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1. Introduction

The recent measurement of the muonic hydrogen Lamb B8 »(F = 2)) — E(2S;/»(F =

1),

and the associated determination of the electromagnedtopradius [1]:
rp = 0.8418467)fm. (1.1)

has led to a lot of controversy. The reason is that this nunsbeisigma away from the CODATA
value,r, = 0.876869) fm [2]. If instead one uses this value in the theoretical egpion of the
muonic Hydrogen Lamb shift one gets the following discragyan

between theory and experiment. Two main options are cledrhand: either the theoretical de-

termination is not correct (or not as precise as claimedprevious determinations of the proton

radius were incorrect (or not as precise as claimed). Heréowes on the hadronic corrections

to the muonic hydrogen Lamb shift. They produce most of theettainty of the determination

of Ref. [1], and there are even claims that the error shoulthbeh larger, see for instance [3].

Here we would like to emphasize that in order to resolve thasrdpancy, the hadronic corrections

should be an order of magnitude larger than the predictioohofl perturbation theory. Since

those have been computed at leading order in the chiral iogyratre model independent, and free

of counterterms [4, 5, 6, 7], it is unlikely that these cdmitions can explain the discrepancy. We

briefly review these chiral corrections here. We do it witthia context of effective field theories.
The dynamics of the muonic hydrogen is characterized byrakseales:

mp ~ Ay,

My ~ Mg~ My =

ma ~ Me.

By considering ratios between them the main expansion peteamare obtained:

my my

my "y 9

ma mya? 1

~a

m  ma 137

My Mp
My+my,’

We use the effective field theory Potential Non-RelatigisiED (pNRQED) [8]. Specially
relevant for us is Ref. [4], which contains much more dethildormation on the application of
PNRQED to the muonic hydrogen, and we refer to it for detakse(also [9, 5, 6, 7]). pPNRQED
profits from the hierarchyn, > mya > m,lor2 and the Lagrangian reads

2

LonroED= /d3rd3RdtsT(r,R,t){ia _;_m (1.3)

' 1
_V(r7p701702) +er- E(R>t)}s(r’R>t) B / d3rZFIJVFIJV7



Chiral perturbation theory and ... Antonio Pineda

whereSis the field representing the muonic hydrogBnthe center of mass coordinate anthe
relative distance.
V stands for the potential and admits an expansion in powekgmy:

vy vO(r)

+
my m

V(r,p,01,02) =VO(r)+

(1.4)

The potential is obtained through matching to the undeglythreory. Since pNRQED describes
degrees of freedom witk ~ my,a?, any other degree of freedom with larger energy is integrate
out. This implies treating the proton and muon in a non-igkitc fashion and integrating out
pions. This is the step of going from Heavy Baryon Effectivee®ry (HBET) [10] to NRQED [11].
By integrating out the scaley,a, pPNRQED is obtained and the potentials appear. Schenigtical
the path followed is the following:

HBET(my,;/m,) — NRQEDm,a) — pNRQED

2. Hadronic Contributions

We want to obtain the finite-size effects due to the hadrotrigecgire of the proton. These
effects are encoded in the coefficient multiplying the dptitential (note that the combination of
NRQED matching coefficients that appears in the potentialigys the same).

@y — L hads3 L phadal Ma,s
6Vhad(r) m%D o ( ) — AE = m%D 7T( ) Ao (2'1)
where a
Dhad — _chad _ 16madp + 70'5""0'- (2.2)

We definecs = ci®™ %@ 4 chad, , — gPon-Tke 4 ghad ¢y — ghoint-ke | chad 54 thatchad, dhad,

chad are the left-over of the matching coefficients of NRQED Lagiian

dy

R

0.8 =-- FWDZFW NTD ENp+-- +mz pru u (2.3)

m%

after subtraction of the point-like contributions. We ddhis way because traditionally the point-
like contributions are already included in the "pure" QEDreotions described in the previous
sectiort. A more extended discussion can be found in Refs. [4, 5].

dhad encodes the hadronic vacuum polarization effect. Its dartton to the Lamb shift is
tiny, AE = 0.011 meV, and not much subject to uncertainty as it can berdated with enough
precision from dispersion relations.

More subject to discussion are the hadronic correctionscagsed tocgaOI They are usually
split into two terms (see the discussion in Refs. [4, B} = i3, .+ 33, We symbolically
draw them in Figs. 1 and 2, and discuss them in the next subsscA common feature of both of
them is that they are power-like chiral enhance.d%‘r. This is very important, as it allows chiral
perturbation theory to predict the leading order term withintroducing any extra parameter. The

. . e 2
resulting correction to the Lamb shift is 6f(m, a® x A—g X %)'

INote though, that for an strict effective theory point ofwjat scales of the order af, itis not a good approxima-
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Figurel: Symbolic representation (plus permutations) of the Zenjethcorrection, Eq. (2.4).
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Figure2: Symbolic representation of Eq. (2.11).

2.1 Zemach correction, (r3)

It is the one analogous to the Zemach correction defined imyperfine splitting [12]. It is
also common to rewrite it in terms of a coefficie(nﬁ}

n (r}) 96 1,1 L0~@
C3h.,aZdemach: §a2m|23mu (f;33>7 fm—p3 = ;/dD 1kFGI(E>GI(E)> (2.4)

WhereG<E”) is the electric Sachs form factor to ordein the chiral counting (6<EO) =1 andG<E2)
can be obtained from [13]). We also use dimensional requaion © = 4+ 2¢). This gets rid
of power-like divergences which are then automaticallyteetero (no need for the power-like
counterterms that appear with cutoff regularization). Tihal result is finite and it is possible to
obtain an analytic expression for the leading term in theatlind largeN. expansion (by including
the A particle contribution). It reads [4]

2
m m, (3 1
Cg,azdemach: 2("‘1)2 (—47.[;()) m_i {ZQ,ZA+ 8 (2.5)

tion to consider the proton point like. Therefore, in a wag, ave introducing an "spurious" contribution in the hadtoni
matching coefficients.
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2 () 3 A (3

where (A = Mp — Mp ~ 300 MeV)

(- 1)T(=3/2) 2(r+2)
= r(r+1)r(—3/2—r){86+2r_ 3+2r B“*”}’ =0 =8
S Cal 1 _nl(2n—-1)Nr[-3/2]
B”:/o dtmn Tt Ve~ ] Fn = 2(2n)11IT[1/24-n] @7

This expression produces the following number(ﬁ@ and the associated energy shift:

(3 r3
< F;irL)épT = 1.9 (Pined3 — AE = 0.010§m—p§ =0.019 meV (2.8)

This number can be compared with some recent determinami'oh%> using dispersion relations
[14, 15, 16, 17]

(rp)lexs { 2.71(13) Friar— Sick

. AE = 0.027—-0.029
fm3 2.85(8) Bernauer- Arrington } ”

In principle the difference between these two determimatioomes from different fit functions
and data, which may give a first estimate of the associatedrtaicty of the dispersion relation
analysis. We find quite reassuring that the difference viighahiral computation is around 40 %,
which could be easily accommodated with higher order ctioes.

2.2 Polarizability correction

The determination of the polarizability correction fronpeximent is on more shaky grounds
than for the Zemach correction, producing the larger uaggst in the theoretical expression for
the Lamb shift. The reason is that dispersion relations ddixahe result completely. The final
number used in [1] was taken from the average in Ref. [A&= 0.015+ 0.004, using the results
from, [19] AE = 0.012+ 0.002 meV, [20]AE = 0.017+0.004 meV, and [21AE = 0.016 meV.
For a recent discussion see Ref. [22].

Here again chiral computations may turn out to be cruciaktea the size of this correction.
The reason, as before, is that the polarizability correas@ower-like chiral enhanced. Therefore,
chiral perturbation theory can predict the leading ordemtwith no new parameter. This is the
attitude followed in Ref. [6], where a chiral computationngsdispersion relations yielded

d*ke 1 1 , ;
C3pol = e4mpm“/ 2nE ) KE K T Am2KE {(3KkGe +Kk?)Su(ikog, —kE) —k*Sp(ikog, —kE) }

where
W =i [d'xeTX(p. ST 3(x)3° (0) p.3). (2.9)
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Figure3: Diagrams contributing td'} from dispersion relations. Crossed diagrams are not a@spkitiown
but calculated.

which has the following structurgp(= q- p/m):

HQv 1
THY _ (_guv+ﬂ> s,l(p7q2)_|-W (p“ pzpq“> (pv pzpq >52(P7q2)
b q a

q2

i
- elYPoa,s5 A (P, OF) — 5 4P (Mpp)So — (d-9)Po) Ax(p. o) (2.10)
p p

After introducing the chiral expressions for the structiaretors from the diagrams in Fig. 3,
one obtains

D-1 00
dhad — a2 M <9A> /d ke 1 /0 dw o 5; (2.11)

PMr \ ) J @mP(A+k2) o T 2y 4T e (T

< {(2+ (1+K*)?)Ag (W2, k?) + (1+k?)*k*wW?Bg (W, k?) }

where (forD = 4)

1
Ae = ——
T T an

-1 _
_g+\/1+wz+/ dx 1-x ] , (2.12)
0

v/ 1+x2wW2 4+ x(1 — x)w2k?2

/ 1-2x 1 -1dx (1—x)(1—2x)2
Be = 8m Vv 1+x2wW2 4+ x(1 — x)w2k?2 “2Jo (142W2 + x(1— X)w2k2)?
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This gives the number
AE|ypr(pions) = 0.018 meV. (2.13)

We consider a more through chiral study of this object, itipalar including theA particle, com-
pulsory. The introduction of thé particle produced a large effect in the case of the Zemach
correction, something similar may happen here. Nevertselge would like to emphasize that in
order to explain Eqg. (1.2), the corrections to the leadirtigpchiral computation should be a factor
15 larger than the number obtained in Eq. (2.13).

3. Conclusions

We have briefly reviewed the determination of the hadroniosmions to the muonic hydrogen
Lamb shift using chiral perturbation theory. These objbeige been computed at leading order in
the chiral counting, are model independent and counterfexen Therefore, they provide with a
solid determination of these parameters.

For the Zemach correctioriy®), there are precise determinations obtained using digpersi
relations. Chiral perturbation theory provides with a hyghon-trivial double check of the mag-
nitude of this correction. The reason is that the chiral cotapon is power-like chiral enhanced.
It actually linearly diverges in the chiral limit. Therefgrthe leading order computation in chiral
perturbation theory is a pure prediction, with no free pagtam This rules out much larger values
of (r3) than those obtained from experiment, as such values would temsion with the chiral
perturbation theory prediction.

The polarizability correction is the major source of unaety. The reason is that dispersion
relations alone are not able to fully determine this qugnsiiffering from some ambiguity in the
parameterization. Therefore, the chiral perturbatiommheesult may turn out to be crucial here to
determine the size of this correction. Again, the chiral patation is power-like chiral enhanced
and linearly diverges in the chiral limit. Thus, the leadorger computation in chiral perturbation
theory is a pure prediction, with no free parameter. At pmeskeere is room for improvement
over the result obtained in Ref. [6] using chiral perturbattheory with dispersion relations. In
particular, it does not include the contribution due toAtgarticle, which, in the case of the Zemach
term, turned out to be important. It will then be very impottéo compute it to shrink the error
associated to this correction.
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