasonable, is not the only possible one. Different interpretations
could arise from different ways of defining the classcial limit of the theory. As recently discussed in
[33], this limit is ambiguous even in the familiar case of QED. For example, one may argue whether
it is E or ω that is being kept fixed in the limit h̄→ 0. In the models considered here, another choice
is whether g4 or fφ is kept fixed. In the preceding discussion we have implicitly assumed that E
and g4 were kept constant and this implied that the classicalization radius r4∗ stays constant in the
limit. However, we may define the limit assuming that either ω or fφ or both are held fixed; then,
additional factors of h̄ appear in such a way that r4∗→ 0 in the limit h̄→ 0 (see equation (3.22)).
For example, in chiral perturbation theory in four dimensions, if one starts from the two-derivative
action (2.8) the four-derivative interactions are induced by quantum loops with a logarithmically
divergent coefficient proportional to h̄γ4 = h̄ f−4

φ
[31]. Then, the interactions (3.18) would not be

seen as part of the classical (bare) action of the theory but rather of its quantum effective action.
The analysis of section 3 would still apply but it would not be appropriate to view it as a purely
classical phenomenon. The plan to return to this point in the future.

In concluding we must stress once more that, as is usually the case with nonperturbative prob-
lems, our whole discussion is based on partial results and that all its conclusions are tentative.
Especially if one has in mind realistic applications a purely bosonic model may be misleading.
For example, Yukawa interactions with too many fermions seem to destroy the FP; although four-
fermion interactions improve the picture [27, 28, 15] it is not entirely clear that this is a viable
scenario. As a further caveat, even assuming that a FP with the correct properties exists, the ef-
fective field theory may just happen not to lie on a renormalizable trajectory, in which case it will
break down at some scale. In these cases one may still hope that the RG trajectory passes near a
FP, or more generally in a region where the beta functions are small. This would slow down the
flow in such a way that the breakdown of the theory occurs at a scale that is higher than one would
normally guess [34].
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