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We review the construction of superconformal field theories on the worldsheet, which describe
superstring models where only a finite number of states are effectively thermalized. Compared to
conventional superstring models at finite temperature, they are obtained by switching on suitable
Wilson lines along the Euclidean time circle S1(R0). This discrete deformation forbids the appear-
ance of tachyons at any radius R0 and restores a T-duality symmetry on the temporal cycle. This
implies the existence of a maximal temperature Tc, which is equal to twice the standard Hagedorn
temperature. The models obtained this way differ substantially from the usual thermal ones only
in the regime where the temperature is of order of the string scale, when the canonical ensemble
of the full superstring spectrum breaks down. In the tachyon free models, a transition occurs at
the temperature Tc, which transforms a phase of pure Kaluza-Klein excitations along S1(R0) into
a T-dual phase of pure winding modes. Thanks to the consistency of these thermal backgrounds,
cosmological evolutions induced by the free energy are found in various dimensions, with neither
Hagedorn instabilities nor initial singularities. They describe bouncing universes, which can be
described consistently in perturbation theory throughout the evolution.

Proceedings of the Corfu Summer Institute 2011 “School and Workshops on Elementary Particle Physics
and Gravity”
September 4-18, 2011
Corfu, Greece

∗Unité mixte du CNRS et de l’Ecole Polytechnique, UMR 7644.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:herve.partouche@cpht.polytechnique.fr


P
o
S
(
C
O
R
F
U
2
0
1
1
)
1
0
2

Thermal duality & non-singular superstring cosmology

1. Introduction

General relativity coupled to a finite set of local quantum fields drives the cosmological evo-
lution of the universe to an initial curvature singularity. On the contrary, the consistency of string
theory may lead to think that in this framework, the Big Bang may be resolved. To discuss this
belief, we may start by asking what is usually meant by “consistency” in this context. A possible
answer from an infrared (IR) point of view is that the spectrum should not contain tachyons, so that
the one-loop vacuum amplitude Z is finite. From a string field theory point of view, when tachyons
are present in a spectrum, they should acquire vacuum expectation values (VEV’s) in order to bring
the system in a true, stable vacuum. Modular invariance on the worldsheet allows to rephrase the
above IR picture in a more conventional ultra-violet (UV) point of view, by writing Z in the general
form,

Z =
∫ +∞

0

d`
2`

Vd

∫ ddk
(2π)d

∫ +∞

0
dM
(

ρB(M)−ρF(M)
)

e−(k
2+M2)`/2, (1.1)

where ρB and ρF are the densities of bosons and fermions at level mass M. In this expression,
Vd is very large and regularizes the volume of the d-dimensional space-time. Strictly speaking,
the integral over M should be replaced by a discrete sum over the mass spectrum. The dangerous
region of integration over the proper time ` along the virtual loop is the UV region, `→ 0. In
fact, for Z to be finite, a drastic cancellation between the bosonic and fermionic densities must
occur. This is a very strong constraint on the consistency of the model since, as is generic in
string theory, both ρB and ρF are exponentially growing for large masses, ρB,F ∼ eβH M as M →
+∞. Actually, a careful analysis leads to the conclusion that the effective number of degrees of
freedom ρB−ρF grows like in a two-dimensional quantum field theory [1]. In other words, in a
consistent string background, everything happens as if there were effectively only a finite number of
particles running into the virtual loops. The supersymmetric models certainly fulfill this condition
since bosons and fermions cancel exactly and Z vanishes. A less trivial class of consistent models
includes the theories, where supersymmetry is spontaneously broken at a scale Msusy. In this case,
the mass degeneracy is restored in the large M/Msusy limit, a fact that deserves the denomination
of “asymptotic supersymmetry” [1]. In these models, the effective number of degrees of freedom
is of the order of the number of states below the scale Msusy.

For cosmological purposes, the question of consistency should be reconsidered for conformal
fields theories on the worldsheet, which describe string backgrounds at finite temperature T . In
this case, the one-loop vacuum amplitude Z is evaluated in a target space, where time is Euclidean
and compactified on a circle of perimeter β = 2πR0 = 1/T . Bosonic and fermionic degrees of
freedom are imposed periodic and antiperiodic boundary conditions along S1(R0). Under these
circumstances, one finds

Z = V
∫ dd−1k

(2π)d−1

∫ +∞

0
dM
[

ρB(M) ln
( 1

1− e−β
√

k2+M2

)
+ρF(M) ln

(
1+ e−β

√
k2+M2

)]
= lnTre−βH , (1.2)

where V is the volume of space, and the second equality makes the link with quantum statistical
physics. The exponential of Z equals the canonical partition function of bosonic and fermionic
modes, whose Hamiltonian is free i.e. in the perfect gas approximation. Since the logarithmic
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Thermal duality & non-singular superstring cosmology

terms in Eq. (1.2) behave as e−βM in the large M limit, the thermal amplitude Z diverges when
βH > β . Thus, T larger than the so-called Hagedorn temperature TH = 1/βH is not allowed. It
is believed that this singular behavior in the UV signals a transition at the maximal temperature
TH , which brings the thermal system into a distinct phase. One way to argue this is to write the
amplitude (1.2) as an integral over the fundamental domain of SL(2,Z) and observe that in a Hamil-
tonian formulation of the integrand, winding modes around the Euclidean temporal circle become
tachyonic when T > TH . Thus, they should acquire VEV’s when they become massless at the Hage-
dorn temperature, and bring the thermal system into a stable configuration [2]. However, from a
cosmological point of view, the dynamical description of this process is not understood yet.

In this note, our aim is to review the existence and cosmological consequences of conformal
field theories on the worldsheet, which are describing models where only a finite number of string
modes are effectively thermalized. The amplitude Z is well defined for arbitrary radius R0 and the
models actually admit a T-duality symmetry on the temporal circle, R0/Rc→ Rc/R0, which implies
the existence of a maximal temperature, Tc = 1/2πRc. Since the masses of the string excitations
which are not thermalized are larger than Tc, the system can never differ substantially from a con-
ventional thermal one. At the critical temperature Tc, a phase transition occurs, transforming pure
Kaluza-Klein (KK) excitations along S1(R0) into pure winding modes. Thanks to the consistency
of these thermal backgrounds, cosmological evolutions free of Hagedorn and initial singularities
are found. They describe bouncing universes, which can be described consistently in perturbation
theory throughout the evolution [3, 4].

2. Superstring models with no Hagedorn instabilities

In this section, we make the comparison between conventional models at finite temperature
and those, which are free of Hagedorn divergences [5]. We consider the type IIB superstring com-
pactified on the Euclidean background S1(R0)×T d−1×T 9−d×S1(R9). The torus T d−1 has volume
V , which regularizes the infinite size of flat space, while T 9−d × S1(R9) is the internal manifold.
All space-time supersymmetries generated by the right-moving sector are spontaneously broken by
coupling the lattice Γ(1,1) of zero modes associated to S1(R9) to the right-moving Ramond charge
ā (equal to 0,1 modulo 2).1 At finite temperature, the partition function takes the following form

Z =
V

(2π)d−1

∫
F

d2τ

2τ
d+1

2
2

Γ(9−d,9−d)

η8η̄8
1
2 ∑

a,b
(−1)a+b+ab θ [ab]

4

η4
1
2 ∑

ā,b̄

(−1)ā+b̄+āb̄ θ̄ [āb̄]
4

η̄4

R0√
τ2

∑
n0,m̃0

e−
πR2

0
τ2
|n0τ+m̃0|2(−1)(a+ā)m̃0+(b+b̄)n0

R9√
τ2

∑
n9,m̃9

e−
πR2

9
τ2
|n9τ+m̃9|2(−1)ām̃9+b̄n9+m̃9n9 , (2.1)

where the lattice of zero modes Γ(1,1) of the Euclidean time circle is coupled to the fermion number
F = a + ā, the left plus right Ramond charges. At the fermionic point R9 = Rc := 1/

√
2, the

U(1)R gauge symmetry associated to the direction 9 is extended to SU(2)R. This fact implies the
thermal effective potential −Z admits a minimum at this point, so that we can suppose from now
on that R9 is stabilized at Rc [7, 8]. As a result, the scale 1/(2πR9) of right-moving supersymmetry
breaking is of order the string scale. In Eq. (2.1), the remaining left-moving supersymmetries are

1More general models where the spontaneous breaking involves more internal directions can be considered [6].
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Thermal duality & non-singular superstring cosmology

spontaneously broken by the presence of finite temperature, at the scale T = 1/(2πR0). Clearly,
they could have been broken at the same scale by coupling the zero modes of S1(R0) to the left-
moving Ramond charge a only, (equal to 0,1 modulo 2). Technically, this amounts to changing the
phase

(−1)(a+ā)m̃0+(b+b̄)n0 −→ (−1)am̃0+bn0+m̄0n0 (2.2)

in Eq. (2.1). To show that the model obtained this way admits an interesting thermal interpretation
is the aim of the remaining part of this section [5].

In terms of SO(8) affine characters, the partition function Z of the model obtained by the
substitution (2.2) involves in the left-moving sector the combination

∑
m0,l0

[(
Γm0,2l0V8−Γm0+

1
2 ,2l0S8

)
+
(

Γm0,2l0+1O8−Γm0+
1
2 ,2l0+1C8

)]∣∣∣∣
R0

, (2.3)

where Γα,δ (R) := q[(α/R)2+(δR)2]/4. This shows that the GSO projection is reversed in the odd
winding sector along the Euclidean time circle, n0 = 2l0 + 1. Similarly, the right-moving GSO
projection is reversed in the odd winding sector along S1(R9). Thus, there exists a potentially
dangerous O8Ō8 sector that may yield tachyonic modes. However, the lowest squared mass in this
sector is non-negative,

M2
OŌ =

(
1

2R0
+R0

)
, (2.4)

a fact which is in contrast with the conventional thermal model, where M2
OŌ = R2

0−2. In the latter
case, a Hagedorn radius RH =

√
2 exists, below which the partition function is ill-defined. On

the contrary, even better than being defined for all values of R0, the tachyon free model admits a
T-duality symmetry (

R0

Rc
,S8,C8

)
−→

(
Rc

R0
,C8,S8

)
, (2.5)

which implies type IIB and type IIA models are identified. Finally, an important fact to which we
return later, is that at the fermionic point R0 = Rc fixed by the T-duality, the U(1)L Euclidean gauge
symmetry is extended to SU(2)L, coupled to matter in the adjoint representation.

To make contact between the thermal partition function (2.1) and statistical physics, we “un-
fold the fundamental domain F ”. In practice, this means the integral of F can be extended to the
whole upper half strip, while restricting the winding number n0 to zero. Formally, one has

Z =
∫

F
d2

τ ∑
n0

(· · ·)|n0
=
∫ 1

2

− 1
2

dτ1

∫ +∞

0
dτ2 (· · ·)|n0=0 . (2.6)

Since n0 = 0 is even, the left-moving characters involved in the integrand are V8 and S8 only.
It is then straightforward to implement level matching by integrating over τ1 and write Z as the
logarithm of a canonical partition function of point-like particles, when it is expressed in first
quantized formalism as an integral over the proper time τ2. As reviewed in Eq. (1.2), one obtains

eZ = Tre−βH where
β = 2πR0 and the left-moving Ramond character is S8.

(2.7)
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Thermal duality & non-singular superstring cosmology

Noticing that (−1)a = (−1)a+ā(−1)ā, the above manipulations can be applied to the tachyon
free model to yield a similar result, up to a remnant phase (−1)ā in the final expression. Actually,
the unfolding procedure is valid when the integrand converges absolutely, which is guaranteed as
long as R0 > Rc. The analysis in the regime R0 < Rc can be derived by T-duality and amounts to
setting m̃0 instead of n0 to zero (see Eqs (2.1) and (2.2)). Altogether, the amplitude Z in the tachyon
free model is related to a deformed canonical partition function defined as [5]

eZ = Tr
[
(−1)ā e−βH

]
where{

β = 2πR0 and the left-moving Ramond character is S8, when R0 > Rc

β = 2π/(2R0) and the left-moving Ramond character is C8, when R0 < Rc
.

(2.8)

In this expression, ā stands for the total right-moving Ramond charge of the multiparticle states
contributing to the trace. In the phase R0 > Rc, the excitations along S1(R0) are pure KK states,
while in the T-dual phase R0 < Rc, they are pure winding modes. Moreover, the spinorial repre-
sentations of the massless space-time fermions differ, as follows from the exchange S8↔C8. An
important consequence of the definition of the parameter β in Eq. (2.8) is that T := 1/β is bounded,
T ≤ Tc := 1/(2πRc). However, the physical interpretation of the parameter T is at this stage rather
obscure.

To clarify this point, we note that the mass M of any state with right-moving Ramond charge
ā = 1 satisfies

M ≥ 1
2R9

or R9 =⇒ M ≥ πTc > T, (2.9)

as follows from the stabilization of R9 at the fermionic point Rc. As a result, the contributions
in the trace (2.8) of the multiparticle states with total Ramond charges ā = 1 are weighted with
exponentially small Boltzmann factors, so that

eZ = Tr
[
(−1)ā e−βH

]
' Tr

M < Tc

e−βH , (2.10)

where the trace in the r.h.s. is restricted to the multiparticle states built out of modes with masses
below Tc. As a result, T deserves the denomination of temperature for this restricted canonical en-
semble. Actually, the conventional thermal model and the tachyon free one differ substantially only
in the regime where the temperature is of order of the string scale, when the canonical ensemble of
the full superstring spectrum breaks down and the partition function (2.7) is blowing up.

In fact, the maximal temperature Tc is larger than the Hagedorn temperature TH of the con-
ventional thermal case, Tc = 2TH . The convergence of the amplitude Z in the tachyon free model
for any temperature below the maximal value Tc follows from the alternative signs in the deformed
canonical partition function (2.8). To precise this remark, let us focus for a moment on the de-
formed trace associated to a gas made of a single species, with fermion number F , mass M and
right-moving Ramond charge ā. A direct evaluation based on the Bose-Einstein (or Fermi-Dirac)
statistics leads [5]

ln
(

Tr
[
(−1)ā e−βH

])
=−(−1)F

∑
k

ln
(

1− (−1)F+ā e−β
√

k+M2
)
. (2.11)
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Thermal duality & non-singular superstring cosmology

This shows that the contributions of a bosonic particle with charge ā and a fermionic one with
charge 1− ā are opposite, when the masses are degenerate. This fact implies the effective number
of degrees of freedom contributing to the total tachyon free amplitude Z is reduced.

In extreme cases, the pairing of a boson of charge ā with a fermion of charge 1− ā and equal
masses can be an exact symmetry of the entire massive spectrum of the theory. Under these cir-
cumstances, a perfect cancellation of the massive contributions occurs and eZ takes the form of
a conventional canonical partition function for thermal radiation associated to a finite number of
massless bosonic and fermionic degrees of freedom. Actually, such a symmetry can only exist in
two dimensions and is realized when the right-moving sector admits a so-called MSDS structure,
for “Massive Spectrum Degeneracy Symmetry” [9]. The “hybrid model” realizes these ideas in
type II superstring [6, 3]. Its Euclidean one-loop amplitude is defined as

Z =
V
2π

∫
F

d2τ

2τ
3/2
2

Γ(8,0)

η8
1
2 ∑

a,b
(−1)a+b+ab θ [ab]

4

η4 (V̄24− S̄24)
R0√

τ2
∑

n0,m̃0

e−
πR2

0
τ2
|n0τ+m̃0|2(−1)am̃0+bn0m̃0n0 ,

(2.12)
where V is the regularized “volume” of the one-dimensional space and Γ(8,0) is the E8 root lattice.
The zero modes of the Euclidean time circle are coupled to the left-moving Ramond charge a and
a deformed canonical partition function is obtained, as defined in Eq. (2.8). The MSDS structure
follows from the choice of right-moving conformal blocks,

V̄24− S̄24 = 24 where S̄24 = 211q̄+O(q̄2). (2.13)

These relations satisfied by the SO(24) affine characters show the right-moving sector is almost
supersymmetric, since only 24 states at level 0 in the NS sector ā= 0 are not paired with degenerate
modes in the Ramond sector ā = 1. Due to this property, level matching projects out all massive
contributions in Z, which takes the explicitly T-duality invariant simple form

Z
V

= 24

{
1/R0 for R0 > Rc

2R0 for R0 < Rc
= 24

(
1

2R0
+R0

)
−24

∣∣∣∣ 1
2R0
−R0

∣∣∣∣ . (2.14)

Given the definition of the duality invariant temperature T = 1/β (see Eq. (2.8)), the free energy
density is exactly that of thermal radiation in two dimensions, in either of the winding phase (R0 <

Rc) or momentum phase (R0 > Rc),

F
V
≡− Z

βV
=−T 2 nΣ2, (2.15)

where n counts the number of massless states and Σd is Stefan’s constant for radiation in d dimen-
sions.

Coming back to the more general class of tachyon free models that yield Eq. (2.8) in arbitrary
dimensions, the MSDS structure of the Hybrid model is replaced by asymptotic supersymmetry in
the right-moving sector, where supersymmetry is spontaneously broken at the scale Tc = 1/(2πR9)

[4]. As a result, the perfect cancellation of the massive modes in the Hybrid case is only approxi-
mate in the general case, as indicated in Eq. (2.10). The free energy density then satisfies

F
V
≡− Z

βV
'−T d nΣd , (2.16)

6
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Thermal duality & non-singular superstring cosmology

which ensures the positivity of the energy and specific heat,

U =−∂Z
∂β

> 0, CV = β
2 ∂ 2Z

∂β 2 > 0. (2.17)

In particular, redefining the duality-invariant temperature as T = Tc e−|σ |, where R0 = Rc eσ , the
amplitude Z depends on |σ | only and shows a conical singularity at the fermionic point σ = 0. In
other words, Z(σ) is not derivable at σ = 0, a fact that would imply the existence of a temperature
range, where the specific heat would be negative.

After having described the system in the winding (R0 < Rc) and momentum (R0 > Rc) phases,
we would like to understand its behavior at the fermionic point R0 = Rc, where a U(1)L→ SU(2)L

extension of the Kac-Moody algebra occurs at level 2. Euclidean gauge bosons and adjoint matter
with momentum and winding numbers m0 = n0 = ±1 become massless and are actually at the
origin of the above mentioned non-analyticity of the amplitude Z. For instance, this is explicitly
seen in the Hybrid model, where the term in absolute value in Eq. (2.14) is the vanishing mass of 8
complex scalars in the adjoint representation of SU(2)L (in two dimensions, the gauge bosons have
no degrees of freedom). At the fermionic point, they have p0

L = ±1, p0
R = 0, which is precisely

what is needed to map the spectrum of the momentum phase into that of the winding phase, and
vis versa. For instance, acting with the holomorphic current ψ0e−iX0

L on a pure KK state in the
spinorial representation S10 of SO(10), one obtains [3]

ψ
0e−iX0

L (z)e−φ/2S10,αe
i
2 X0

L+
i
2 X0

RV̄24(w) =
1

z−w
γ

0
αβ̇

e−φ/2C10,β̇ e−
i
2 X0

L+
i
2 X0

RV̄24(w)+ regular, (2.18)

where the r.h.s. involves a pure winding mode of flipped spinorial representation. In fact, the
additional marginal operators at the fermionic point trigger a pure winding to pure momentum
phase transition, at the level of the conformal field theory on the worldsheet.

Before presenting the cosmological evolutions arising from the tachyon free models, we would
like to show the discrete deformation of the canonical partition function introduced in Eq. (2.8) can
be interpreted in terms of Wilson lines [5]. We saw in the second line of Eq. (2.1) and Eq. (2.2)
that tachyon free models can be constructed by coupling the Γ(1,1) lattices of the factorized circles
S1(R0)×S1(R9) with (−1)a and (−1)ā, respectively. However, this lattice contribution to Z can be
written as a non-factorized lattice sum, thermally coupled to (−1)a+ā,

√
G

τ2
∑

n0,m̃0

∑
n9,m̃9

e−
π

τ2
(nτ+m̃)i(G+B)i j(nτ̄+m̃) j (−1)(a+ā)m̃0+(b+b̄)n0 (−1)ām̃9+b̄n9+m̃9n9 . (2.19)

In this expression, the 2×2 metric Gi j and antisymmetric tensor Bi j are

Gi j =

(
R2

0 +A2
0R2

9 A0R2
9

A0R2
9 R2

9

)
, Bi j =

(
0 A′0R2

9
−A′0R2

9 0

)
, (2.20)

G = detG and A0 = 1, A′0 = 1/2. In these notations, the model with Hagedorn transition at R0 = RH

in Eq. (2.1) is recovered by choosing A0 = A′0 = 0 instead. Therefore, the tachyon free model
amounts to switching on constant gauge potentials Aµ = (A0,~0) and A′µ = (A′0,~0) along the tempo-
ral cycle, for the U(1)’s obtained by dimensional reduction of Gi j and Bi j on the internal S1(R9).

7
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From this point of view, the conventional trace in Eq (2.7) found by computing a path integral
in compact Euclidean time with periodic and antiperiodic boundary conditions for bosons and
fermions can be deformed by arbitrary Wilson lines A0 and A′0. The latter cannot be gauged away
and are therefore true vacuum parameters. The result takes the form

Tre−βH−2iπ(A0Q+A′0Q′), (2.21)

where Q and Q′ are the total U(1)’s charges of the multiparticle states. In the models defined in
Eqs (2.1) and (2.2), one has

Q = m̃9−
ā+n9

2
, Q′ = n9, (2.22)

so that the deformation in Eq. (2.8) is recovered,

e−2iπ(A0Q+A′0Q′) = (−1)ā when A0 = 2A′0 = 1. (2.23)

3. Induced bouncing cosmologies

Our aim in this section is to describe the cosmological evolution induced by the thermal/quan-
tum corrections of the tachyon free models on the tree level static Minkowski space-time in d
dimensions [4, 3, 10]. For this purpose, we first consider the low energy effective action of the
massless modes in compact Euclidean time and integrate out all massive states. In either the wind-
ing or momentum phase, focussing for simplicity on homogeneous and isotropic evolutions of the
metric and dilaton, the action at the one-loop level is∫

dx0dd−1x βad−1
[

e−2φ

(
R
2
+2(∂φ)2

)
+

Z
βV

]
, (3.1)

where we have chosen natural definitions of Euclidean times corresponding to laps functions equal
to the perimeters β of the temporal circle S1(R0) in the momentum phase and T-dual circle in the
winding phase.

At some instant x0
c such that R0 = Rc, the set of massless states is enhanced and contains in

particular complex scalar fields ϕ I , with both winding and momentum quantum numbers m0 =

n0 =±1. These extra massless scalars parametrize a moduli space, which is a coset

M =
SO(2,12−d)

SO(2)×SO(12−d)
. (3.2)

Thus, their tree level action is a (d−1)-dimensional non-linear σ -model,∫
dd−1x a(x0

c)
d−1 e−2φ(x0

c)
(
−hIJ̄ ∂µ̂ϕ

I
∂

µ̂
ϕ̄

J̄
)
, (3.3)

where µ̂ = 1, . . . ,d−1 and hIJ̄ is the ϕ-dependent metric of M . The classical backgrounds allowed
by the above action are embeddings of space into the moduli space, Rd−1→M . Simple solutions
exist for d = 2,3 and less trivial ones are found for 2≤ d ≤ 7 at the boundary of M . In any case,
one obtains

hIJ̄ ∂µ̂ϕ
I
∂

µ̂
ϕ̄

J̄ = κ
2, (3.4)

8



P
o
S
(
C
O
R
F
U
2
0
1
1
)
1
0
2

Thermal duality & non-singular superstring cosmology

ad−2 T eφ

τ τ τ

Figure 1: Bouncing cosmology arising from the tachyon free thermal models.

where κ2 is an integration constant.
In total, the full effective action valid in the winding regime, momentum regime, as well as

at the phase transition is the sum of the bulk part in Eq. (3.1) and brane-like contribution Eqs
(3.3), (3.4). Switching to Lorentzian time by analytic continuation, x0→ ix0, leads formally to an
identical result,∫

dx0dd−1xβad−1
[

e−2φ

(
R
2
+2(∂φ)2

)
+

Z
βV

]
−κ

2
∫

dd−1xad−1e−2φ
δ (x0− x0

c). (3.5)

Thus, the brane tension κ2 yields a negative contribution to the pressure localized in time, and
vanishing energy. This corresponds to a very unusual state equation, which arises from the phase
transition and not from any kind of exotic stringy matter.

Varying the action with respect to the laps function, scale factor and dilaton field, the resulting
equations of motion can be solved explicitly using the approximation of Eq. (2.16). For d > 2, the
cosmological evolution in string frame and conformal time τ takes the form [4],

ln
a
ac

= ln
Tc

T
=

1
d−2

[
η+ ln

(
1+

ω|τ|
η+

)
−η− ln

(
1+

ω|τ|
η−

)]
,

φ = φc +

√
d−1
2

[
ln
(

1+
ω|τ|
η+

)
− ln

(
1+

ω|τ|
η−

)]
, (3.6)

where ac and φc are arbitrary integration constants in terms of which we have defined

ω = κ
2 ac

d−2
4
√

d−1
, κ

2 = 2
√

2(d−1)
√

nΣd T d/2
c eφc , η± =

√
d−1±1. (3.7)

A solution also exists for d = 2 and is consistently recovered by taking the limit d→ 0 in the above
expressions [3, 4]. As shown in Figure 1, the evolution describes a universe, which bounces at
the maximal temperature Tc. For d > 2, it is radiation dominated at late and early times, when
the dilaton approaches its asymptote. The weak coupling approximation is valid throughout the
evolution, provided the maximal value eφc reached by the string coupling is chosen low enough.
Moreover, since the time-dependancies of the fields arise from loop corrections, all time-derivatives
are at most of order O(eφc). Thus, the Ricci scalar is small and higher order derivative terms are
consistently neglected.

In the string frame, the time derivatives of a and T vanish at the transition, while the dilaton
field is non-derivable. However, the scale factor and temperature are conical in the Einstein frame
(defined for d > 2), due to the dilaton dressing they acquire. When measured in this frame, the
critical temperature is lower than the string scale, T (E)

c = e
2φc
d−2 Tc.
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As a conclusion, the tachyon free models obtained by switching on suitable Wilson lines along
the Euclidean S1(R0) lead to bouncing cosmologies, which are free of Hagedorn instabilities and
initial singularities. In Euclidean time, the pre- and post-Big Bang eras differ in their realizations,
in terms of pure winding or pure momentum states, respectively. In Lorentzian time, they are
characterized by fermions in different spinorial representations and correspond to distinct phases
connected by a transition at the maximal temperature Tc = 1/(

√
2π). The cosmological evolutions

are induced by the back-reaction of the one-loop quantum/thermal corrections, while higher genus
and higher derivative terms can be neglected consistently. This is in contrast with previous attempts
to construct bouncing cosmologies [11]. Finally, we mention that other cosmological solutions for
the pre-Big Bang era (τ < 0) have been found recently within the framework reviewed in this note,
with identical post-Big Bang evolutions (τ > 0). In the string frame, they are characterized by a
static scale factor and a constant temperature equal to its critical value Tc, for all τ < 0. In the
Einstein frame, they describe a universe, whose time-evolution for τ < 0 is identical to that of a
contracting radiation era [12].
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