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We discuss the Wigner functions of the nucleon which providemulti-dimensional images of the

quark distributions in phase space. They combine in a singlepicture all the information contained

in the generalized parton distributions (GPDs) and the transverse-momentum dependent parton

distributions (TMDs). In particular, we present results for the distribution of unpolarized quarks

in a longitudinally polarized nucleon obtained in a light-cone constituent quark model. We show

how quark orbital angular momentum can be extracted from these distributions and compare it

with alternative definitions given in terms of the GPDs and the TMDs.
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1. Introduction

The quantum phase-space or Wigner distributions encode in aunified picture the information
obtained from the transverse-momentum dependent parton distributions (TMDs) and the general-
ized parton distributions (GPDs) in impact-parameter space. The concept of Wigner distributions
in QCD was first explored in refs. [1] where relativistic effects were neglected. Recently, we
identified the impact-parameter representation of the generalized transverse-momentum dependent
parton distributions (GTMDs) [2] with the five-dimensionalWigner distributions (two position and
three momentum coordinates) which are not plagued by relativistic corrections [3]. Even though
the Wigner distributions do not have a strict probablisiticinterpretation due to the uncertainty prin-
ciple, they encode a variety of information and can often be interpreted with semiclassical pictures.

The aim of this contribution is to investigate the phenomenology of the quark Wigner dis-
tributions based on successful relativistic quark models [4], since so far it is not known how to
access these distributions directly from experiments. We discuss in particular how the quark orbital
angular momentum (OAM) can be extracted from the Wigner distributions, and compare it with
alternative definitions based on the GPDs and the TMDs.

2. Wigner distributions

We define the quark Wigner distributionsρ [Γ](~b⊥,~k⊥,x,~S) in a nucleon with polarization~Sas
the following matrix elements [3]

ρ [Γ](~b⊥,~k⊥,x,~S)≡
∫

d2∆⊥

(2π)2 〈p
+,

~∆⊥
2 ,~S|Ŵ[Γ](~b⊥,~k⊥,x)|p

+,−
~∆⊥
2 ,~S〉, (2.1)

where the Hermitian quark Wigner operatorŴ[Γ](~b⊥,~k⊥,x) at a fixed light-cone timey+ = 0 is
defined similarly to refs. [1]

Ŵ[Γ](~b⊥,~k⊥,x) ≡
1
2

∫
dz−d2z⊥
(2π)3 ei(xp+z−−~k⊥·~z⊥) ψ(y− z

2)ΓW ψ(y+ z
2)
∣∣
z+=0, (2.2)

with yµ = [0,0,~b⊥], p+ the average nucleon longitudinal momentum andx = k+/p+ the aver-
age fraction of nucleon longitudinal momentum carried by the active quark. The superscriptΓ
stands for any twist-two Dirac operatorΓ = γ+,γ+γ5, iσ j+γ5 with j = 1,2. Finally, a Wilson
line W ≡ W (y− z

2,y+
z
2|n) ensures the color gauge invariance. As outlined in ref. [3],such

matrix elements can be interpreted as two-dimensional Fourier transforms of the GTMDs in the
impact-parameter space. Although the GTMDs are in general complex-valued functions, their
two-dimensional Fourier transforms are always real-valued functions, in accordance with their in-
terpretation as phase-space distributions.

There are in total 16 Wigner functions at twist-two level, corresponding to all the 16 pos-
sible configurations of nucleon and quark polarizations. Inorder to emphasize the link with the
quark OAM, we focus on the distortion in the distribution of unpolarized quarks induced by the
longitudinal polarization of the protonρLU = ρ [γ+](~b⊥,~k⊥,x,+~ez)−ρ [γ+](~b⊥,~k⊥,x,−~ez). Such an
effect is new since it cannot be accessed at the twist-2 levelby the GPDs and the TMDs. Other
configurations for the quark and proton polarizations can befound in ref. [3].
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Figure 1: Thex-integrated distributions in impact-parameter space for unpolarized quarks in a longitudinally polarized
proton (the proton spin points out of the plane). The upper panels show the distortion of the Wigner distribution, for a
given transverse momentum~k⊥ = k⊥~ey with k⊥ = 0.3 GeV, induced by the proton polarization, and the lower panels
show the distribution of the average quark transverse momentum. The left panels are foru quarks and the right panels
for d quarks. These distributions have been obtained from the light-front constituent quark model [3].

In fig. 1 we show the results in impact-parameter space obtained in the light-front constituent
quark model. The upper panels show the distortions of the Wigner distribution foru (left panels)
andd (right panels) quarks for a given transverse momentum~k⊥ = k⊥~ey with k⊥ = 0.3 GeV. In
particular, the dipole structure indicates thatu quarks (resp.d quarks) with OAM parallel (resp.
antiparallel) to the proton polarization are favored. Thiscan be even better seen in the lower panels
of fig. 1 showing the distribution in impact parameter of the average quark transverse momen-
tum 〈~k⊥〉(~b⊥) =

∫
dxd2k⊥~k⊥ ρ [γ+](~b⊥,~k⊥,x,~ez). Interestingly, we observe that thed-quark OAM

changes sign around 0.25 fm away from the transverse center of momentum.

3. Quark orbital angular momentum

The Wigner distributions are rather intuitive objects as they correspond to phase-space dis-
tributions in a semiclassical picture. In particular, any matrix element of a quark operator can be
rewritten as a phase-space integral of the corresponding classical quantity weighted by the Wigner
distribution. It is therefore natural to define the quark OAMas follows [3]

lq
z =

∫
dxd2k⊥d2b⊥

(
~b⊥×~k⊥

)
z

ρ [γ+]q(~b⊥,~k⊥,x,+~ez). (3.1)
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Since the Wigner distribution involves in its definition a gauge link, it inherits a path depen-
dence. The simplest choice is a straight gauge link. In this case, Eq. (3.1) gives the kinetic OAM
Lq

z = lq,straight
z associated with the quark OAM operator appearing in the Ji decomposition [5, 6]

− i
2

∫
d3r ψqγ+

(
~r×

↔
Dr

)
z
ψq. According to the Ji’s sum rule [5], this kinetic quark OAM can be

extracted from the GPDs

Lq
z =

1
2

∫ 1

−1
dx

{
x[Hq(x,0,0)+Eq(x,0,0)]− H̃q(x,0,0)

}
. (3.2)

In order to connect the Wigner distributions to the TMDs, it is more natural to consider instead
a staple-like gauge link consisting of two longitudinal straight lines connected atx− = ±∞ by a
transverse straight line [2, 4]. In this case, Eq. (3.1) gives the canonical OAMℓz= lq,staple

z associated
with the quark OAM operator appearing in the Jaffe-Manohar decomposition in theA+ = 0 gauge

− i
2

∫
d3r ψqγ+

(
~r×

↔
∇r

)
z
ψq [7]. Recently, it has been suggested, on the basis of some quark-model

calculations, that the TMDh⊥1T may also be related to the quark OAM [8]

L
q
z =−

∫
dxd2k⊥

k2
⊥

2M2 h⊥q
1T (x,k

2
⊥). (3.3)

However, no rigorous expression for the OAM in terms of the TMDs is known so far. For a more
detailed discussion on the different decompositions and corresponding OAM, see ref. [9].

In Table 1, we present the results from the light-front constituent quark model (LFCQM) and
the light-front version of the chiral quark-soliton model (LFχQSM) restricted to the three-quark
sector [3]. As expected in a pure quark model, all the definitions give the same value for the

Table 1: Comparison between the Ji (Lq
z), Jaffe-Manohar (ℓq

z) and TMD (L q
Z ) OAM in the LFCQM and the LFχQSM

for u-, d- and total (u+d) quark contributions.

Model LFCQM LFχQSM
q u d Total u d Total

Lq
z 0.071 0.055 0.126 −0.008 0.077 0.069
ℓq

z 0.131 −0.005 0.126 0.073 −0.004 0.069
L

q
z 0.169 −0.042 0.126 0.093 −0.023 0.069

total quark OAM, with nearly twice more net quark OAM in the LFCQM than in the LFχQSM.
The difference between the various definitions appears in the separate quark-flavour contributions.
Note in particular that unlike the LFCQM, the LFχQSM predicts a negative sign for theu-quark
OAM in agreement with lattice calculations [10]. It is surprising thatℓq

z 6= Lq
z since it is generally

believed that the Jaffe-Manohar and Ji’s OAM should coincide in absence of gauge degrees of
freedom. Note that a similar observation has also been made in the instant-form version of the
χQSM [11].

4. Conclusion

In summary, we presented the first model calculation of the Wigner distribution free of rela-
tivistic corrections and discussed its connection with thequark orbital angular momentum. Using
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a light-front constituent quark model and the light-front version of the chiral quark-soliton model,
we compared the various definitions for the quark orbital angular momentum.
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