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The exploration of the 3-dimensional structure of the nucleon, both in momentum and in con-
figuration space, is one of the major issues in high energy hadron physics. Information on the
partonic 3-dimensional momentum structure is embedded in the Transverse Momentum Depen-
dent distributions (TMDs). Among them, the Sivers function, which describes the number density
of unpolarized quarks inside a transversely polarized proton, is particularly interesting, as it is
expected to provide information on the partonic orbital angular momentum [5].

The Sivers functions foru andd quarks have been extracted from SIDIS data by several groups,
with consistent results [6, 7, 8, 9, 10, 5]. However, all these phenomenological fits have been
performed so far either neglecting the QCD scale dependenceof the TMDs – which was unknown
– or limiting it to the DGLAP evolution of the collinear unpolarized parton distributions (which
appear as factors in the parameterization of the Sivers functions).

We present here, following Ref. [11], a simple strategy which allows, in the extraction of
the Sivers function from SIDIS data, to take into account theTMD evolution scheme proposed
by Aybat, Collins, Qiu and Rogers [1, 2, 3]; we then show how this analysis compares with the
previous extractions, with no TMD evolution.

In Ref. [11] we recasted the QCD evolution equation of the TMDs in the coordinate space
proposed in Refs. [2] and [3] in a simplified way, taking the renormalization scaleµ2 and the
regulating parametersζF andζD all equal toQ2, as

F̃(x,bT ;Q) = F̃(x,bT ;Q0) R̃(Q,Q0,bT ) exp

{
−gK(bT ) ln

Q
Q0

}
, (1)

whereF̃ can be either the unpolarized parton distribution,F̃(x,bT ;Q) = f̃q/p(x,bT ;Q), the unpo-
larized fragmentation function,̃F(x,bT ;Q) = D̃h/q(z,bT ;Q), or the first derivative, with respect to

the parton impact parameterbT , of the Sivers function,̃F(x,bT ;Q) = f̃ ′⊥ f
1T (x,bT ;Q); gK(bT ) is an

unknown, but universal and scale independent, function, while R̃(Q,Q0,bT ) is the evolution kernel
defined as

R̃(Q,Q0,bT ) ≡ exp

{
ln

Q
Q0

∫ µb

Q0

dµ ′

µ ′ γK(µ ′)+

∫ Q

Q0

dµ
µ

γF

(
µ ,

Q2

µ2

)}
· (2)

The anomalous dimensionsγF andγK appearing in Eq. (2), are given, at orderαs, by [2]

γF(µ ;
Q2

µ2 ) = αs(µ)
CF

π

(
3
2
− ln

Q2

µ2

)
γK(µ) = αs(µ)

2CF

π
· (3)

The Q2 evolution is therefore driven by the functionsgK(bT ) andR̃(Q,Q0,bT ). While the latter,
Eq. (2), can be easily evaluated, numerically or even analytically, the former, is essentially unknown
and will need to be taken from independent experimental inputs.

The appropriate Fourier transform allows us to obtain the distribution and fragmentation func-
tions in the momentum space:

f̂q/p(x,k⊥;Q) =
1

2π

∫ ∞

0
dbT bT J0(k⊥bT ) f̃q/p(x,bT ;Q) (4)

D̂h/q(z, p⊥;Q) =
1

2π

∫ ∞

0
dbT bT J0(kT bT ) D̃h/q(z,bT ;Q) (5)
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f̂⊥ f
1T (x,k⊥;Q) =

−1
2πk⊥

∫ ∞

0
dbT bT J1(k⊥bT ) f̃ ′⊥q

1T (x,bT ;Q) , (6)

whereJ0 and J1 are Bessel functions, whilêfq/p is the unpolarized TMD distribution function
for a parton of flavorq inside a proton,̂Dh/q is the unpolarized TMD fragmentation function for

hadronh inside a partonq and f̂⊥q
1T is the Sivers distribution defined, for unpolarized partonsinside

a transversely polarized proton, as:

f̂q/p↑(x,k⊥,S;Q) = f̂q/p(x,k⊥;Q)− f̂⊥q
1T (x,k⊥;Q)

εi j ki
⊥ S j

Mp
(7)

= f̂q/p(x,k⊥;Q)+
1
2

∆N f̂q/p↑(x,k⊥;Q)
εi j ki

⊥ S j

k⊥
· (8)

The unknown input functionsgK(bT ) andF̃(x,bT ;Q0) inside Eq. (1) have to be appropriately
parameterized. As already anticipated,gK(bT ) is a non-perturbative, but universal function, which
in the literature is usually parameterized in a quadratic form: gK(bT ) = 1

2 g2b2
T . As in Ref. [3], we

will adopt the results provided by a recent fit of Drell-Yan data [12], and assumeg2 = 0.68 GeV2.
The input functions̃F(x,bT ;Q0) are parameterized by requiring that their Fourier-transforms,

which give the corresponding TMD functions in the transverse momentum space, coincide with
the previously adoptedk⊥-Gaussian forms, with thex dependence factorized out. As shown in
Ref. [11], one finds

f̃q/p(x,bT ;Q) = fq/p(x,Q0) R̃(Q,Q0,bT ) exp

{
−b2

T

(
α2 +

g2

2
ln

Q
Q0

)}
(9)

D̃h/q(z,bT ;Q) =
1
z2 Dh/q(z,Q0) R̃(Q,Q0,bT ) exp

{
−b2

T

(
β 2 +

g2

2
ln

Q
Q0

)}
, (10)

f̃ ′⊥1T (x,bT ;Q) = −2γ2 f⊥1T (x;Q0) R̃(Q,Q0,bT )bT exp

{
−b2

T

(
γ2 +

g2

2
ln

Q
Q0

)}
(11)

with

α2 = 〈k2
⊥〉/4 β 2 = 〈p2

⊥〉/(4z2) 4γ2 ≡ 〈k2
⊥〉S =

M2
1 〈k2

⊥〉
M2

1 + 〈k2
⊥〉

(12)

andR̃(Q,Q0,bT ) as in Eq. (2).Q0 is taken to be 1 GeV.
Eqs. (9)-(11) show that theQ2 evolution is controlled by the logarithmicQ dependence of the

bT Gaussian width, together with the factorR̃(Q,Q0,bT ): for increasing values ofQ2, they are
responsible for the typical broadening effect already observed in Refs. [2] and [3].

As R(Q,Q0,bT ) shows only a weak dependence on (small)bT (i.e. largek⊥) through the upper
integration limitµb [11], we can assumeR(Q,Q0,bT ) to be constant inbT and Fourier-transform
the evolution equations (9), (10) and (11) analytically within this approximation, to find

f̂q/p(x,k⊥;Q) = fq/p(x,Q0) R(Q,Q0)
e−k2

⊥/w2

π w2 (13)

D̂h/q(z, p⊥;Q) = Dh/q(z,Q0) R(Q,Q0)
e−p2

⊥/w2
F

πw2
F

(14)

∆N f̂q/p↑(x,k⊥;Q) =
k⊥
M1

√
2e

〈k2
⊥〉2

S

〈k2
⊥〉

∆N fq/p↑(x,Q0)R(Q,Q0)
e−k2

⊥/w2
S

πw4
S

(15)
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Table 1: The total χ2 corresponding to the TMD-fit, the TMD-analytical-fit and theDGLAP-fit. The
most significant partial contributions, enhancing the difference between TMD and non-TMD evolutions
are shown.

TMD Evolution (exact) TMD Evolution (analytical) DGLAP Evolution

χ2
tot = 255.8 χ2

tot = 275.7 χ2
tot = 315.6

χ2
d.o. f = 1.02 χ2

d.o. f = 1.10 χ2
d.o. f = 1.26

χ2
x = 10.7 χ2

x = 12.9 χ2
x = 27.5

HERMESπ+ χ2
z = 4.3 χ2

z = 4.3 χ2
z = 8.6

χ2
PT

= 9.1 χ2
PT

= 10.5 χ2
PT

= 22.5

χ2
x = 6.7 χ2

x = 11.2 χ2
x = 29.2

COMPASSh+ χ2
z = 17.8 χ2

z = 18.5 χ2
z = 16.6

χ2
PT

= 12.4 χ2
PT

= 24.2 χ2
PT

= 11.8

where fq/p(x,Q0) andDh/q(z,Q0) are the usual integrated PDF evaluated at the initial scaleQ0,
and∆N fq/p↑(x,Q0) gives thex dependence of the Sivers function [11]. Most importantly,w2, w2

F

andw2
S are the “evolving” Gaussian widths, defined as:

w2 = 〈k2
⊥〉+2g2 ln

Q
Q0

, w2
F = 〈p2

⊥〉+2z2g2 ln
Q
Q0

, w2
S = 〈k2

⊥〉S +2g2 ln
Q
Q0

· (16)

Notice that theQ2 evolution of the TMD PDFs is now determined by the overall factor R(Q,Q0)

and, most crucially, by theQ2 dependent Gaussian widthw(Q,Q0).

It is interesting to point that the evolution factorR(Q,Q0), controlling the TMD evolution, is
the same for all functions (TMD PDFs, TMD FFs and Sivers ) and is flavor independent: conse-
quently it will appear, squared, in both numerator and denominator of the Sivers azimuthal asym-
metry and, approximately, cancel out. Therefore, we can safely conclude that most of the TMD
evolution of the azimuthal asymmetries is controlled by thelogarithmicQ dependence of thek⊥
Gaussian widthsw2(Q,Q0), Eq. (16).

The aim of our paper is to analyze the available polarized SIDIS data from the HERMES
and COMPASS collaborations in order to understand whether or not they show signs of the TMD
evolution proposed in Ref. [3].

In particular we perform three different data fits of the SIDIS Sivers single spin asymmetry
Asin(φh−φS)

UT measured by HERMES and COMPASS: a fit (TMD-fit) in which we adopt the TMD
evolution equations shown in Eqs. (9)-(11); a second fit (TMD-analytical-fit) in which we apply
the same TMD evolution, but using the analytical approximation of Eqs. (13)–(15); a fit (DGLAP-
fit) in which we follow our previous work, as done so far in Ref.[10, 13], using the DGLAP
evolution equation only in the collinear part of the TMDs.

Table I shows the main results of our fitting procedure. The best totalχ2
tot , which amounts to

256, is obtained by using the TMD evolution, followed by a slightly higherχ2
tot of the analytical

approximation, and a definitely largerχ2
tot ≃ 316 corresponding to the DGLAP fit. To examine

the origin of this difference between TMD and DGLAP evolution, in Ref. [11] we have shown
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Figure 1: The results obtained from our fit of the SIDISAsin(φh−φS)
UT Sivers asymmetries applying TMD evo-

lution (red, solid lines) are compared with the analogous results found by using DGLAP evolution equations
(blue, dashed lines). The green, dash-dotted lines correspond to the results obtained by using the approxi-
mated analytical TMD evolution (see text for further details). The experimental data are from HERMES [14]
(left panel) and COMPASS [15] (right panel) Collaborations.

the individual contributions toχ2
tot of each experiment (HERMES, COMPASS onNH3 and onLiD

targets), for all types of detected hadrons and for all variables observed (x, z andPT ). It turns out
that the difference of about 60χ2-points between the TMD and the DGLAP fits is not equally
distributed among allχ2s per data point; rather, it is mainly concentrated in the asymmetry forπ+

production at HERMES and forh+ production at COMPASS, especially when this asymmetry is
observed as a function of thex-variable. These differences are explicitly shown in TableI.

It is important to stress that, asx is directly proportional toQ2 through the kinematical relation
Q2 = xys, thex behavior of the asymmetries is intimately connected to their Q2 evolution. While
the HERMES experimental bins cover a very modest range ofQ2 values, from 1.3 GeV2 to 6.2
GeV2, COMPASS data raise to a maximumQ2 of 20.5 GeV2, enabling to test more severely the
TMD Q2 evolution in SIDIS.

These aspects are illustrated in Fig. 1, where the SIDIS Sivers asymmetriesAsin(φh−φS)
UT obtained

in the three fits are shown in the same plot. It is evident that the DGLAP evolution seems to be
unable to describe the correctx trend, i.e. the rightQ2 behavior, while the TMD evolution (red
solid line) follows much better the largeQ2 data points, corresponding to the lastx-bins measured
by COMPASS.

In conclusions, we have reconsidered the Sivers effect in SIDIS experiments, by upgrading
old fits with the addition of the most recent HERMES and COMPASS data, and by implementing,
for the first time, the newly introduced TMD evolution equations in our analysis. We have com-
pared the results obtained using the TMD evolution equations with the results found by considering
only the DGLAP evolution of the collinear part of the TMDs. Wefind some clear evidence that
the available SIDIS data, in particular those at the largestQ2 values, support the TMD evolution
scheme. Further experimental data, covering a yet wider range ofQ2, are necessary to confirm this.

5



P
o
S
(
Q
N
P
2
0
1
2
)
0
3
8

Extraction of the Sivers functions with TMD evolution Mauro Anselmino

References

[1] J. C. Collins, Foundations of Perturbative QCD, Cambridge Monographs on Particle Physics, Nuclear
Physics and Cosmology, No. 32, Cambridge University Press,Cambridge, 2011.

[2] S. M. Aybat and T. C. Rogers, Phys. Rev. D83, 114042 (2011) [arXiv:1101.5057 [hep-ph]].

[3] S. M. Aybat, J. C. Collins, J. -W. Qiu and T. C. Rogers, arXiv:1110.6428 [hep-ph].

[4] S. M. Aybat, A. Prokudin and T. C. Rogers, arXiv:1112.4423 [hep-ph].

[5] A. Bacchetta and M. Radici, Phys. Rev. Lett.107, 212001 (2011) [arXiv:1107.5755 [hep-ph]].

[6] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F.Murgia and A. Prokudin, Phys. Rev. D72,
094007 (2005) [Erratum-ibid. D72, 099903 (2005)] [hep-ph/0507181].

[7] J. C. Collins, A. V. Efremov, K. Goeke, S. Menzel, A. Metz and P. Schweitzer, Phys. Rev. D73,
014021 (2006) [hep-ph/0509076].

[8] W. Vogelsang and F. Yuan, Phys. Rev. D72, 054028 (2005) [hep-ph/0507266].

[9] M. Anselminoet al., hep-ph/0511017.

[10] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin and
C. Türk, Eur. Phys. J. A39, 89 (2009) [arXiv:0805.2677 [hep-ph]].

[11] M. Anselmino, M. Boglione and S. Melis, arXiv:1204.1239 [hep-ph].

[12] F. Landry, R. Brock, P. M. Nadolsky and C. P. Yuan, Phys. Rev. D67, 073016 (2003)
[hep-ph/0212159].

[13] M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia and A. Prokudin, arXiv:1107.4446
[hep-ph].

[14] A. Airapetianet al. [HERMES Collaboration], Phys. Rev. Lett.103, 152002 (2009) [arXiv:0906.3918
[hep-ex]].

[15] F. Bradamante [COMPASS Collaboration], arXiv:1111.0869 [hep-ex].

6


