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1. Introduction

Understanding the properties of atomic nuclei and nuclear dynamics from first principles re-
mains to be a major challenge. Complementary to first attempts along these lines based on lattice
QCD, see e.g. [1], an effective field theory (EFT) approach has been extensively used in the last two
decades to describe the properties of nuclear bound states and reactions [2, 3, 4, 5]. This method
exploits the separation of scales exhibited in nuclear systems and is based on the effective chiral
Lagrangian formulated in terms of pions and nucleons (and sometimes also the ∆(1232) isobars)
which are the proper degrees of freedom (DOF) for this kind of problems. As pions are the pseudo-
Goldstone bosons of the approximate chiral symmetry of QCD, their interaction are of derivative
nature. This allows one to describe low-energy pion dynamics in chiral perturbation theory by
employing a simultaneous expansion in external momenta and about the chiral limit.

While this approach can be straightforwardly extended to the single-baryon sector, its appli-
cation to nuclear dynamics requires modifications in order to account for nonperturbative features
of the nuclear force. Thanks to the nonrelativistic nature of the problem at hand, the description of
low-energy nuclear dynamics simplifies enormously and can be formulated in terms of the conven-
tional, quantum mechanical A-body problem. Combining this formulation with chiral EFT allows
one to derive nuclear forces and exchange currents in harmony with the symmetries of QCD in a
model-independent and systematically improvable way. In this talk I outline some recent develop-
ments along these lines. The paper is organized as follows. In section 2 I describe the status of
the nuclear forces in chiral EFT and discuss some actual topics focusing especially on the three-
nucleon force. I then switch in section 3 to a discretized version of chiral EFT which allows one to
use stochastic methods in order to access the properties of nuclei and present selected recent results
for up to A = 12 nucleons. Finally, a brief summary and outlook are given in section 4.

2. Towards a precision determination of the nuclear force in chiral EFT

The usefulness of an EFT framework relies on the separation of scales. For the case at hand,
the soft scale Q is associated with the typical external momenta of the nucleons which are assumed
to be of the order of the pion mass while the hard scale Λχ can be estimated e.g. by the mass
of the ρ-meson. The long-range part of the nuclear force and current operators is, of course,
governed by soft physics mediated by exchange of pions. Long-range interactions can be worked
out systematically, order-by-order in the chiral expansion and are strongly constrained by the chiral
symmetry of QCD. Short-range forces, on the other hand, are driven by physics that cannot be
resolved in low-energy reactions. They can be mimicked by zero-range contact interactions with
an increasing number of derivatives. The chiral symmetry of QCD does not provide any constraints
on the contact interactions (except for their quark mass dependence).

Presently, the most advanced calculations of the two-nucleon force (2NF) are carried out at
next-to-next-to-next-to-leading order (N3LO) using the heavy-baryon formulation of the chiral ef-
fective Lagrangian for pions and nucleons [6, 7]. At this order, the long-range part of the nuclear
force receives contributions from exchange of up to three pions. Fig. 3 illustrates the chiral ex-
pansion for the two most important components of the 2NF, namely for the isovector-tensor and
isoscalar-central potentials. All low-energy constants (LECs) appearing in the expressions for the
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Figure 1: Chiral expansion of the isovector-tensor (left panel) and isoscalar central (right panel) long-range
potentials. The shaded band shows the estimated size of the short-range contributions represented by the
(smeared) contact interactions, see Ref. [5] for more details.

long-range part of 2NF are determined from pion-nucleon scattering. The potential in the isovector-
tensor channel is, of course, dominated by the one-pion exchange. Two-pion exchange contribu-
tions in this channel become visible at distances of the order r ∼ 2 fm and smaller. The strong,
attractive isoscalar-central potential of intermediate range is another well-known feature of the
two-nucleon force. Phenomenologically, it is attributed to the correlated two-pion exchange which
is often modeled in terms of the σ -meson. In chiral EFT, all low-energy manifestations of the σ

and other heavy mesons are systematically taken into account through values of the LECs in the
effective Lagrangian. The strong attraction resulting from the chiral two-pion exchange potential
in the isoscalar-central channel is in agreement with the phenomenological picture.

The short-range part of the N3LO potential receives contributions from 24 isospin-conserving
and 2 isospin-breaking contact interactions.1 Using the appropriately chosen, finite cutoff to reg-
ularize the Schrödinger equation along the lines of Refs. [13, 15], the LECs accompanying these
short-range operators have been determined from fits to Nijmegen partial wave analysis [6] and
also directly to the available experimental data on nucleon-nucleon scattering [7]. The resulting
N3LO potentials allow for an accurate description of nucleon-nucleon scattering observables up to
energies of the order Elab ∼ 200 MeV, see Fig. 2 for two representative examples, and provide a
solid basis for few- and many-nucleon calculations.

Three-nucleon forces (3NF) represent an old but still very important topic in nuclear physics.
While effects of the 3NF in low-energy nuclear observables are expected to be fairly small [2], they
appear to be important at the level of accuracy which nowadays represents a standard in ab-initio
few-body [21] as well as many-body calculations, see e.g. Ref. [22]. In spite of many decades of
effort, the detailed structure of the 3NF is not properly described by the phenomenological models
[21]. Given the very rich spin-momentum structure of the 3NF as compared to the 2NF, scarcer
database and relatively high computational cost, further progress in this fields clearly requires input
from theory. This provides a strong motivation to study the structure of the 3NF within chiral EFT.

The first contribution to the 3NF appears at N2LO [23, 24] and depends on two LECs that

1These numbers are based on naive dimensional analysis which underlies the chiral power counting. There is no
consensus in the community regarding the validity of the naive dimensional analysis in the context of nuclear EFT, see
Refs. [13, 14, 15, 16, 17, 18, 19, 20] for samples of different views on this issue.
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Figure 2: Neutron-proton differential cross section (left panel) and analyzing power (right panel) at Elab = 50
MeV calculated using chiral EFT, the CD Bonn 2000 potential of Ref. [8] and the potential developed
by Gross and Stadler in Ref. [9]. Also shown are results from the Nijmegen partial wave analysis [10].
References to data can be found in [10].

have to be fixed from few-nucleon data such as e.g. the 3H binding energy and the nd spin-dublet
scattering length. The resulting nuclear Hamiltonian at order N2LO has been applied to compute
various 3N scattering observables, see [3, 5, 21] and references therein. Apart from few exceptions,
one observes a good description of experimental data at low energy. However, at energies Elab ∼ 50
MeV and higher, the theoretical uncertainty becomes rather large. The chiral 3NF at N2LO is also
being extensively studied in connection with the spectra of light and medium-mass nuclei and the
properties of nuclear matter, see Refs. [22, 25, 26] for some recent applications.

The corrections to the 3NF at N3LO are worked out in Refs. [27, 28, 29] and do not involve
any unknown LECs. At this order and, in fact, also at next-to-next-to-next-to-next-to-leading order
(N4LO), the long-range part of the 3NF is given by three topologies. The longest-range contribu-
tion clearly emerges from two-pion exchange (TPE) graphs, in which a single pion is exchanged
between the two nucleon pairs. The next-longest-range terms are given by diagrams with one- and
two-pion exchange between the two nucleon pairs (OPE-TPE) and by the so-called ring graphs, in
which a virtual pion scatters once off every one of the three nucleons.

The dominant longest-range 3NF mechanism is usually associated with the intermediate ∆(1232)
excitation. It is taken into account in all models of the 3NF and also drives the leading contribution
to the chiral TPE 3NF at N2LO. More precisely, in the formulation of chiral EFT based on pions
and nucleons as the only explicit DOF, all effects of the ∆-isobar (and higher excitations of the
nucleon) are encoded in the values LECs of the effective Lagrangian. The subleading pion-nucleon
LECs c3,4, which determine the strength of the TPE 3NF at N2LO, are, in fact, to a large extent
saturated by the ∆-isobar. The situation is different for the OPE-TPE and ring topologies whose
(nominally) leading contributions emerge at N3LO and are driven by the lowest-order πN vertices
which do not incorporate the physics of the ∆-isobar. One, therefore, expects that the N3LO results
for the OPE-TPE and ring 3NF are not yet converged. As a consequence, it is needed to either go
to higher orders in the chiral expansion beyond N3LO or to calculate explicitly the contributions of
the ∆-isobar at N3LO using an extended chiral EFT formulation with explicit Delta DOF, see also
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Figure 3: Chiral expansion of the functions A (q2) and B(q2) entering the two-pion exchange 3NF in
Eq. (??) up to N4LO. Left (right) panel shows the results obtained with the LECs determined from the
order-Q4 fit to the pion-nucleon partial wave analysis of Ref. [9] (Ref. [10]).
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Figure 3: Chiral expansion of the functions A (q j) and B(q j) entering the TPE 3NF up to N4LO. The
results are obtained with the LECs determined from the order-Q4 fit to the Karlsruhe-Helsinki partial wave
analysis of pion-nucleon scattering of Ref. [11].

the discussion in Ref. [30]. The first step along these lines was made recently in Ref. [31], where
the chiral expansion of the longest-range, TPE 3NF topology was extended to N4LO within the
∆-less theory. In the isospin and static limits, the general structure of the TPE 3NF in momentum
space has the form

V2π =
~σi ·~qi~σk ·~qk

[q2
i +M2

π ] [q2
k +M2

π ]

(
τ i · τk A (q j)+ τ i× τk · τ j~qi×~qk ·~σ j B(q j)

)
, (2.1)

where ~σi denote the Pauli spin matrices for the nucleon i, ~qi = ~pi
′−~pi, with ~pi

′ and ~pi being
the final and initial momenta of the nucleon i and qi ≡ |~qi|. The quantities A (q j) and B(q j) in
Eq. (2.1) are scalar functions of the momentum transfer of the j-th nucleon whose explicite form is
derived within the chiral expansion. The N4LO contributions to A and B worked out in Ref. [31]
depend on certain combinations of LECs from the order-Q2, Q3 and Q4 effective πN Lagrangian,
whose values were extracted from pion-nucleon scattering. As shown in Fig. 3, one observes
a good convergence of the chiral expansion for the functions A and B which is fully in line
with the expectations based on the qualitative arguments given above. The extension of the N4LO
calculation to the more interesting case of the OPE-TPE and ring topologies is in progress. The
contact interactions at N4LO are considered in Ref. [32]. We further emphasize that the numerical
implementation of the novel 3NF terms requires carrying out of a partial wave decomposition. This
can be carried out numerically using the technique developed in Ref. [33].

3. Nuclear lattice simulations

Recently, a discretized version of chiral EFT has been proposed and successively used to com-
pute the properties of few- and many-nucleon systems. In this framework, pions and nucleons are
treated as point-like particles on an Euclidean space-time lattice, and the path integral is evaluated
by Monte Carlo sampling [34, 35, 36, 37]. Using hadronic DOF rather than quarks and gluons
allows one to probe large volumes and greater numbers of nucleons as compared to lattice QCD.
Clearly, the method is only applicable at low energies where chiral EFT is expected to converge.
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The crucial object to calculate in our nuclear lattice simulations is the correlation function for
A nucleons in the Euclidean space-time

ZA(t) = 〈ΨA|exp(−tH)|ΨA〉 . (3.1)

Here, the states |ΨA〉 refer to the Slater determinants for A free nucleons, H is the Hamiltonian of
the system and t the Euclidean time. The correlation function can be most conveniently calculated
utilizing the Hubbard-Stratonovich transformation in order to get rid of interaction terms quartic in
the nucleon fields (at the expense of introducing interactions with auxiliary fields) and employing
hybrid Monte Carlo technique, see [37] for more details. Once ZA(t) is computed, the ground state
energy of the A-nucleon system can be extracted from the asymptotic behavior of the correlation
function for large t,

E0
A =− lim

t→∞

d
dt

lnZA(t). (3.2)

Similarly, one can obtain expectation value of a normal ordered operator O via

〈Ψ0
A|O|Ψ0

A〉= lim
t←∞

ZO
A (t)

ZA(t)
, ZO

A (t) = 〈ΨA|exp(−tH/2)O exp(−tH/2)|ΨA〉 . (3.3)

In order to define the action, one first needs to tune two-nucleon contact operators to reproduce
NN scattering data. Thus, one needs to compute two-particle phase shifts on the lattice. Instead
of using Lüscher’s formula [38], we employ here the spherical wall method which allows us to de-
termine phase shifts and mixing angles from measuring the energy spectrum for two particles with
specifically chosen boundary conditions, see [39] for more details. Last but not least, it should be
emphasized that we use the lowest-order action in our simulations which incorporates the physics
of the one-pion exchange and the leading contact interactions. Higher-order contributions and
3NFs are taken into account perturbatively.

The most advanced studies within this framework are so far carried out at N2LO in the chiral
expansion [40, 41, 42, 43]. We take into account the appropriate isospin-breaking corrections
and Coulomb interaction, see [42] for more details, and the contributions of the leading 3NF. The
two LEC entering the 3NF are fixed in Ref. [43] from the triton and α-particle binding energies.
With the nuclear Hamiltonian being fixed as described above, we found −58(2) MeV and −91(3)
MeV for the ground state energies of 8Be and 12C.2 These results are in a very good agreement
with the corresponding experimental values of −56.50 MeV and −92.16 MeV, respectively. For
12C, we also extracted the energies of the two lowest exciting states by generalizing the Euclidean
time projection method to a multi-channel calculation. Our results are summarized in Fig. 4. All
calculated energies are in agreement with experimental values. While the ground and spin-2 states
of 12C have been also calculated by other groups using different methods, our results for the second
spin-0 state, the famous Hoyle state, are the first ab initio calculations.

4. Summary and outlook

In this talk I outlined some recent developments in low-energy few- and many-nucleon chiral
dynamics. One of the most interesting topics is presently the three-nucleon force. The leading 3NF

2Here and in what follows, the error bars are one standard deviation estimates which include both Monte Carlo
statistical errors and uncertainties due to extrapolation at large Euclidean time.
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Figure 4: The ground state energy and the first excited states of 12C obtained from the nuclear lattice
simulations at N2LO in comparison with experiment.

contributions at N2LO have already been extensively explored in few- and many-body calculations.
There is strong evidence that the recently derived corrections to the 3NF at N3LO are still insuffi-
cient for an accurate description of the long-range potentials in certain channels so that one needs
to go to even higher order and/or include the ∆ isobar as an explicit degree of freedom. Work along
these lines is in progress.

I also discussed a discretized version of chiral EFT which merges the advantages of chiral
EFT with Monte Carlo techniques to access the properties of light nuclei and nuclear matter. We
applied this method to study the spectra of nuclei with up to A = 12 nucleons at N2LO in the chiral
expansion and succeeded, for the first time, to describe the famous Hoyle state ab initio.

It is a pleasure to thank the organizers of QNP2012 for making this exciting conference pos-
sible and all my collaborators for sharing their insights into the discussed topics. This work was
supported by the European Research Council (ERC-2010-StG 259218 NuclearEFT).
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