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1. Introduction

String theory provides the framework for a unified description of all forces including gravity.
However, in four dimensions, the theory possesses a huge number of vacua, the so called ‘land-
scape’ [1]. In the limit of low energies, a subset of these vacua is expected to lead to some effective
field theory that reproduces the basic phenomenological features of the Standard Model of gauge
interactions. In the absence of a stringy vacuum selection mechanism, a lot of effort has been
put into the study of general properties and classification of these vacua in various formulations
[2, 3, 4, 5, 6].

In reference [6] a method has been developed that allows for a detailed analysis of a big num-
ber of superstring vacua in the Free Fermionic Formulation [7] of the weakly coupled heterotic
superstring. This approach is guided by low energy phenomenology starting from the fact that the
Minimal Supersymmetric Standard Model (MSSM) fermion generations together with the right-
handed neutrino, fit perfectly into the spinorial representations of an SO(10) gauge factor, while
the vectorials of the same group can accommodate the MSSM breaking Higgs particles. The au-
thors have identified an interesting subclass of superstring vacua with SO(10) gauge symmetry and
derived analytic formulae regarding the number of spinorial/antispinorial and vectorial representa-
tions. Furthermore, the SO(10) gauge symmetry can be broken at the string level to a subgroup of
SO(10) that includes the MSSM. The simplest choice, from the technical point of view, is the Pati-
Salam (PS) gauge symmetry [8, 9]. The main phenomenological characteristics of each model,
as the number of fermion generations, the number of candidate Higgs doublets and the number
of exotic matter representations can also be calculated analytically. Computer search is then used
to classify the PS vacua and a series of phenomenological criteria can be imposed on the spec-
trum in order to identify models compatible with the MSSM al low energies. Typical criteria are:
three fermion generations, the existence of Pati–Salam breaking Higgs multiplets, the existence of
SU(2)L Higgs doublets, the absence of exotics.

Implementation of the method provides some interesting results in the case of the Pati–Salam
supertring vacua, comprising approximately 1015 models [10]. A big number of models, of the
order of 109, satisfy all phenomenological constraints, including the absence of massless exotic
fractionally charged matter. This is a rather surprising result given the fact that the existence of
fractional charged exotics is a generic property of Standard Model string vacua [11]. Actually
the “exophobic” models presented in [12] where, to our knowledge, the first semi-realistic models
where all exotics are massive at the string level.

Reducing further the set of acceptable models, requires extra phenomenological constraints
involving couplings. For example, an important selection criterion is the existence of the top quark
mass coupling at the tri-level superpotential. Effective implementation of this constraint, involves
the analytic evaluation of the associated correlation function, for a generic model in the class under
consideration and significantly reduces the number of acceptable models to a few million [13].
Removing redundancies, that are quite generic in these constructions, we end up with a few hundred
distinct models.

Our classification method has been particularly fruitful in identifying “islands” of phenomeno-
logically attractive models in the heterotic “landscape”. Nevertheless, a much more elaborate pro-
cedure is required before deciding whether a model could be qualified as (semi)realistic and a lot of
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things could go wrong at the various stages of the analysis. A specific model, that meets all criteria,
has been constructed and analysed in [14], explicitly demonstrating that models in this class are of
particular phenomenological interest.

This article is based on references [6, 10, 12, 13, 14]. In Section 2 we review briefly the
classification method and the set of phenomenological criteria for model selection. In Section 3 we
review the analysis of an exemplary model.

2. Classification method and Phenomenological constraints

A heterotic string model in the Free Fermionic Formulation [7] is defined in terms of a set of
n basis vectors

B = {v1,v2, . . . ,vn} (2.1)

and a set of n(n−1)/2 phases, associated by the generalised GSO projections (GGSO), denoted
by

ci j = c
[

vi

v j

]
, i > j = 1, . . . ,n , (2.2)

subject to some constraints that guarantee modular invariance. Each basis vector consists of a set of
phases vi = {ai( f1),ai( f2), . . .} that describe the transformation properties of fermionised degrees
of freedom. In the light cone gauge these are : 20 left fermions

{
ψµ ,χ1,...,6, y1,...,6, ω1,...,6

}
and the

44 right ones
{

ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, ϕ̄ 1,...,8
}

.
In [10] a phenomenologically interesting class of models, with Pati-Salam gauge symmetry,

has been considered. This class is generated by the following set of 13 real basis vectors

v1 = 1 = {ψµ , χ1,...,6,y1,...,6,ω1,...,6|ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, ϕ̄ 1,...,8}
v2 = S = {ψµ ,χ1,...,6}

shifts : v2+i = ei = {yi,ω i|ȳi, ω̄ i}, i = 1, . . . ,6 (2.3)

Z2 twist : v9 = b1 = {χ34,χ56,y34,y56|ȳ34, ȳ56, η̄1, ψ̄1,...,5}
Z2 twist : v10 = b2 = {χ12,χ56,y12,y56|ȳ12, ȳ56, η̄2, ψ̄1,...,5}

v11 = z1 = {ϕ̄ 1,...,4}
v12 = z2 = {ϕ̄ 5,...,8}
v13 = α = {ϕ̄ 4,5ϕ̄ 1,2}

Vector v1 = 1 is necessary for consistency, v2 = S is required by N = 1 space-time supersymmetry,
v9 = b1,v10 = b2 correspond to the Z2 ×Z2 ordifold twists and v3, . . . ,v8 are orbifold shifts. Vec-
tors v1, . . . ,v12 give rise to SO(10)×U(1)3 ×SO(8)2 gauge symmetry while b13 breaks the gauge
symmetry to

G = SU(4)×SU(2)L ×SU(2)R ×U(1)3 ×SU(2)4 ×SO(8) (2.4)

In the following we will interpret SU(4)× SU(2)L × SU(2)R ×U(1)3 as the “observable” and
×SU(2)4 × SO(8) as the “hidden” sector of the theory. In this class we have 13(13− 1)/2 = 78
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independent real GGSO coefficients c
[vi

vi

]
=±1 , i > j = 1, . . . ,13. Restricting to N = 1 supersym-

metric models and eliminating some obvious redundancies we are left with 51 independent GGSO
phases. Each coefficient can take values ±1 and a complete set of these phases defines a model,
therefore this class a priory comprises 251 ∼ 1015 configurations. An advantage of this construc-
tion, at the technical level, is that the gauge group is determined primarily from the basis vectors
and thus is fixed, while certain enhancements that appear for particular choices of the GGSO phases
can be easily eliminated.

Another advantage of this formulation is the separation of matter spectrum in different sectors,
controllable by GGSO projections:

• States belonging to SO(10) spinorials not charged under SU(2)4 × SO(8). These belong to
16,16, truncated by the GGSO projections, SO(10)⊃ SU(4)×SU(2)L ×SU(2)R,

16 = (4,2,1)+(4̄,1,2)

16 = (4̄,2,1)+(4,1,2)

They are candidates for matter fermion generations and arise only from the twisted sectors

B1
p1q1r1s1

= S+b1 + p1 e3 +q1 e4 + r1 e5 + s1 e6

=
{

ψµ ,x12,(y3 ȳ3)
1−p1 ,(y4 ȳ4)

1−q1 ,(y5 ȳ5)
1−r1 ,(y6 ȳ6)

1−s1 ,

(ω3 ω̄3)
p1 ,(ω4 ω̄4)

q1 ,(ω5 ω̄5)
r1 ,(ω6 ω̄6)

s1 , η̄1, ψ̄1,...,5} (2.5)

B2
m2n2r2s2

= S+b2 +m2 e1 +n2 e2 + r2 e5 + s2 e6

=
{

ψµ ,x34,(y1 ȳ1)
1−m2 ,(y2 ȳ2)

1−n2 ,(y5 ȳ5)
1−r2 ,(y6 ȳ6)

1−s2 ,

(ω1 ω̄2)
m2 ,(ω3 ω̄3)

n2 ,(ω5 ω̄5)
r2 ,(ω6 ω̄6)

s2 , η̄2, ψ̄1,...,5} (2.6)

B3
m3n3 p3q3

= S+b3 +m3 e1 +n3 e2 + p3 e3 +q3 e4

=
{

ψµ ,x56,(y1 ȳ1)
1−m3 ,(y2 ȳ2)

1−n3 ,(y3 ȳ3)
1−p3 ,(y4 ȳ4)

1−q3 ,

(ω1 ω̄1)
m3 ,(ω2 ω̄2)

n3 ,(ω3 ω̄3)
p3 ,(ω4 ω̄4)

q3 , η̄3, ψ̄1,...,5} (2.7)

together with their supersymmetric partners from S+B1
p1,q1,r1,s1

,S+B2
m2,n2,r2,s2

and S+B3
m3,n3,p3,q3

,
where the upper index I = 1,2,3 indicates the orbifold plane, b3 = x+b1+b2 and mi,ni, pi,qi,ri,si =

0,1.

• States belonging to SO(10) vectorials not charged under SU(2)4 × SO(8). Higgs doublets
are accommodated in vectorial SO(10) matter representations that arise from the sectors
V I

pqrs = S+x+BI
pqrs, I = 1,2,3 together with their superpartners from S+V I

pqrs. The vectorial
decomposition under SO(10)⊃ SU(4)×SU(2)L ×SU(2)R is

10 = (6,1,1)+(1,2,2)

Three additional pairs of (6,1,1) matter multiplets arise from the untwisted sector.

• Matter states charged under SU(2)4 ×SO(8) but not under the Pati-Salam gauge symmetry.
These arise from (S)+BI

pqrs + x+ z1, I = 1,2,3 and BI
pqrs + x+ z2, I = 1,2,3 and transform

as hidden SU(2)×SU(2) bi-doublets or SO(8) spinorials/vectorials.
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Figure 1: Total number of models and exotic free models (gray) in a random sample of 1011 Pati–Salam
configurations.

• Mixed matter states that are charged under both the observable and the hidden sector. These
are exotic fractionally charged states and arise from the sectors (S)+BI

pqrs + x, I = 1,2,3
and BI

pqrs + x+α, I = 1,2,3

• Non-abelian gauge group singlet states charged only under U(1)3, arising from both the
twisted and the untwisted sectors.

After some tedious algebra we can derive analytic formulae for the multiplicities and the chiralities
(when applicable) of each of the above matter spectrum representations, expressed in terms of the
independent GGSO phases. These formulae can be evaluated using a fast computer algorithm and
explicitly scan model spectra, in order either to classify them, or to identify models whose spectrum
meets certain phenomenological criteria. To reduce computer time we can statistically sample the
space of possible configurations by generating random sets of GGSO coefficients. A characteristic
plot of the number of configurations versus the number of generations is presented in Figure 1.
Detailed results are given in [10].

The phenomenological criteria employed in [10] include

• Impose 3 complete fermion generations 3× [(4,2,1)+ (4̄,1,2)] and at least one pair of PS
breaking Higgs (4,1,2)+(4̄,1,2).

• Existence of massless Higgs doublets (1,2,2).
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• No massless fractionally charged exotics. Existence of these states in the spectrum of a string
model is a generic property [11], however their presence is hard to reconcile with standard
cosmology [15]. As shown in Figure 1 this class contains a plethora of massless exotic free
models.

A statistical computer scan over a sample of 1011 out of 1015 configurations shows that around one
to a million (1 : 106) satisfy all these phenomenological constraints.

Additional phenomenological constraints need to be imposed in order to further narrow the
space of candidate models. An important selection criterion is the existence of the top quark mass
term at the tri-level superpotential. Apart from the gauge part, this coupling involves an Ising type
correlation function that needs to be evaluated for a generic configuration. A detailed calculation
shows that this requirement can be used to fix 12 extra GGSO phases [13]

c
[

e1

b1

]
= c

[
e2

b1

]
= c

[
e3

b2

]
= c

[
e4

b2

]
= c

[
z1

b1

]
= c

[
z1

b2

]
= 0

c
[

z2

b1

]
= c

[
z2

b2

]
= c

[
b1

α

]
=−c

[
b2

α

]
=+1

c
[

e5

b1

]
= c

[
e5

b2

]
, c
[

e6

b1

]
= c

[
e6

b2

]

The number of acceptable models is significantly reduced to a few million that can be fully classi-
fied with the help of a computer program. Removing redundancies we end up with a few hundred
distinct models that meet all phenomenological criteria.

3. A Pati–Salam exemplary Model

Our classification method has revealed a subclass of Pati–Salam vacua, that satisfy all selec-
tion criteria and are thus good candidates for low energy models. However, compatibility with
Minimal Supersymmetric Standard Model requires a detailed analysis, including the calculation of
the superpotential and the solution of F- and (anomalous) D-flatness conditions. One has further
to check weather the flat directions are compatible with the breaking of the PS gauge symmetry
to the MMSM gauge group and also keep at least some of the Higgs doublets light. To this end,
a concrete model has been constructed in [14]. The model is defined by the basis (2.3) and the

6
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field symbol SU(4)×SU(2)2 U(1)3 charges
F1L,F2L,F3L (4,2,1)

(
0,−1

2 ,0
)
,
(
0,0,−1

2

)
,
(
0,0,+1

2

)
F̄1R, F̄2R, F̄3R, F̄4R

(
4̄,1,2

) (
0,−1

2 ,0
)
,
(1

2 ,0,0
)
,
(
0,0, 1

2

)
,
(
0,0,−1

2

)
h1,h2,h3 (1,2,2)

(
−1

2 ,0,−
1
2

)
,
(
0, 1

2 ,
1
2

)
,
(
0,−1

2 ,−
1
2

)
D1, D̄1,D2, D̄2,D3, D̄3,D4 (6,1,1) (±1,0,0) ,(0,±1,0) ,(0,0,±1) ,

(
−1

2 ,0,−
1
2

)
Φ12,Φ̄12,Φ13,Φ̄13 (1,1,1) (±1,±1,0) ,(±1,0,±1)
Φ−

12,Φ̄
−
12,Φ

−
13,Φ̄

−
13 (1,1,1) (±1,∓1,0) ,(±1,0,∓1)

Φ23,Φ̄23,Φ−
23,Φ̄

−
23 (1,1,1) (0,±1,±1) ,(0,±1,∓1)

Φi, i = 1, . . . ,6 (1,1,1) (0,0,0)
ζa, ζ̄a, a = 1,2,3 (1,1,1)

(
±1

2 ,∓
1
2 ,0

)
,
(
±1

2 ,±
1
2 ,0

)
,
(
±1

2 ,0,∓
1
2

)
ζa, ζ̄a, a = 4,5,6 (1,1,1)

(
±1

2 ,0,∓
1
2

)
,
(
0,±1

2 ,±
1
2

)
,
(
0,±1

2 ,±
1
2

)
ζ7, ζ̄7,χ+,χ− (1,1,1)

(
±1

2 ,0,∓
1
2

)
,
(1

2 ,
1
2 ,±1

)
Table 1: Exemplary model “observable” sector matter spectrum and SU(4)×SU(2)L × SU(2)R ×U(1)3

quantum numbers.

GGSO choice

c
[

bi

b j

]
=



1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2 α
1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 +1
S −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
e1 −1 −1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 −1
e2 −1 −1 +1 +1 −1 +1 +1 −1 +1 +1 −1 −1 +1
e3 −1 −1 +1 −1 +1 −1 −1 +1 +1 +1 −1 +1 +1
e4 −1 −1 +1 +1 −1 +1 −1 +1 +1 +1 −1 +1 −1
e5 −1 −1 +1 +1 −1 −1 +1 +1 −1 +1 −1 −1 −1
e6 −1 −1 +1 −1 +1 +1 +1 +1 +1 −1 −1 +1 +1
b1 −1 +1 +1 +1 +1 +1 −1 +1 −1 +1 +1 −1 +1
b2 −1 +1 +1 +1 +1 +1 +1 −1 +1 −1 −1 +1 +1
z1 −1 −1 +1 −1 −1 −1 −1 −1 +1 −1 −1 −1 −1
z2 −1 −1 +1 −1 +1 +1 −1 +1 −1 +1 −1 −1 −1
α +1 −1 −1 +1 +1 −1 −1 +1 −1 −1 +1 −1 +1



(3.1)

The full model spectrum is given in Tables 1,2. The first contains the “observable sector” spectrum,
that is states not charged under the SU(2)4 × SO(8) group factor. It consists of three (4,2,1)+(
4̄,1,2

)
multiplets that can accommodate the fermion generations, a pair of (4,1,2) ,

(
4̄,1,2

)
rep-

resentations that contain the Pati–Salam breaking Higg scalars, three pairs of Higgs bi-doublets
(1,2,2), seven pairs of extra triplets (6,1,1) and a set of 34 non-abelian group singlets. The second
table comprises the “hidden sector” states, that is states charged under the SU(2)4 ×SO(8) group
factor.

The full trilinear superpotential, W , can be calculated by a tedious but straightforward evalua-
tion of the correlators of the associated vertex operators [16]

W = g
√

2(W1 +W2) (3.2)
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field symbol SU(2)4 ×SO(8) U(1)3 charges
Hk

12 , k = 1,2,3 (2,2,1,1,1)
(
∓1

2 ,−
1
2 ,0

)
,
(1

2 ,0,−
1
2

)
Hk

13 , k = 1,2,3 (2,1,2,1,1)
(
−1

2 ,∓
1
2 ,0

)
,
(1

2 ,−
1
2 ,0

)
Hk

14 , k = 1,2,3 (2,1,1,1,1)
( 1

2 ,0,
1
2

)
,
(
0,±1

2 ,±
1
2

)
H1

23 (1,2,2,1,1)
(1

2 ,0,+
1
2

)
Hk

24 , k = 1, . . . ,5 (1,2,1,2,1)
(
−1

2 ,±
1
2 ,0

)
,
(
−1

2 ,0,−
1
2

)
,
(
0,∓1

2 ,±
1
2

)
Hk

34 , k = 1, . . . ,5 (1,1,2,2,1)
(
±1

2 ,−
1
2 ,0

)
,
(1

2 ,0,−
1
2

)
,
(
0,±1

2 ,±
1
2

)
Z1,Z3 (1,1,1,1,8c)

(
−1

2 ,0,
1
2

)
,
(
0,−1

2 ,
1
2

)
Z2,Z4 (1,1,1,1,8s)

(
0,−1

2 ,−
1
2

)
,
(
0, 1

2 ,−
1
2

)
Table 2: Exemplary model “hidden” sector matter spectrum and SU(2)2 ×SO(8)×U(1)3 quantum num-
bers.

where

W1 = F̄2R F3L h1 +h1 h1 Φ13 +h3 h3 Φ23 +h2 h2 Φ̄23 +
1√
2

h1 h2 ζ1 +D1 D2 Φ̄12

+ D̄1 D2Φ−
12 +D1 D̄2 Φ̄−

12 + D̄1 D̄2Φ12 +D1 D3 Φ̄13 + D̄1 D3 Φ−
13 +D1 D̄3 Φ̄−

13

+ D̄1 D̄3 Φ13 +D2 D3 Φ̄23 + D̄2 D3 Φ−
23 +D2 D̄3 Φ̄−

23 + D̄2 D̄3 Φ23

+D1F1R F1R + D̄1 F̄2R F̄2R +D2 (F̄1R F̄1R +F1L F1L)+D3(F̄4R F̄4R +F2L F2L)

+ D̄3(F̄3RF̄3R +F3LF3L)+D4(F̄2RF̄3R +D2χ−+ D̄2χ++D4Φ13)

+ Φ̄13 χ− χ++Φ23 Φ̄12 Φ−
13 +Φ13 Φ̄12 Φ−

23 +Φ23 Φ̄13 Φ−
12 +Φ−

12 Φ−
23 Φ̄−

13

+Φ13 Φ̄23 Φ̄−
12 +Φ12 Φ̄23 Φ̄−

13 +Φ−
13 Φ̄−

12 Φ̄−
23 +Φ12 Φ̄13 Φ̄−

23

+ζ 2
1 Φ̄−

12 + ζ̄ 2
1 Φ−

12 +
(
ζ 2

3 +ζ 2
4 +ζ 2

7
)

Φ̄−
13 +

(
ζ̄ 2

3 + ζ̄ 2
4 + ζ̄ 2

7
)

Φ−
13

+
1
2

ζ̄2ζ̄5 χ++ζ2
2 Φ̄12 +

(
ζ 2

5 +ζ 2
6
)

Φ̄23 +Φ12ζ̄ 2
2 +Φ5

(
ζ1ζ̄1 +ζ2ζ̄2

)
+Φ2

(
ζ5 ζ̄5 +ζ6 ζ̄6

)
+Φ23

(
ζ̄ 2

5 + ζ̄ 2
6
)
+Φ4 ζ7 ζ̄7 +

1√
2

ζ4 ζ5 ζ̄2 +
1√
2

ζ2 ζ̄4 ζ̄5 (3.3)

and

W2 = Φ̄23

{(
H4

34
)2

+
(
H14

2)2
}
+ Φ̄−

12

{(
H4

12
)2

+
(
H1

34
)2
}
+ Φ̄−

13

{(
H3

12
)2

+
(
H2

34
)2
}

+Φ−
12

{(
H2

13
)2

+
(
H1

24
)2
}
+Φ12

{(
H1

12
)2

+
(
H1

13
)2

+
(
H2

24
)2

+
(
H2

34
)2
}
+Φ13

{(
H3

13
)2

+
(
H3

24
)2
}

+Φ̄−
23Z2

5 +Φ−
13Z2

1 +Φ−
23Z2

3 + Φ̄−
23

(
H5

24
)2

+Φ−
23

(
H4

24
)2

+Φ23

{(
H5

34
)2

+
(
H3

14
)2
}

+
1√
2

ζ6
{

H1
12H3

12 +H2
34H3

34
}
+

1√
2

ζ2H3
24H4

24 +
1√
2

ζ7H1
24H4

24 +
1√
2

ζ̄1H1
14H3

14 +
1√
2

ζ̄2H3
34H4

34

+χ+H2
34H5

34 +H2
12 H2

14 H3
24 +H1

12 H1
14 H5

24 +H1
34 H3

13 H2
14 +H2

34 H5
24 H1

23 +
1√
2

ζ1 Z1 Z5

+Φ̄−
23 Z2

5 +Φ−
13 Z2

1 +Φ−
23 Z2

3 +Φ23
{

Z2
2 +Z2

4
}

(3.4)

The F-flatness conditions are given by

Fi =
∂W
∂ϕi

= 0 (3.5)
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where ϕi runs over all fields in the model. Assuming zero vevs for the following fields

⟨F̄2R⟩= ⟨F3L⟩= ⟨Da⟩= ⟨D̄a⟩= ⟨hi⟩= ⟨Zi⟩= ⟨Hm
kl ⟩= 0 (3.6)

we obtain a set of 31 equations

Φ2 : ζ5ζ̄5 +ζ6ζ̄6 = 0 (3.7)

Φ4 : ζ7ζ̄7 = 0 (3.8)

Φ5 : ζ1ζ̄1 +ζ2ζ̄2 = 0 (3.9)

Φ23 : Φ̄12Φ−
13 + Φ̄13Φ−

12 + ζ̄5
2 + ζ̄6

2 = 0 (3.10)

Φ̄23 : Φ13Φ̄−
12 +Φ12Φ̄−

13 +ζ5
2 +ζ6

2 = 0 (3.11)

Φ−
23 : Φ−

12Φ̄−
13 +Φ13Φ̄12 = 0 (3.12)

Φ̄−
23 : Φ−

13Φ̄−
12 +Φ12Φ̄13 = 0 (3.13)

Φ13 : Φ̄12Φ−
23 + Φ̄23Φ̄−

12 = 0 (3.14)

Φ̄13 : Φ12Φ̄−
23 +χ−χ++Φ23Φ−

12 = 0 (3.15)

Φ−
13 : Φ̄−

12Φ̄−
23 + ζ̄3

2 + ζ̄4
2 + ζ̄7

2 +Φ23Φ̄12 = 0 (3.16)

Φ̄−
13 : Φ12Φ̄23 +Φ−

12Φ−
23 +ζ3

2 +ζ4
2 +ζ7

2 = 0 (3.17)

Φ12 : Φ̄23Φ̄−
13 + Φ̄13Φ̄−

23 + ζ̄2
2 = 0 (3.18)

Φ̄12 : Φ23Φ−
13 +Φ13Φ−

23 +ζ2
2 = 0 (3.19)

Φ−
12 : Φ−

23Φ̄−
13 + ζ̄1

2 +Φ23Φ̄13 = 0 (3.20)

Φ̄−
12 : Φ−

13Φ̄−
23 +Φ13Φ̄23 +ζ1

2 = 0 (3.21)

ζ1 : 2ζ1Φ̄−
12 +Φ5ζ̄1 = 0 (3.22)

ζ̄1 : 2ζ̄1Φ−
12 +ζ1Φ5 = 0 (3.23)

ζ2 : 2ζ2Φ̄12 +Φ5ζ̄2 +
ζ̄4ζ̄5√

2
= 0 (3.24)

ζ̄2 :
1
2

ζ̄5χ++2Φ12ζ̄2 +ζ2Φ5 +
ζ4ζ5√

2
= 0 (3.25)

ζ3 : 2ζ3Φ̄−
13 = 0 (3.26)

ζ̄3 : 2ζ̄3Φ−
13 = 0 (3.27)

ζ4 : 2ζ4Φ̄−
13 +

ζ5ζ̄2√
2

= 0 (3.28)

ζ̄4 : 2ζ̄4Φ−
13 +

ζ2ζ̄5√
2

= 0 (3.29)

ζ5 : 2ζ5Φ̄23 +Φ2ζ̄5 +
ζ4ζ̄2√

2
= 0 (3.30)

ζ̄5 :
1
2

ζ̄2χ++2Φ23ζ̄5 +
ζ2ζ̄4√

2
+ζ5Φ2 = 0 (3.31)

ζ6 : 2ζ6Φ̄23 +Φ2ζ̄6 = 0 (3.32)
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ζ̄6 : 2Φ23ζ̄6 +ζ6Φ2 = 0 (3.33)

ζ7 : 2ζ7Φ̄−
13 +Φ4ζ̄7 = 0 (3.34)

ζ̄7 : 2Φ−
13ζ̄7 +ζ7Φ4 = 0 (3.35)

χ+ : Φ̄13χ−+
1
2

ζ̄2ζ̄5 = 0 (3.36)

χ− : Φ̄13χ+ = 0 (3.37)

The electroweak Higgs doublets are accommodated in the PS bi-doublets h1,h2,h3. Their
mass matrix is

Mh ∼


h1 h2 h3

h1 Φ13
ζ1√

2
0

h2
ζ1√

2
Φ̄23 0

h3 0 0 Φ23

 (3.38)

h1 doublet participates in the top quark coupling, hence we have to keep it massless imposing

Φ13 Φ̄23 −
ζ 2

1
2

= 0. (3.39)

An exact solution of all the above conditions (3.7)-(3.39) is

0 = Φ1 = Φ2 = χ+ = χ− = ζi = ζ̄i, i = 3, . . . ,7 (3.40)

Φ5 = − 2i√
3

Φ̄12

Φ̄23

√
Φ−

13Φ−
23Φ̄−

23

Φ̄−
13

(3.41)

Φ23 =
Φ−

23Φ̄−
23

Φ̄23
, Φ13 =−

Φ−
13Φ̄−

23

3Φ̄23
(3.42)

Φ̄13 = −
3Φ̄23Φ̄−

13

Φ̄−
23

, Φ12 =−
Φ̄12Φ−

13Φ−
23Φ̄−

23

3Φ̄232Φ̄−
13

(3.43)

Φ−
12 =

Φ̄12Φ−
13Φ̄−

23

3Φ̄23Φ̄−
13

, Φ̄−
12 =−

Φ̄12Φ−
23

Φ̄23
(3.44)

ζ1 = i

√
2Φ−

13Φ̄−
23

3
, ζ̄1 =−

√
2Φ−

23Φ̄−
13 (3.45)

ζ2 = i

√
2Φ−

23Φ−
13Φ̄−

23

3Φ̄23
, ζ̄2 =

√
2Φ̄23Φ̄−

13 (3.46)

It can be expressed in terms of nine parameters
{

Φ3,Φ4,Φ6,Φ̄23,Φ−
23,Φ̄

−
23,Φ

−
13,Φ̄

−
13,Φ̄12

}
.

The abelian U(1) group factors turn out to be anomalous

TrU(1)1 =−12 , TrU(1)2 =−24 , TrU(1)3 =−12 (3.47)

The can be rewritten as two anomaly free linear combinations

U(1)′1 =U(1)1 −U(1)3 (3.48)

U(1)′2 =U(1)1 −U(1)2 +U(1)3 (3.49)
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and one anomalous one

U(1)′A =U(1)1 +2U(1)2 +U(1)3 , TrU(1)A =−72 (3.50)

They lead to a set of three non-trivial D-flatness equations [14] that can be used to fix three of
our free parameters. Moreover, this solution has the advantage of rendering all additional MSSM
triplets, accommodated (6,1,1), superheavy leaving only the MSSM spectrum at low energies. The
above demonstrate that models in this class are of particular phenomenological interest and deserve
further analysis.

References

[1] see e.g.
L. Susskind, In *Carr, Bernard (ed.): Universe or multiverse?* 247-266 [hep-th/0302219];
M. R. Douglas, JHEP 0305 (2003) 046 [hep-th/0303194];
T. Banks, M. Dine and E. Gorbatov, JHEP 0408 (2004) 058 [hep-th/0309170].

[2] see eg:
T.P.T. Dijkstra, L. Huiszoon and A.N. Schellekens, Nucl. Phys. B 710(2005) 3;
B.S. Acharya, F. Denef and R. Valadro, JHEP 0506(2005)056;
F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lust and T. Weigand, JHEP 0601 (2006) 004;
E. Kiritsis, M. Lennek and B. Schellekens, Nucl. Phys. B 829 (2010) 298.;
M. Maio and A. N. Schellekens, Nucl. Phys. B 848, 594 (2011);
B. Gato-Rivera and A. N. Schellekens, Nucl. Phys. B 847, 532 (2011); Nucl. Phys. B 846, 429 (2011).
M. Maio, “Permutation Orbifolds in Conformal Field Theories and String Theory,” [arXiv:1111.0991
[hep-th]].

[3] D. Senechal, Phys. Rev. D 39 (1989) 3717;
K. R. Dienes, Phys. Rev. D 73 (2006) 106010;
O. Lebedev, H. P. Nilles, S. Ramos-Sanchez, M. Ratz and P. K. S. Vaudrevange, Phys. Lett. B 668
(2008) 331;
F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lust and T. Weigand, JHEP 0601 (2006) 004;
H. P. Nilles, S. Ramos-Sanchez, P. K. S. Vaudrevange and A. Wingerter, Comput. Phys. Commun.
183, 1363 (2012) [arXiv:1110.5229 [hep-th]];
T. Renner, J. Greenwald, D. Moore and G. Cleaver, Int. J. Mod. Phys. A 26 (2011) 4451
[arXiv:1107.3138 [hep-ph]].

[4] L. B. Anderson, J. Gray, A. Lukas and E. Palti, Phys. Rev. D 84 (2011) 106005 [[arXiv:1106.4804
[hep-th]];
L. B. Anderson, J. Gray, A. Lukas and E. Palti, “Heterotic Line Bundle Standard Models,”
arXiv:1202.1757 [hep-th].

[5] A. Gregori, C. Kounnas and J. Rizos, Nucl. Phys. B549 (1999) 16.

[6] A. E. Faraggi, C. Kounnas, S. E. M. Nooij and J. Rizos, proceedings of 2nd International Conference
on String Phenomenology 2003, Durham, England, 29 Jul - 4 Aug 2003, [arXiv:hep-th/0311058];
A. E. Faraggi, C. Kounnas, S. E. M. Nooij and J. Rizos, Nucl. Phys. B 695 (2004) 41;
A. E. Faraggi, C. Kounnas and J. Rizos, Phys. Lett. B 648 (2007) 84; Nucl. Phys. B 774 (2007) 208;
Nucl. Phys. B 799 (2008) 19;
T. Catelin-Jullien, A. E. Faraggi, C. Kounnas and J. Rizos, Nucl. Phys. B 812 (2009) 103.

11



P
o
S
(
C
O
R
F
U
2
0
1
1
)
1
0
1

Top mass and classification of heterotic superstring vacua J. Rizos

[7] I. Antoniadis, C. Bachas, and C. Kounnas, Nucl. Phys. B289 (1987) 87;
H. Kawai, D.C. Lewellen, and S.H.-H. Tye, Nucl. Phys. B288 (1987) 1;
I. Antoniadis and C. Bachas, Nucl. Phys. B298 (1988) 586.

[8] J. C. Pati and A. Salam, Phys. Rev. D 10 (1974) 275 [Erratum-ibid. D 11 (1975) 703].

[9] I. Antoniadis and G. K. Leontaris, Phys. Lett. B 216 (1989) 333;
I. Antoniadis, G. K. Leontaris and J. Rizos, Phys. Lett. B 245 (1990) 161;
G. K. Leontaris and J. Rizos, Nucl. Phys. B 554 (1999) 3 [hep-th/9901098].

[10] B. Assel, K. Christodoulides, Nucl. Phys. B 844 (2011) 365 [arXiv:1007.2268 [hep-th]];
J. Rizos, Fortsch. Phys. 58 (2010) 758 [arXiv:1003.0458 [hep-th]].

[11] A. N. Schellekens, Phys. Lett. B 237 (1990) 363.

[12] B. Assel, K. Christodoulides, A. E. Faraggi, C. Kounnas and J. Rizos, Phys. Lett. B 683 (2010) 306.

[13] J. Rizos, in preparation.

[14] K. Christodoulides, A. E. Faraggi and J. Rizos, Phys. Lett. B 702 (2011) 81 [arXiv:1104.2264
[hep-ph]].

[15] P. Langacker and G. Steigman, Phys. Rev. D 84, 065040 (2011) [arXiv:1107.3131 [hep-ph]].

[16] S. Kalara, J. L. Lopez and D. V. Nanopoulos, Phys. Lett. B 245 (1990) 421;
J. Rizos and K. Tamvakis, Phys. Lett. B 251 (1990) 369; Phys. Lett. B 262 (1991) 227;
A. E. Faraggi, Nucl. Phys. B 487 (1997) 55 [hep-ph/9601332].

12


