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Final-state interactions in three-meson decays are of highimportance for various reasons. From

a close investigation of the corresponding Dalitz plots, wemay learn something about meson–

meson scattering, a prominent example of recent years beingthe extraction of pion–pion scat-

tering lengths from the cusp effect inK → 3π decays. On the other hand, a precise analysis of

rescattering effects is of high importance to understand the fundamental transition operators driv-

ing the decays, due to the way they enhance and shape the decayprobabilities. A low-energy

example for this occurs in the analysis ofη → 3π decays, which play a central role in precision

determinations of the light quark mass ratios. To obtain reliable descriptions of final-state inter-

actions also at somewhat higher energies, one has to go beyond perturbative treatments and resort

to dispersion-theoretical analyses, which we demonstratefor the examples of the decaysω → 3π
andφ → 3π.
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1. Introduction

A precise study of final-state interactions is increasingly becoming of high importance for
our understanding of diverse aspects of hadronic particle decays. They can be of significance for
various reasons: if final-state interactions are strong, they can significantly enhance decay probabil-
ities; they can significantlyshapethe decay probabilities, most prominently through the occurrence
of resonances; besides resonances, also new and non-trivial analytic structures can occur, such as
threshold or cusp effects; and finally, they introduce strong phases orimaginary parts, the existence
of which is e.g. a prerequisite for the extraction of CP-violating phases in weak decays.

The relation to the low-energy effective theory of chiral perturbation theory (ChPT) herein is
at least two-fold: final-state interactions may give access to observablespredicted by ChPT, as we
will illustrate below for the case of the cusp effect inK → 3π decays that yields information on
pion–pion scattering lengths; vice versa, rescattering effects may have tobe considered to sufficient
accuracy in order to exploit the relation of experimental observables to fundamental parameters of
quantum chromodynamics as suggested by ChPT, and the decayη → 3π that gives access to light
quark masses is an example for that. Finally, there have been various efforts to extend effective field
theories to somewhat higher energies, including e.g. the lowest-lying vectorresonances beyond
the pseudo-Goldstone bosons of ChPT; we will show in the last section thatdispersion relations
incorporate strong, model-independent constraints also on the decays of these resonances.

2. Cusp effect in K → 3π

In an investigation of the decayK± → π0π0π±, the NA48/2 collaboration at CERN has ob-
served a cusp, i.e. a sudden, discontinuous change in slope, in the decay spectrum with respect to
the invariant mass squared of theπ0π0 pairdΓ/ds3, s3 = M2

π0π0 [1]. A first qualitative explanation
was subsequently given by Cabibbo [2], who pointed out that aK+ can, simplistically speaking,
either decay “directly” into theπ0π0π+ final state, or alternatively decay into three charged pions
π+π+π−, with a π+π− pair rescattering via the charge-exchange process into two neutral pions,
compare Fig. 1. The loop (rescattering) diagram has a non-analytic pieceproportional to

i v±(s3) = i

√

1− 4M2
π+

s3
, s3 > 4M2

π+ , i v±(s3) =−

√

4M2
π+

s3
−1 , s3 < 4M2

π+ , (2.1)

and as the charged pion is heavier than the neutral one by nearly 4.6 MeV,the (then real) loop
diagram can interfere with the “direct” decay below theπ+π− threshold and produce a square-
root-like singularity ats3 = 4M2

π+ , the cusp visible in the experimentally measured spectrum [1].
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Figure 1: “Direct” and “rescattering” contribution to the decayK+ → π0π0π+. The black dot marks the
charge-exchangeππ scattering vertex proportional to the scattering lengths at threshold.
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What is more, the strength of this cusp is proportional to the charge-exchangeππ scattering ampli-
tude at threshold, that is, to the combination of scattering lengthsa0

0−a2
0 (up to isospin-breaking

corrections), for which a very precise theoretical prediction exists [3]. An investigation of this cusp
effect could therefore lead to a new method to determine theππ scattering lengths, provided a
theoretical framework can be devised that allows to match the precision of thedata.

The aim of the development of such a theoretical representation of theK → 3π decay ampli-
tude is to parameterize itdirectly in terms of scattering lengths (and higher-order threshold parame-
ters) as well asK → 3π tree-level coupling constants that replace the conventional, polynomial-type
Dalitz-plot parameters. This is in marked contrast to ChPT, where the scattering lengths are cal-
culated perturbatively in an expansion in quark masses, and more akin to thetheory of hadronic
atoms [4], where a non-relativistic effective field theory (NREFT) is used to relate decay widths
and energy-level shifts to scattering amplitudes at threshold. A similar NREFThas been developed
for the analysis of cusp effects [5, 6, 7] (see also the review in [8]), with the difference that rel-
ativistic recoil corrections are fully retained, and only particle-pair creation is neglected to avoid
mass-renormalization effects. The effective theory is then constructed as a double-expansion in
ππ threshold parameters (collectively denoted bya) and a non-relativistic parameterε ∝ |pπ |/Mπ .
This expansion has been performed completely up toO(a0ε4,a1ε5,a2ε4) [7], that is to two loops,
including the appropriate number of derivative interactions. Via two-loop effects, the decay ampli-
tude even shows a sub-leading dependence ona2

0, although with reduced precision.

Finally, radiative corrections have a surprisingly large impact on the scattering-length extrac-
tion from the cusp effect [9]: Coulomb-photon-exchange inside the charged-pion loop in Fig. 1
modifies the analytic structure near threshold according to

i v±(s3)−→ i v±(s3)−
α
2

log(−v2
±(s3))+ . . . , (2.2)

so while suppressed by the fine-structure constantα = e2/4π, radiative corrections induce a loga-
rithmic singularity near the charged-pion threshold, right where the sensitivity of the amplitude to
ππ rescattering is largest. Taking these into account, the NA48/2 collaboration found [10]

a0
0−a2

0 = 0.2571±0.0048stat±0.0025syst±0.0014ext ,

a2
0 =−0.024±0.013stat±0.009syst±0.002ext , (2.3)

in an analysis ofK± → π±π0π0 decays, which agrees beautifully with the theoretical prediction
a0

0−a2
0 = 0.265±0.004,a2

0 =−0.0444±0.0010 [3]. Similar cusp effects have also been predicted
in other decay modes such asKL → 3π0, η → 3π0 [6], andη ′ → ηπ0π0 [11].

3. Dalitz-plot parameters in η → 3π

With a representation for final-state interactions up to two loops at hand, including all effects
due to the different masses of charged and neutral pions, one may try to find whether this can also
be used to investigate other decays into three pions. The special interest inthe decayη → 3π
derives from ChPT: the decay violates isospin symmetry, and electromagnetic effects have been
shown to be strongly suppressed [12, 13, 14], such that it offers potentially clean access to the
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quark mass differencemu−md. Indeed, at leading order in the chiral expansion, the amplitude for
the charged final stateη → π+π−π0 is given by

M
LO
c (s, t,u) =

B(md −mu)

3
√

3F2
π

{

1+
3(s−s0)

M2
η −M2

π

}

, (3.1)

wheres= (pπ+ + pπ−)2, t = (pπ− + pπ0)2, u= (pπ+ + pπ0)2, 3s0 = s+ t +u= M2
η +3M2

π . At first
order in isospin breaking, the corresponding amplitude for the neutral final stateη → 3π0 is given
by Mn(s, t,u) = −Mc(s, t,u)−Mc(t,u,s)−Mc(u,s, t). However, large higher-order corrections
render the extraction of the normalization of the amplitude, and therefore of information on the
light quark masses, from experimental data difficult; in order to do this reliably, clearly one has to
achieve a very good description of the Dalitz plot distribution (compare also other current theoret-
ical efforts in Refs. [15, 16]). The latter is, forη → 3π, conventionally described as an expansion
around its center in terms of the normalized variables1

x=
t −u√
3Rη

, y=
s0−s
Rη

, z= x2+y2 , Rη =
2
3

Mη(Mη −3Mπ) , (3.2)

defining the leading Dalitz plot parametersa, b, d, andα according to

|Mc(x,y)|2 = |Nc|2
{

1+ay+by2+d x2+ . . .
}

, |Mn(z)|2 = |Nn|2
{

1+2α z+ . . .
}

. (3.3)

In particular the neutral slope parameterα has been a point of major concern over the last few
years, as shown in Fig. 2: while various very precise experiments converge beautifully to a value
of α = (−31.7±1.6)×10−3, the parameter-free prediction in ChPT at one-loop is positive [18],
as is the central value at two loops [19]; a dispersive calculation matched toChPT at least leads
to a negative sign [20]. Matching the NREFT tree-level couplings to one-loop ChPT, we find the
following decomposition ofα [17]:

α =
(

+10.7tree+12.41-loop−44.12-loop−6.0higher−0.6iso-break
)

×10−3 = (−24.6±4.9)×10−3 ,

(3.4)
where higher-order corrections are estimated by single-channel “bubble-sum” resummation and
yield, besides differentππ scattering parameterizations, the quoted uncertainty; higher orders
in isospin-breaking are very small. The NREFT power counting helps explain these seemingly
surprising numbers: as the one-loop contributions to the amplitude are purelyimaginary in this
scheme, one- and two-loop corrections appear at the same orderO(a2ε2), only higher loops are
suppressed; both are enhanced inε versus the tree-level terms, which areO(ε4). The total result is
marginally compatible with the experimental determination.

Finally, we wish to show the significance of the imaginary parts in the decay amplitudes.
Expanding theamplitudes(as opposed to their squared moduli) around the Dalitz plot center,

Mc(x,y) = Nc
{

1+ āy+ b̄y2+ d̄ x2+ . . .
}

, Mn(z) = Nn
{

1+ ᾱ z+ . . .
}

, (3.5)

comparison to Eq. (3.3) immediately demonstratesa = 2Reā, b = |ā|2+ 2Reb̄, d = 2Red̄, α =

Reᾱ . The isospin relation betweenMc andMn then leads to [19]

α =
1
4

(

b+d− a2

4
− (Im ā)2

)

<
1
4

(

b+d− a2

4

)

, (3.6)

1Here and in the following, for simplicity we neglect corrections induced by the pion-mass difference, which are
meticulously traced in Ref. [17]. Numerical results shown here refer tothe exact relations.
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Figure 2: Comparison of values for the slope parameterα. Top: theoretical predictions. Bottom: experi-
mental determinations. The gray shaded area is the particledata group average. Figure taken from Ref. [17].

hence there is only aninequalitybetween the Dalitz plot parameters of both channels. However,
the imaginary part of ¯a is generated purely by final-state interactions and thereby determined by
the same tree-level couplings that fix the real parts: we can reformulate thisrelation as [17]

α =
1
4

(

b+d− a2

4

)

−ζ1(1+ζ2a)2 , ζ1 = 0.050±0.005, ζ2 = 0.225±0.003, (3.7)

with ζ1/2 determined purely byππ rescattering. The most precise experimental measurement of
the charged Dalitz plot parameters [21], however, is compatible withζ1 = 0 or no imaginary part
in ā at all, at clear odds with Eq. (3.7). Our analysis therefore points towardsa significant tension
between the measured parameters of the two differentη → 3π final states.

4. Dispersion relations for ω → 3π and φ → 3π

When proceeding to three-pion decays of somewhat heavier mesons, likethose of the lightest
isoscalar vector mesons,ω andφ , it is obvious that perturbative treatments of final-state interac-
tions are doomed to fail, as the influence of theρ resonance is already significant (ω) or even falls
inside the Dalitz plot (φ ). A method to resum rescattering effects between all three pions non-
perturbatively is given by dispersion relations. One starts by decomposing the amplitudeM (s, t,u)
according to

M (s, t,u) = i εµναβ nµ pν
π+ pα

π− pβ
π0 F (s, t,u) , (4.1)

wherenµ is the polarization vector of the decayingω/φ . Due to Bose symmetry, only partial
waves of odd angular momentum contribute; neglecting discontinuities of F- and higher partial
waves,F (s, t,u) can be further decomposed asF (s, t,u) = F (s)+F (t)+F (u). The unitarity
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relation forF (s), assuming elastic final-state interactions, then leads to the following expression
for the discontinuity ofF (s):

discF (s) = 2i
{

F (s)+ F̂ (s)
}

×θ
(

s−4M2
π
)

×sinδ 1
1 (s)e

−iδ 1
1 (s) , (4.2)

whereδ 1
1 (s) is theππ P-wave phase shift. Were it not for theinhomogeneitiesF̂ (s), Eq. (4.2)

would correspond to the discontinuity equation of the vector form factor, which is solved by the
Omnès function

Ω1
1(s) = exp

{

s
π

∫ ∞

4M2
π

ds′
δ 1

1 (s
′)

s′(s′−s)

}

. (4.3)

The functionF̂ (s) is given by angular averages overF according to

F̂ (s) = 3
〈(

1−z2)
F

〉

(s) ,
〈

zn f
〉

(s) =
1
2

∫ 1

−1
dzzn f

(

1
2

(

3s0−s+zκ(s)
)

)

,

s0 =
1
3

(

M2
V +3M2

π
)

, κ(s) = λ 1/2(M2
V ,M

2
π ,s)

√

1− 4M2
π

s
, (4.4)

whereλ (x,y,z) = x2+y2+z2−2(xy+xz+yz), andMV is the mass of the decaying vector meson.
The angular integration including theκ(s) function is non-trivial and generates a complex analytic
structure, including three-particle cuts due to the fact thatω andφ are unstable and decay [22].
The analog to the Omnès solution (4.3) are then integral equations involving theinhomogeneities

F (s) = Ω1
1(s)

{

a+
s
π

∫ ∞

4M2
π

ds′

s′
sinδ 1

1 (s
′)F̂ (s′)

|Ω1
1(s

′)|(s′−s)

}

, (4.5)

with the subtraction constanta. The number of subtractions is chosen such that the dispersion
integral is guaranteed to converge.

Equations (4.4) and (4.5) can be solved iteratively: starting from an arbitrary input function
F (s), we can calculate the inhomogeneitŷF (s) according to Eq. (4.4), from which a newF (s)
is obtained from Eq. (4.5); the procedure is stopped once a fixed point of the iteration is reached
with sufficient accuracy. In the example discussed here, see Eq. (4.5), the subtraction constant
works as an overall normalization factor of the solution; we match it to the partial decay width, but
note that anormalizedDalitz plot distribution is subsequently a pure prediction. While the result
is independent of the starting function, for the case at hand, we chooseF (s) = Ω1

1(s) in order to
allow us to quantify crossed-channel effects (generated by the iteration) in a plausible way.

Figure 3 shows the result of such an iteration for the decayφ → 3π: it converges fast, with the
third iteration already all but indistinguishable from the final result. The difference to the starting
point of the iteration, the Omnès function without any crossed-channel rescattering, is however very
significant. The picture forω → 3π (not shown here) is qualitatively very similar, with convergence
reached even faster (after two iterations, see Ref. [22]).

The resulting Dalitz plots for bothω → 3π andφ → 3π are shown in Fig. 4, normalized by the
P-wave phase space factor, using the kinematical variablesx andy defined in analogy to Eq. (3.2).
Comparison to the experimentalφ → 3π Dalitz plot of Ref. [23] shows that crossed-channel effects
improve the reducedχ2 from 1.71. . .2.06 (withF (s) = aΩ1

1(s)) to 1.17. . .1.50; further improve-
ment and perfect agreement with the data can be achieved by introducing an additional subtraction

6
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Figure 3: Successive iteration steps of real (left panel) and imaginary (right panel) part of the amplitude
F (s) for φ → 3π. The vertical dashed lines denote the physical region of thedecay.

Figure 4: Dalitz plots forω → 3π (left) andφ → 3π (right), normalized by the P-wave phase space.

constant in Eq. (4.5). Theω → 3π andφ → 3π decay amplitudes constructed in Ref. [22] have sub-
sequently also been used as input in a dispersive analysis of the transitionform factors as measured
in the decaysω → π0ℓ+ℓ−, φ → π0ℓ+ℓ− [24].
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