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1. Introduction

The talk reviews some of the advances during the last decade or so. I will assume basic famil-
iarity with the basic idea of large N, analysis and will not review the classic analysis of ‘t Hooft[1]
and Witten[2]. It is not intended to completely cover the landscape of the subject which is very
large. Rather it will idiosyncratically address a few of the themes which I find particularly interest-
ing and illustrate these with a few examples. The topic is very broad. Clearly, given the limitations
of time in the talk, I will quickly touch on many issues and refer the reader to the original literature
for more details. Indeed, the talk is in the spirit of Art Buchwald’s classic humor column which
describes how Peter Stone, an American tourist, first broke the six-minute Louvre in 1950 by skip-
ping almost everything and racing past a few masterpieces[3]. While I cannot assert that topics
discussed in this talk are scientific masterpieces, it remains true that the very rapid discussion does
not do them justice.

Rather than attempting to introduce the topics in the talk in a careful and coherent way, let me
just present an overview of the topics and how they are connected in fig. 1.
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Figure 1: An overview of the talk.

2. The Nucleon-Nucleon Total Cross Section

The first result that I wish to discuss is the nucleon-nucleon total cross section at large N,,
which is given by [4] )
otal __ 27 log” (Ne)
ool _ o A 2.1
which holds for s > Aqcp and in the extreme large N, limit in which log(N,) > 1. The result
is remarkable in that, unlike virtually all results obtained previously in large N, QCD, it is an
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analytic expression for an observable rather than a statement of an observable scale. Note that
the prediction is that the total cross section is independent of momentum in this regime—which to
good approximation it is. However, the predicted cross section is roughly a factor of 4 above the
empirical one in the few GeV range. This is presumably a consequence of the fact that the result
only holds at extreme N,. The structure which involves the square of the logarithm is reminiscent of
the Froissart-Martin bound[5]. As discussed briefly in ref. [4], this may not be entirely coincidental.

3. The Hagedorn Spectrum

A Hagedorn spectrum is one in which the number of hadrons grows exponentially with the
mass of the hadron at large mass. It was postulated in pre-QCD days[6]. The idea is problematic
in QCD: hadrons are resonances and the widths add ambiguity to the mass of hadrons, particularly
at large mass. However, at large N, the widths of mesons go to zero and the idea of a Hagedorn
spectrum is well posed. Recently[7] a theoretical argument has been developed that QCD must
have a Hagedorn spectrum at large NV, provided that certain technical assumptions are true.

The theoretical inputs to this are confinement (in the sense that only color neutral physical
states exist), asymptotic freedom, standard assumptions about regime of validity of perturbation
theory (namely that perturbation theory is valid when perturbation corrections are small), and some
plausible technical assumptions about the ordering of limits. It should be stressed that because of
these assumptions, it is not a rigorous theorem in the mathematical sense.

The approach is based on a matrix of Euclidean space correlation functions from some set
of single-color-trace operators with fixed quantum numbers. The derivative of the trace of the
logarithm of this matrix with respect to Euclidean time can be shown to bound the sum of the
lightest d mesons where d is the dimension of the matrix. There are two keys to the approach.
The first is that the number of local single color trace operators of fixed quantum number grows
exponentially with the mass dimension of the operator. While each operator does not create a
distinct hadron, this exponential growth in the number of operators is ultimately translated into an
exponential growth with mass in the number of hadrons. The second is that the regime of validity of
perturbation theory for the trace of the log of a matrix of point-to-point correlators is independent
of the dimension of the operator at large N.. (Note this depends on the planarity of diagrams at
large N, and is false for finite N,).

The details of the derivation are too involved to discuss in the limited time, so I will refer you
to the original literature. Let me note, though, that it is quite satisfying that given some very natural
assumptions a Hagedorn spectrum will automatically arise at large N,.

4. QCD and Its Large Nc Limits

The large N, limit of QCD is not unique. For gluons there is a unique prescription for how
to extrapolate SU(30) — SU(N,). However, for quarks we can choose different representations
of the gauge group. Asymptotic freedom restricts the possibilities to the fundamental (F), adjoint
(Adj), two index symmetric (S), and two-index anti-symmetric (AS). Adj transforms like gluons
(traceless fundamental color-anticolor) and the dimension of the representation is NC2 — 1 which is
8 for N. = 3. S transforms like two colors (eg., fundamental quarks) with indices symmetrized;
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the dimension ch — N, which is 6 for N. = 3. At N, = 3 neither of these is the QCD of our
world. Note, however, that AS transforms like two colors (eg., fundamental quarks) with indices
antisymmetrized and the dimension of the representations is %NC (N, — 1) which is 3 for N, = 3.
Indeed, it is easy to see that at N, = 3, quarks in the AS representation are indistinguishable from
the (anti- )fundamental. However, quarks in the AS and F extrapolate to large N, in different ways.
The large N, limits are physically different. The 1/N, expansions are different. Moreover, a priori
it is not obvious which expansion is better; it may well depend on the observable in question.

While the idea of QCD(AS) is old[8], it was not seriously explored initially—in contrast to
AQCD(F) which has been studied intensively for 40 years. Thus it is probably a good idea to follow
the advice of American poet, Robert Frost, and take the road less travelled. The idea of QCD(AS)
was revived in the early part of this decade by Armoni, Shifman and Veneziano who discovered a
remarkable duality that emerges at large N. between QCD(AS) and QCD(Ad))[9]. While interest-
ing theoretically, the duality may not be phenomenologically useful directly. However, the general
question of the phenomenology of QCD(AS) at large N, remains of interest.

In both QCD(F) and QCD(AS) meson-meson interactions are weak, but they are systemati-
cally smaller for QCD(AS). The n-meson vertex in the two cases scale as

g o N2 for QCD(F),  g" M N2 for QCD(AS) 4.1

The critical difference between the two approaches is that while both approaches involve planar
diagrams at leading order, quark loops are not suppressed in QCD(AS). Whether this is a bug or a
feature depends on circumstance. Thus, the OZI rule is not automatically enforced in QCD(AS) at
large N, as it is in QCD(F). To the extent that the OZI rule holds, one must regard the inclusion of
internal quark loops as a bug. However, there are cases of large OZI violation (such as the n’ — &
mass difference) or other phenomena involving the anomaly in which it should be regarded as a
feature.

In both QCD(F) and QCD(AS) baryons are heavy, scaling as N.[10] and NCZ[Z], respectively.
The consistent treatment of baryons in QCD (AS) turns out to be rather subtle. One cannot simply
borrow Witten’s combinatorial arguments from QCD(F). The combinatorics for QCD(AS) turn out
to be far more intricate, and to proceed, new tools need to be developed. However, this has been
done and the upshot is that they scale as N> as one might expect: a baryon contains a quark of each
color type and this number scales as N2.

Generic meson-baryon coupling is strong in both large N, limits but stronger for QCD(AS):
for QCD(F), gnm ~ NC%, while QCD(AS) gnm ~ Ne.

It has long been known that the strong meson-baryon coupling constant in QCD(F) implied
the existence of an emergent SU(2Nf) spin-flavor symmetry at large N [11]. The argument goes
through for QCD(AS); the only difference being the scale of the symmetry breaking scales as
N? rather than N.. Such a symmetry implies that there is an infinite tower of baryon states with
I=J which are degenerate at large N, and with relative matrix elements fixed by Clebsch-Gordan
coefficients of the group. For N. = 3 the nucleon and A are identified as members of the band.
(Other states are large N, artifacts). The N — A mass splitting scales as 1 /N, and 1 /NC2 for QCD(F)
and QCD(AS), respectively.

The existence of this emergent symmetry and knowledge of the scaling of its breaking allows
one to derive mass relations among the octet and decuplet baryons which hold to various orders
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of accuracy in SU(3) flavor breaking and 1/N,. These relations were first derived in the 1990s
for the case QCD(F) and the relations held much better than an analogous relations based solely
on SU(3) flavor[12]; the 1/N, scaling had real predictive power. One might guess that if one used
QCD(AS), which has a different N. counting, it would not do as well. Remarkably this is not the
case, as discussed in refs.[13]. The mass relations in both QCD(F) and QCD(AS) hold much better
empirically than pure SU(3) flavor. Ultimately, the reason that they can both do well is that for
N, = 3 there is not quite enough dynamic range to clearly distinguish the two.

5. Nucleon-Nucleon Interactions

It is by no means obvious that large N, analysis is likely to be as useful in nuclear physics as
it has proven in hadronic physics. The reason it may prove to be problematic phenomenologically
is due to small scales which arise in nuclear physics; these are often much smaller than the ~1
GeV scale which typically characterizes hadronic physics. For example, the binding energy per
nucleon is only about 16 MeV and the Fermi momentum about 279 MeV. Moreover these light
scales do not arise for reasons associated with large N,; the Fermi momentum is of order NCO and
the binding energy is of order N!. This means that the ordering of scales seen in the large N, world
is not present in the N, = 3 world. It is highly plausible that for most nuclear observables, N, = 3
is outside of the radius of convergence of the 1/N, approximation. This does not mean the large N,
limit is necessarily without interest—however, in many cases this interest may be of a theoretical
nature.

One place where large N, counting appears to give insight into the world of N, = 3 is for the
nucleon-nucleon potential. The generic scaling of this is easy to deduce—at leading order the po-
tential scales as N, for QCD(F) and NC2 for QCD(AS). What is more interesting is the pattern of
sizes of the various angular momentum and isospin combinations which contribute to the potential.
One can use the emergent spin-flavor symmetry to deduce the relative sizes of the various contri-
butions; moreover, the pattern obtained for these is in qualitative agreement for what is observed in
phenomenological potentials[14].

It is noteworthy that these patterns are precisely what would be obtained with one-meson-
exchange-potentials if the meson-baryon couplings follow the N, scalings of the emergent spin-
flavor symmetry[15]. Naively, if one looks at contributions to the potential from two-meson ex-
change the scaling rules break down since the leading contribution to the potential from the Feyn-
man diagrams scales as N, for QCD(F) (and NC2 for QCD(AS)). However, it can be shown that
when the emergent spin-flavor symmetry is taken into account, there exist cancellations[15] of all
terms which violate the scaling rules of ref. [14]. It turns out that three-meson-exchange is subtle
and that direct computation of the potential from the diagrams violates the scaling rules, even when
cancelations are included. However, the potential derived this way is energy-dependent; when
transformed to an energy-independent potential the scaling rules are restored[16].

The preceding results on potentials are interesting. However, it is worth recalling that poten-
tials are not physical observables. Moreover, as noted by Witten[2], nucleon-nucleon scattering
does not have a smooth large N, limit at fixed momentum; rather, one must study the regime with
fixed velocity. However, this regime cannot be described by a potential model since it is well above
the meson-production threshold. How can one encode the fact that nucleon-nucleon interactions
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are strong in this regime? The natural way is via the logarithm of the two-nucleon S-matrix:
log(S) ~ N, 5.1

where the result is given for QCD(F). Equation (2.1) describing the NN total cross section is derived
from Eq. (5.1).

6. Nuclear Matter
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Figure 2: Cartoons of the phase diagram for A. QCD with N, = 3, B. QCD(F) at large N. and C. QCD(AS)
at large N,.

Cold nuclear matter is crystalline and saturates in both large N, limits. The saturation density
and binding energy per nucleon scale as:

QCD(F): pg~N°B/A ~ N! QCD(AS) : psat ~N?B/A ~ N?. (6.1)

It is easy to understand why. Pion exchange is the dominant long-range interaction and has an
attractive channel. Any attractive quantum system with parametrically strong forces or heavy mass
will become arbitrarily well localized around the classical minimum yielding a deeply bound crys-
tal.
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However, while both limits are similar in this respect, when temperature is included, their
equations of state are expected to be qualitatively different both from each other and from QCD
at N. = 3. Consider the regime where the temperature and the quark chemical potential are both
of order N°. In fig. 2 cartoon versions of the expected phase diagrams are given. Two things
are key to understanding these. The first is that at N, = 3 there are expected to be critical points
representing the endpoints of lines of first-order transitions. These disappear in both versions of
the large N, limit since the regions they separate scale differently with N, and cannot be smoothly
connected at large N.. A second key difference is that the critical temperature of QCD(F) at large
N, has no dependence on the chemical potential. This is because quark contributions to the energy
are subleading in this limit. One important lesson of this is that large N, analysis is clearly not
appropriate to discern the nature of the phase diagram. It is noteworthy, however, that in at least
one important way the phase diagram of QCD(AS) is closer to the diagram of the real world than
is QCD(F).

What about in the regime of cold nuclear matter at large pt? It is generally expected that QCD
with N, = 3 at high u is in a color superconducting phase[17], although in principle it is possible
that some heretofore unknown phase is lower. In the case of QCD(F) at large N,, this is known not
to happen: while a Fermi gas at large u has a BCS instability towards a superconducting phase,
there is a stronger instability[18] towards an inhomogeneous phase of the Deryagin, Grigoriev, and
Rubakov (DGR) type[19]. The BCS instability is suppressed scaling as e~ since the condensate is
not a color singlet. In contrast, the DGR condensate is a color singlet (though not gauge invariant)
and does not have this suppression. Thus, if the DGR instability occurs, which it does at extremely
large N, in QCD(F), it will dominate. Since this only occurs at very high N, it does not occur
in the physical world at N, = 3. However, an RG analysis shows that in QCD(AS) the DGR
instability does not occur[20] while the BCS instability does. Thus, it is plausible that QCD(AS) is
qualitatively similar to QCD at N, = 3 in having as its ground state a color superconductor[20].
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