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1. Introduction

A popular and most programmatic framework, which may allongét some insights into non-
perturbative aspects of Quantum Chromodynamics (QCD9, ésriploy quark models, sometimes
dressed with a gauge link. Such models are utilized to etalnan-perturbative quantities such
as form factors, parton distribution functions (PDFs), gaderalized parton distributions (GPDs).
Thereby, one often assumes that, e.g., the proton at a l@luties scale can be described by naive
constituent quark models and that perturbative evolutiay fme applied in the non-perturbative
region to dynamically obtain parton distributions that denemployed in the perturbative fac-
torization framework. This idea, arising in the early stafeQCD, has been adopted for PDF
parameterizations [1] and it is safe to state that in its o it failed [2]. In order to reproduce
phenomenologically acceptable results, we employ quartetscas tools that are not necessarily
connected with a low resolution scale. We formulate suchetsod terms of “effective” two-body
light-cone wave functions (LCWFs) and parameterize themnnimost flexible manner so that they
can be employed in a global fitting procedure to experimengdsurements of inclusive and exclu-
sive hadronic processes. To do so one needs a building deCiiFs that respect the underlying
Poincaré invariance of the theory, which allows us to modeD& in terms of partonic number
conserved LCWF overlaps [3]. Of course, once one has somelnfradgnework at hand one can
also consistently evaluate two-quark correlation funwjae.g., so-called Wigner distributions [4],
that are not accessible by experiments and are at presetiymigsussed for forward kinematics
(at least it is not shown that they provide GPDs that respeutdaré invariance). Note that we
distinguish between transverse momentum dependent pdidtiibutions (TMDs), which absorb
non-perturbative soft factors [5], and unintegrated PRIPEXFs), considered here, that have a pure
operator definition. Note that PDF evolution arises fronmdkeerse momentum integration.

There are various frameworks to set up quark models and teefolowing question arises:
Should one consider certain model results as being equi?aléndeed, it was realized that in
various models linear and quadratic relations among uPppeaa, see mini review [6]. This
observation was explained by rotation symmetry [7]. In thlbofving we directly utilize the spin
density matrices for both uPDFs and GPDs, and their LCWFdaywaepresentations to set up
classification schemes that emphasize the geometricalenaitthese relations.

2. Classification scheme of quark models

2.1 uPDF models

The uPDFs that appear to leading power in the descriptioemof-inclusive deep inelastic scatter-
ing can be put into a hermitian>44 semi-positive definite spin density matrix with track:2

fl;gl |kLN\|ei¢ hf,_;ihf |kL'L77i¢ ng;iffT hy
~ ‘kLl‘\/efw hﬁ‘;hf f1£91 %hﬁ 7|kk/‘le7i¢ ng—ziffT 5
POKID=N b gty 2eB g ket g [0KD (D)
Uh ket i g

where columma = A’A’ and rowb = AA with a,b € {=— =+ ,«<— <+ } are labeled by the
proton(Z) and struck quar@) light cone spin projections. Here, we use standard notatitere
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the sets{f1,01,h1}, {gi1, fi3,hi . hi }, andhi; are associated with twist-two, twist-three, and
twist-four PDFs, respectively. This spin density matrispesses a certain symmetry, which can be
used for a classification scheme of quark models. To proseedepresent the spin density matrix
(2.1) as the overlap af-parton LCWFs, written as convolution

~ (n=1)
D(x,k,) = Z‘D (% ki), Prmxki) =K Kki,s) ® YrXkis) (2.2)

that includes the phase space integratiofinef 1) spectators, the sum over their spin projections,
and a direct product of LCWF “spinors”, describing the skrqaark—proton spin correlation

U=n
WZn
Ysn
Win
As “spherical” models we denote those for which the spin ignsatrix (2.1) possesses triply

degenerated eigenvalues, which are giveifay- g1 — 2hy) /2 or (f1 + g1+ 2h1) /2. In such uPDF
models three linear constraints and one quadratic constraist be fulfilled,

Wiy (X, kii,s) = (Xi,K1i,S).

k2
girthii =0, fir¥hi =0, 91¢h1¥ﬁth:0a (2.3)
2 2
(i) + (ht)"+2mhir =0, (2.4)

where the upper or lower sign has to be taken consistentihelfriple eigenvalues are non-zero,
the spin density matrix has rank-four (or rank-three if timglket eigenvalue vanish) and one needs
four (or three) overlap contributions that arise from ineleglent LCWF “spinors”. On the other
hand, if the positivity boundy; = +(f; +g1)/2 for uPDFs (analogous to the Soffer bound for
PDFs) is saturated, the triple eigenvalues vanish and finedgmsity matrix has rank-one, i.e., it
can be represented by the direct product of one effective EC&fginor” as

=
—

&M k) = Bayxk) = W wrwSw) o | Y | oxky). (2.5)

—

P
—

The “spherical” models for which the upper sign holds true @alized in scalar diquark, axial-
vector diquark of [8], covariant parton [9], bag [10], chiguark soliton [11], and three-quark
LCWF [12] models. Indeed, up to the choice of a scalar LCWRhalse uPDF models can be
considered as equivalent, even if they might have diffesémick quark—proton couplings. More
generally, we may represent such models for a given quadiespas

q sph 1

~ 1

B0k ) B S Laea ffl(x ko) + | (97 %0 o9) — S Lo Tr (7 0 °9)| (x k1), (26)
wheres“2is the LCWF “spinor” of a “(pseudo)scalar” diquark model ahd unpolarized uPDF
ff is simply given as the overlap of a “scalar” LCWF. Note thathia aforementioned models only

one scalar LCWF appears and that SU(4) flavor-spin symmiesyttie uPDFs oft andd quarks.
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As “axial-symmetric” model we denote those for which thensgensity matrix has two de-
generated eingenvalues. These doubly degenerated digesnean arise from one pair of roots,
i.e., pi £/ with ./~ = 0fori € {1,2}, or different pairs, e.gp1 & /1= P2/ 2.

In the former case the three linear relations (2.3) arefsatishowever, the quadratic one (2.4)
does not hold true. Moreover, if the uPDF Soffer bound isrsaéd, the spin density matrices
of these models have rank-two (or two zero modes). An exaispiee scalar diquark model
containing a gauge link [13, 14], in which the naieodd functions satisfyfi; = hy-.

In the latter case of “axial-symmetric” models one forthardelation is fulfilled which in the
case of two zero-modes reduces to two quadratic equalities:

k2 k2 2 2
(fr+g—2hy) <f1—gl+M—gth> — iz [(ngﬂLhi) + (ftr—nt) } =0, (27

k2 k2 2 2
(fi 01+ 2N) <f1—gl—M—gth> - [(gﬁ—hﬁ) + (fir+nt) } -0 (28)

Such models are realized in axial-vector diquark modell Wit = h;- = 0 where only the trans-
verse polarization of the diquark is taken into account [@4the so-called quark-target model
[13].

In the case that the eigenvalues are not degenerated, hpweeezero mode (rank-three) ap-
pears we still have one quadratic model relation. An exaropluch a model is an axial-vector
diquark model of Ref. [14] where the diquark possess twostrarsal and one longitudinal polar-
ization, however, the polarization tensor differs fromttbathe “spherical” axial-vector diquark
model [8]. Even if the time-like polarization is taken intocaunt, i.e., the polarization tensor is
—0uv, one still has a rank-three model and the same quadrati¢raoriss satisfied,

S kT /0 12
(f1+gl+2h1)<f1_gl_wh1T>_W(ng_hlL> =0. (2.9)

2.2 Models for zero-skewness GPDs in impact space

For zero-skewness GPDs with leading twist-two an classificacheme analogous that for uPDFs
holds true in the impact space. The spin density matrix is gioen by

H%'t ig? 5 —ie®§  Hy

~ _je-10Er H-H gi2pn o0 E

F(x,b) = 22 ST 22 (xb), (2.10)
ie? S d2Hy %_I el £
Hr ie?E —je ¢S HiH

whereb = |b|, ¢ denotes now the polar angle in the impact parameter spade, an

b o = b 0 ~ ~,,_b20 J ~
=SB, Er= s [ET+2HT] (xb), F = 5= =S Hr(cD).

denote (dimensionless) derivatives of GPDs. ComparingiBieF spin density matrix (2.1) with
the GPD one (2.10), one reads off the following correspoocégn

E/

H (Xv b) A fl(x>kl_)> l:i(xv b) e gl(xa kJ_)> ﬁT(X> b) A hl(x>kl_)a (211)
2

k — k po k
E'(x,b) < —’M—i‘fﬁ(x,kL), Er(xb) < —%hf(x,kg, HY(x,b) < ﬁth(x,kL).



Exclusive hard reactions and QCD Dieter Miller

Note the mismatch in th&-odd sector, wher&-odd GPDs)E andEr, somehow corresponding to
T-even uPDFgj; andhy; , drop out in the forward case afidodd uPDFsfj; andh; correspond
to T-even GPD£ andEr, respectively. We emphasize that these correspondencegainly be
used on a formal level to adopt the above uPDF classificatibarae for GPDs, however, this does
not mean that, e.gf;; (vanishing in any pure quark model) is related to GP@vhich usually does
not vanish). Generally, uPDFs and GPDs are independergqtiajs on certain LCWF overlaps
and formally only three sum rules should be fulfilled for tiatiwo related uPDFs:

q(x p2)= // A%, qx k), (2.12)

where PDFsj € {f1,g1,hy} are given at the boundary = 0 andt = 0 of GPDsF € {H,H,Hr}.

2.3 GPD models

Because ok | -integration, the spin-density matrix of common GPDs willgeneral possess less
symmetry than uPDFs or GPDs in impact space. For a “sphérivadlel we expect that an ana-
log of the twok | -independent linear relations (2.3) exist, however, theltbne, which isk | -
dependent, might have an equivalent as integral relatioweler, there might not exist quadratic
relations such as in (2.4,2.7-2.9). In addition for a sglannodel of rank-one the analog of a
saturated uPDF Soffer bound exist. Indeed, for a “sphéninatel of rank-one four GPD relations
hold true, which allow expressing the chiral even GPDs bycthieal odd ones:

o[- t ~ todtf ~ ~

H(x,n,t)°% + HT<x,n,t>——2HT(x,n,t)—/ ——Hr(x.n,t)+nEr(x.n.t)| ,(2.13)
i 4M Y

BT ~ _
E(X7n7t)sp: + ET(erlvt)+2HT(X>r’>t)_r’ET(X>r’>t):| B (214)
~ s [ t ~ todtf ~ ,
A0 [Fr0on, 0+ greProon 0+ [ gip Areen o) (2.15)
Eoon )2 ET<x,n,t>—%ET<x,n,t>]. (2.16)

We add that in a scalar diquark model there exist seven lirgation among the eight twist-two
GPDs, which are given as constraints for double distrilmsticee [15].

3. Conclusions and outlook

Based on symmetry properties and the number of zero-modie @pin density matrix, we sug-
gested a geometrical classification scheme for quark malatss applicable for leading power
uPDFs and leading twist GPDs. In some special cases ouifidagsn scheme allows for a par-
tonic interpretation that is tied to internal rotation syetny. For instance, in the case of “spherical”
symmetry the spin-density matrix commutes with a unitaryrixndhat is composed of a Melosh
transform, applied on the struck quark, and an arbitrargtian of struck quark and proton spins.
This invariance implies the relations (2.3,2.4). Moregirethe new spin basis the off-diagonal spin
componentsp” = = = 0 vanish in a scalar diquark model and so the new LCWFs areiamia
under rotation, for a detailed discussion and interpratasiee [7]. However, the saturation of the
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uPDF Soffer bound and the quadratic relation (2.9), valithenaxial-vector model [14], arise from
the limitation of taking independent LCWF “spinors” rattiban from rotation symmetry.

Although the idea of a classification scheme for quark modelsivial, the scheme itself
might be useful. For instance, the rather non-trivial stegiet that any “spherical” uPDF model,
e.g., the three-quark LCWF model [12], can be obtained fraraxdal-vector diquark model [8].
Thereby, its spin density matrix (2.6) can be representetidmalar diquark model and an additional
unpolarized uPDF. An analog construction with what we catlimal axial-vector diquark—quark
coupling yields equivalent uPDF models and a consistent @Bfel in whichH andE GPDs are
tied to each other. In such a model the established “pomédsehavior of sea quark GPB%¢?
appears also in GPB*¢2 where polynomiality is completed. This latter GPD coulddoeessed
in a single transverse proton spin asymmetry, measuredeimaind exclusive electroproduction
of photons and so such measurements provide insight intqulek orbital angular momentum
carried by sea quarks. Finally, we emphasize that LCWF nspdiellonging to a certain uPDF
class, may yield leading twist-two GPDs that belong to amiothlass. Moreover, we expect that
non-leading power or twist quantities evaluated in a “sigladtthree-quark and two-quark LCWF
model are becoming nonequivalent.
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