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We review recent experimental work on probing QCD at high pT at the Tevatron and at the LHC.
The Tevatron has just finished a long and illustrious career at the forefront of high energy physics,
while the LHC now has its physics program in full swing and is producing results at a quick rate
in a new energy regime. Many of the LHC measurements extend well into the TeV range, with
potential sensitivity to new physics. The experimental systematics at the LHC are also becoming
competitive with the Tevatron, making precision measurements of QCD possible.
Measurements of inclusive jet, dijet and isolated prompt photon production can be used to test
perturbative QCD predictions and to constrain parton distribution functions, as well as to measure
the strong coupling constant. More exclusive topologies are used to constrain aspects of parton
shower modeling, initial and final state radiation. Interest in boosted heavy resonances has re-
sulted in novel studies of jet mass and subjet structure that also test perturbative QCD predictions
and parton shower models. Studies of V+jets, including heavy flavor jets, constrain important
backgrounds to single top, Higgs boson searches and new physics searches. At the highest mass
scales, measurements of dijet mass and dijet angular distributions are sensitive probes of new
physics.
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1. Introduction

We review the recent experimental work done on probing QCD at high pT . The first goal
of these studies is to improve our detailed description of standard model physics. The hard QCD
studies presented here provide input to fitting proton parton distribution functions (PDFs), measur-
ing strong coupling constant αS, and to studying perturbation theory (pQCD), initial and final state
radiation, parton shower modeling and jet substructure.

One particular focus of the hard QCD studies is studying the gluon PDF at high Bjorken x,
where the hadron colliders are complementary to e-p colliders and fixed target experiments. A
second goal is to search for new physics in high pT events, of which an example is shown Fig. 1(a).
The jet events probe the highest transverse momenta ever produced at colliders, having particular
sensitivity to quark substructure, high mass resonances and contact interactions. Detailed studies of
vector boson production in association with jets are also presented because these channels present
irreducible background for many new physics searches, including the search for the Higgs boson.

2. Experimental methods

The measurements presented here have been done at the D0 and CDF experiments at the
Tevatron, and at the ATLAS and CMS experiments at the Large Hadron Collider (LHC). The
Tevatron has provided the experiments over 10 fb−1 of proton-antiproton collisions at the center-
of-mass-energy

√
s = 1.96 TeV, while the LHC has provided about 40 pb−1 per experiment at√

s = 7 TeV in 2010, and more than 5 fb−1 per experiment in 2011. The Tevatron has now stopped
running, while data at the LHC is accumulating fast, as shown in Fig. 1(b).

The experimental systematics from jet energy corrections (JEC) have been steadily reduced at
the LHC, and are now on par with the Tevatron experiments [1, 2, 3, 4, 5, 6] as seen in Fig. 1(c).
The pile-up will be a challenge at the LHC in 2012, when the average number of simultaneous
interactions increases to 30. While pile-up is generally not a major issue for high pT studies,
many observables will be affected. Novel theoretical and experimental approaches are available
and being studied for reducing impact of pile-up.
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Figure 1: (a) High mass and pT dijet event at D0, (b) integrated luminosity at LHC in 2011, (c) estimated
range of JEC systematics (courtesy of K. Rabbertz).
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3. Constraints on PDFs and αS

Some of the main PDF constraints from the hadron colliders have traditionally come from the
inclusive jet pT spectrum [6, 7, 8, 9, 10, 11, 12, 13] shown in Fig.2(a) and the dijet mass spectrum
[13, 14, 15, 16] measurements shown in Fig. 2(b). These measurements are particularly useful
to determine the gluon PDF at high Bjorken x, which measurements at HERA don’t constrain as
well. More recently, measurements of the three-jet mass [17] shown in Fig. 2(b) have demon-
strated a complementary way to decouple effects from the strong coupling constant αS from PDF
uncertainties.
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Figure 2: (a) Inclusive jet cross section, (b) dijet mass, and (c) three-jet mass cross section.

The cross section measurements show generally good agreement with the NLO predictions.
Larger jet cone sizes show slight tendency for better agreement with NLO, as expected from bet-
ter recovery of final state radiation. Theory calculations for a direct ratio of jet cross sections
[18] indicate the effect is at the level of 5–10%, consistent with observations. The experimental
uncertainties at the LHC are reaching the level where the measurements can distinguish between
different PDF sets [19, 20, 21, 22, 23] that are shown in Figs. 3(a,b). The measurements have some
tendency to be lower than theory predictions particularly at high rapidities, as shown in Fig. 3(b).

The cross section data can be reinterpreted as a measurement of the αS as a function of hard
scale, when the αs dependence of global PDF fits is factored out. These measurements were first
done at Tevatron in Run I [24] and repeated in Tevatron Run II [25] and with the LHC data [26].
The αS measurements show good agreement with the expected running of the coupling up to the
highest scales accessible at the LHC, as shown in Fig. 3(c).

 (TeV)
T

Jet p
0.1 0.2 0.3 0.4 0.5 1 2

R
at

io
 to

 N
N

P
D

F
2.

1

0.5

1

1.5

|y| < 0.5
Data
CT10
MSTW2008
HERA1.5
ABKM09

 R =0.7T = 7 TeV anti-ks  -1CMS Preliminary L = 4.7 fb

Figure 3: Inclusive jet cross section versus different PDF sets at (a) low rapidity, and (b) at high rapidity.
(c) Measurement of αS running at LHC.
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4. Jet substructure

At the LHC energies highly boosted heavy resonances (W, Z, top, H) decaying into quarks
can be reconstructed as massive jets with a distinctive substructure. This has lead into a revival of
interest in jet substructure studies [27, 28, 29]. Traditional variables include the jet mass and subjet
multiplicity, shown in Figs. 4(a,b), and newer variables include subjettiness, angularity, planar flow
etc. The differences between quark and gluon jets are very pronounced, which helps to separate
QCD backgrounds that are dominated by gluon jets. Special algorithms for filtering jets reduce
pile-up sensitivity [29], and also improve agreement between Pythia [30] and Herwig [31].

Many heavy resonances produce b-jets, and the heavy flavor production is interesting in it’s
own right. The inclusive b-jet cross section is 2–4% of inclusive jet cross section, and b-jets have
been measured with both muon triggers and with jet triggers using secondary vertices for tagging
b-jets. The measurements done at LHC [32, 33] show reasonable agreement with MC@NLO [34]
predictions in Fig. 4(c), and good agreement with POWHEG+Pythia [35]. Gluon splitting is a large
contribution to overall b-jet production at LHC, which may explain the differences.
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Figure 4: (a) Jet mass, and (b) subjet multiplicity. (c) Inclusive b-jet pT spectrum.

5. Photons, Z bosons and heavy flavor production

The prompt photon production gives a direct handle on the interaction at the parton level, and
has been proposed as a useful channel for PDF fits. Fragmentation photons that are challenging to
model contribute at low pT , but the experiments generally agree with NLO predictions [36, 37, 38,
39, 40, 41, 42], as seen in Fig. 5(a). The W and Z boson production in standard QCD processes
is an irreducible background for many new physics searches so it is important to understand these
processes in detail. The Z provides a clean signal, and the Z+jet production has been measured
versus jet pT as shown in Fig. 5(a), number of jets, HT and many other kinematic variables [43, 44,
45, 46, 47]. Comparisons with state-of-the-art calculations such as BlackHat [48] and MCFM [49]
show good agreement between data and theory.

B-jets are also often produced in new physics processes, which makes associated heavy flavor
production particularly interesting. The photon+heavy flavor measurements [50, 51, 52, 53] find
agreement with Pythia and NLO predictions up to pT = 70 GeV, as shown in Fig. 5(c). Good
description of data requires higher order corrections present in Sherpa [54]. The Z+b-jet measure-
ments [55, 56, 57] are more limited by statistics, but find general agreement with NLO predictions.
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Figure 5: (a) Prompt photon production, (b) Z+jet production, (c) photon+b-jet production.

6. Studies of event topology

Studies of event topology are useful for testing higher order corrections and parton shower
models. The measurement of diphoton azimuthal decorrelation ∆φγγ [58, 59, 60, 61, 62, 63] has
turned out to be a spectacular example of the need for next-to-next-leading order (NNLO) correc-
tions, as shown in Fig. 6(a). Azimuthal decorrelation between pairs of jets [64, 65, 66] is a sensitive
probe of initial state radiation, and well described by NLO within pQCD applicability. It is also
sensitive to multijet topologies, as shown in Fig. 6(b). Hadronic event shapes [67] probe multijet
production more directly. This measurement sees good agreement with Pythia and Herwig, while
MadGraph and Alpgen show some differences with data, as shown in Fig. 6(c).
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Figure 6: (a) Diphoton azimuthal decorrelation, (b) dijet azimuthal decorrelation, (c) hadronic event shapes.

7. New physics searches

In addition to their use for constraining PDFs and backgrounds to new physics, the dijet events
are used for direct searches of new physics at the highest scales accessible at hadron colliders. The
studies of dijet angular distributions [68, 69] rely on the assumption that new physics production
is isotropic and peaks at low χdijet = exp |y1− y2|, where y is jet rapidity. The measurements are
sensitive to contact interaction scales up to Λ 10 TeV, but see no deviations from QCD predictions
as shown in Fig. 7(a). The dijet mass spectrum measurements are also reinterpreted as searches for
exotic resonances [69, 70, 71], with highest scales reaching up to 4 TeV, as shown in Fig. 7(b). No
indications of new resonances are found.
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Figure 7: Search of new physics in (a) dijet angular distribution, (b) dijet mass spectrum.

8. Conclusions and outlook

The Tevatron finished data-taking in 2011 and the experiments are now coming out with lots of
nice results from a large and well understood dataset of 10 fb−1 per experiment. The LHC collected
5 fb−1 per experiment in 2011 at

√
s = 7 TeV, and will continue for another 15 fb−1 at

√
s = 8 TeV

in 2012. There is plenty of data and small systematics on both sides of the Atlantic, with many
new results produced in the past year and more coming. The studies have generally found good
agreement with NLO pQCD and recent MC tunes, with two notable exceptions: photon+heavy
flavor production is not in agreement with NLO pQCD and requires higher order corrections, and
diphoton azimuthal decorrelations provides a spectacular example of need for NNLO corrections.
The searches for new physics are still coming out empty, but backgrounds for Higgs boson searches
are under control and QCD triumphs.
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