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Recently the muonic hydrogen lamb shift has been measured with unprecedented accuracy, al-

lowing for a precise determination of the proton radius. Theerror of the latter is dominated by the

uncertainties associated to the hadronic corrections to the muonic hydrogen lamb shift. We show

that chiral perturbation theory predicts them at leading order without any extra parameter, and in

a model independent way. The reason is that these corrections are chiral enhanced.
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1. Introduction

The recent measurement of the muonic hydrogen Lamb shift,E(2P3/2(F = 2))−E(2S1/2(F =

1)),

Eexp= 206.2949(32)meV

and the associated determination of the electromagnetic proton radius [1]:

rp = 0.84184(67)fm . (1.1)

has led to a lot of controversy. The reason is that this numberis 5 sigma away from the CODATA
value, rp = 0.8768(69) fm [2]. If instead one uses this value in the theoretical expression of the
muonic Hydrogen Lamb shift one gets the following discrepancy:

Eexp−Eth = 0.311 meV (1.2)

between theory and experiment. Two main options are clearlyat hand: either the theoretical de-
termination is not correct (or not as precise as claimed), orprevious determinations of the proton
radius were incorrect (or not as precise as claimed). Here wefocus on the hadronic corrections
to the muonic hydrogen Lamb shift. They produce most of the uncertainty of the determination
of Ref. [1], and there are even claims that the error should bemuch larger, see for instance [3].
Here we would like to emphasize that in order to resolve this discrepancy, the hadronic corrections
should be an order of magnitude larger than the prediction ofchiral perturbation theory. Since
those have been computed at leading order in the chiral counting, are model independent, and free
of counterterms [4, 5, 6, 7], it is unlikely that these contributions can explain the discrepancy. We
briefly review these chiral corrections here. We do it withinthe context of effective field theories.

The dynamics of the muonic hydrogen is characterized by several scales:
mp ∼ Λχ ,
mµ ∼ mπ ∼ mr =

mµ mp

mp+mµ
,

mrα ∼ me.
By considering ratios between them the main expansion parameters are obtained:
mπ

mp
∼ mµ

mp
∼ 1

9
,

mrα
mr

∼ mrα2

mrα
∼ α ∼ 1

137
.

We use the effective field theory Potential Non-Relativistic QED (pNRQED) [8]. Specially
relevant for us is Ref. [4], which contains much more detailed information on the application of
pNRQED to the muonic hydrogen, and we refer to it for details (see also [9, 5, 6, 7]). pNRQED
profits from the hierarchymµ ≫ mµα ≫ mµα2 and the Lagrangian reads

LpNRQED=
∫

d3rd3RdtS†(r,R, t)

{

i∂0−
p2

2mr
(1.3)

−V(r,p,σ1,σ2)+er ·E(R, t)

}

S(r,R, t)−
∫

d3r
1
4

FµνFµν ,
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whereS is the field representing the muonic hydrogen,R the center of mass coordinate andr the
relative distance.

V stands for the potential and admits an expansion in powers of1/mµ :

V(r,p,σ1,σ2) =V(0)(r)+
V(1)(r)

mµ
+

V(2)(r)
m2

µ
+ · · · . (1.4)

The potential is obtained through matching to the underlying theory. Since pNRQED describes
degrees of freedom withE ∼ mµα2, any other degree of freedom with larger energy is integrated
out. This implies treating the proton and muon in a non-relativistic fashion and integrating out
pions. This is the step of going from Heavy Baryon Effective Theory (HBET) [10] to NRQED [11].
By integrating out the scalemµα , pNRQED is obtained and the potentials appear. Schematically
the path followed is the following:

HBET(mπ/mµ)→ NRQED(mµα)→ pNRQED.

2. Hadronic Contributions

We want to obtain the finite-size effects due to the hadronic structure of the proton. These
effects are encoded in the coefficient multiplying the deltapotential (note that the combination of
NRQED matching coefficients that appears in the potential isalways the same).

δV(2)
had(r)≡

1
m2

p
Dhad

d δ 3(r)→ ∆E =
1

m2
p
Dhad

d
1
π
(
mrα

n
)3δl0 (2.1)

where
Dhad

d =−chad
3 −16παdhad

2 +
πα
2

chad
D . (2.2)

We definec3 = cpoint−like
3 + chad

3 , d2 = dpoint−like
2 +dhad

2 cD = cpoint−like
D + chad.

D , so thatchad
3 , dhad

2 ,
chad

D are the left-over of the matching coefficients of NRQED Lagrangian

δL = · · · d2

m2
p
FµνD2Fµν + · · ·−e

cD

m2
p
N†

p∇ ·ENp+ · · ·+ c3

m2
p
N†

pNpµ†µ (2.3)

after subtraction of the point-like contributions. We do inthis way because traditionally the point-
like contributions are already included in the "pure" QED corrections described in the previous
section1. A more extended discussion can be found in Refs. [4, 5].

dhad
2 encodes the hadronic vacuum polarization effect. Its contribution to the Lamb shift is

tiny, ∆E = 0.011 meV, and not much subject to uncertainty as it can be determined with enough
precision from dispersion relations.

More subject to discussion are the hadronic corrections associated tochad
3 . They are usually

split into two terms (see the discussion in Refs. [4, 5]):chad
3 = chad

3,Zemach+chad
3,pol. We symbolically

draw them in Figs. 1 and 2, and discuss them in the next subsections. A common feature of both of
them is that they are power-like chiral enhanced:∼ mµ

mπ
. This is very important, as it allows chiral

perturbation theory to predict the leading order term without introducing any extra parameter. The

resulting correction to the Lamb shift is ofO(mµα5× m2
µ

Λ2
χ
× mµ

mπ
).

1Note though, that for an strict effective theory point of view, at scales of the order ofmp, it is not a good approxima-
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Figure 1: Symbolic representation (plus permutations) of the Zemach〈r3〉 correction, Eq. (2.4).
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Figure 2: Symbolic representation of Eq. (2.11).

2.1 Zemach correction, 〈r3〉

It is the one analogous to the Zemach correction defined in thehyperfine splitting [12]. It is
also common to rewrite it in terms of a coefficient〈r3

p〉

chad
3,Zemach=

π
3

α2m2
pmµ〈r3

p〉 ,
〈r3

p〉
fm3 =

96
π

∫

dD−1k
1
k6G(0)

E G(2)
E , (2.4)

whereG(n)
E is the electric Sachs form factor to ordern in the chiral counting (G(0)

E = 1 andG(2)
E

can be obtained from [13]). We also use dimensional regularization (D = 4+ 2ε). This gets rid
of power-like divergences which are then automatically setto zero (no need for the power-like
counterterms that appear with cutoff regularization). Thefinal result is finite and it is possible to
obtain an analytic expression for the leading term in the chiral and largeNc expansion (by including
the∆ particle contribution). It reads [4]

chad
3,Zemach= 2(πα)2

(

mp

4πF0

)2 mµ

mπ

{

3
4

g2
A+

1
8

(2.5)

tion to consider the proton point like. Therefore, in a way, we are introducing an "spurious" contribution in the hadronic
matching coefficients.
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+
2
π

g2
πN∆

mπ

∆

∞

∑
r=0

Cr

(mπ

∆

)2r
+g2

πN∆

∞

∑
r=1

Hr

(mπ

∆

)2r
}

,

where (∆ = M∆ −Mp ∼ 300 MeV)

Cr =
(−1)r Γ(−3/2)

Γ(r +1)Γ(−3/2− r)

{

B6+2r −
2(r +2)
3+2r

B4+2r

}

, r ≥ 0, (2.6)

Bn ≡
∫ ∞

0
dt

t2−n

√
1− t2

ln

[

1
t
+

√

1
t2 −1

]

Hn ≡
n!(2n−1)!!Γ[−3/2]

2(2n)!!Γ[1/2+n]
. (2.7)

This expression produces the following number for〈r3
p〉 and the associated energy shift:

〈r3
p〉|χPT

fm3 = 1.9 (Pineda)→ ∆E = 0.010
〈r3

p〉
fm3 = 0.019 meV (2.8)

This number can be compared with some recent determinationsof 〈r3
p〉 using dispersion relations

[14, 15, 16, 17]

〈r3
p〉|”exp”

fm3 =

{

2.71(13) Friar−Sick
2.85(8) Bernauer−Arrington

}

→ ∆E = 0.027−0.029.

In principle the difference between these two determinations comes from different fit functions
and data, which may give a first estimate of the associated uncertainty of the dispersion relation
analysis. We find quite reassuring that the difference with the chiral computation is around 40 %,
which could be easily accommodated with higher order corrections.

2.2 Polarizability correction

The determination of the polarizability correction from experiment is on more shaky grounds
than for the Zemach correction, producing the larger uncertainty in the theoretical expression for
the Lamb shift. The reason is that dispersion relations do not fix the result completely. The final
number used in [1] was taken from the average in Ref. [18]:∆E = 0.015±0.004, using the results
from, [19] ∆E = 0.012±0.002 meV, [20]∆E = 0.017±0.004 meV, and [21]∆E = 0.016 meV.
For a recent discussion see Ref. [22].

Here again chiral computations may turn out to be crucial to asses the size of this correction.
The reason, as before, is that the polarizability correction is power-like chiral enhanced. Therefore,
chiral perturbation theory can predict the leading order term with no new parameter. This is the
attitude followed in Ref. [6], where a chiral computation using dispersion relations yielded

chad
3,pol =−e4mpmµ

∫

d4kE

(2π)4

1

k4
E

1

k4
E +4m2

µk2
0,E

{

(3k2
0,E +k2)S1(ik0,E,−k2

E)−k2S2(ik0,E,−k2
E)
}

where

Tµν = i
∫

d4xeiq·x〈p,s|TJµ(x)Jν(0)|p,s〉 , (2.9)

5



P
o
S
(
Q
N
P
2
0
1
2
)
0
0
2

Chiral perturbation theory and ... Antonio Pineda

p p’

µ pπ ν

qq

p p’

pπ

ν

q

µ

(2)

p pp’ p’

q q
q q

q

µ
µµ νν

pπ

pπ

(3)

(1)

(4)

p p’

pπ

µ ν
q q

(Seagull)

Figure 3: Diagrams contributing toT i j from dispersion relations. Crossed diagrams are not explicitly shown
but calculated.

which has the following structure (ρ = q· p/m):

Tµν =

(

−gµν +
qµqν

q2

)

S1(ρ ,q2)+
1

m2
p

(

pµ − mpρ
q2 qµ

)(

pν − mpρ
q2 qν

)

S2(ρ ,q2)

− i
mp

ε µνρσqρ sσ A1(ρ ,q2)− i
m3

p
ε µνρσqρ

(

(mpρ)sσ − (q·s)pσ
)

A2(ρ ,q2) (2.10)

After introducing the chiral expressions for the structurefactors from the diagrams in Fig. 3,
one obtains

chad
3,pol =−e4m2

p
mµ

mπ

(

gA

fπ

)2∫ dD−1kE

(2π)D−1

1
(1+k2)4

∫ ∞

0

dw
π

wD−5 1

w2+4
m2

µ
m2

π

1
(1+k2)2

(2.11)

×
{

(2+(1+k2)2)AE(w
2,k2)+ (1+k2)2k2w2BE(w

2,k2)
}

where (forD = 4)

AE =− 1
4π

[

−3
2
+
√

1+w2+
∫ 1

0
dx

1−x
√

1+x2w2+x(1−x)w2k2

]

, (2.12)

BE =
1

8π

[

∫ 1

0
dx

1−2x
√

1+x2w2+x(1−x)w2k2
− 1

2

∫ 1

0
dx

(1−x)(1−2x)2

(1+x2w2+x(1−x)w2k2)
3
2

]

.
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This gives the number

∆E|χPT(pions) = 0.018 meV. (2.13)

We consider a more through chiral study of this object, in particular including the∆ particle, com-
pulsory. The introduction of the∆ particle produced a large effect in the case of the Zemach
correction, something similar may happen here. Nevertheless, we would like to emphasize that in
order to explain Eq. (1.2), the corrections to the leading order chiral computation should be a factor
15 larger than the number obtained in Eq. (2.13).

3. Conclusions

We have briefly reviewed the determination of the hadronic corrections to the muonic hydrogen
Lamb shift using chiral perturbation theory. These objectshave been computed at leading order in
the chiral counting, are model independent and countertermfree. Therefore, they provide with a
solid determination of these parameters.

For the Zemach correction,〈r3〉, there are precise determinations obtained using dispersion
relations. Chiral perturbation theory provides with a highly non-trivial double check of the mag-
nitude of this correction. The reason is that the chiral computation is power-like chiral enhanced.
It actually linearly diverges in the chiral limit. Therefore, the leading order computation in chiral
perturbation theory is a pure prediction, with no free parameter. This rules out much larger values
of 〈r3〉 than those obtained from experiment, as such values would bein tension with the chiral
perturbation theory prediction.

The polarizability correction is the major source of uncertainty. The reason is that dispersion
relations alone are not able to fully determine this quantity, suffering from some ambiguity in the
parameterization. Therefore, the chiral perturbation theory result may turn out to be crucial here to
determine the size of this correction. Again, the chiral computation is power-like chiral enhanced
and linearly diverges in the chiral limit. Thus, the leadingorder computation in chiral perturbation
theory is a pure prediction, with no free parameter. At present there is room for improvement
over the result obtained in Ref. [6] using chiral perturbation theory with dispersion relations. In
particular, it does not include the contribution due to the∆ particle, which, in the case of the Zemach
term, turned out to be important. It will then be very important to compute it to shrink the error
associated to this correction.
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