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1. Introduction

Scalar dynamics of the light quark flavors in the nonperturbative energy region (especially
below 1 GeV) has been quite a topical research subject in the last decade, see Refs. [1, 2, 3, 4].
Despite the confirmation of the mass and width of the broad resonances by different groups [5],
their nature is still under a vivid debate. In the recent works [1, 2], we make a comprehensive study
of the scalar resonances below 1.5 GeV. Here we mainly discuss the results on the meson-meson
scattering and FESR (a way to quantify the semi-local or average duality) [6].

First, the meson-meson scattering amplitudes are unitarized to fit to experimental data and
the relevant resonance spectroscopy is confirmed. After then, we further investigate the role of
resonances in semi-local duality, not only for the physical case at NC = 3, but also for the situation
with NC > 3. The fulfillment of the nontrivial aspects of finite energy sum rules poses a strong
support of the proposed picture for the scalar dynamics in our work.

2. Theoretical framework

Our theoretical framework is U(3) χPT [7, 8], which includes not only the pseudo-Goldstone
octet π , K and η8, as SU(3) χPT [9], but also the singlet η1. After the diagonalization of the η8-η1

mixing, one has the physical η and η ′ mesons as the dynamical degrees of freedom in U(3) χPT.
This qualifies U(3) χPT as an improved approach for studying the η and η ′ dynamics compared
to the SU(3) version. Instead of considering the contributions from the higher order low energy
constants (LECs), we introduce explicitly the resonance exchanges at tree level, assuming the res-
onance saturation of LECs in our work. We follow the resonance chiral theory [10] to include the
scalar, vector and pseudoscalar resonance contributions. In addition we take into account another
two local chiral operators δL8 and Λ2 in the calculation [1, 2].

We calculate the mass and wave function renormalizations, pion decay constant and all of the
meson-meson scattering processes in U(3) χPT up to one-loop order plus the tree level exchange
of resonances. The perturbative amplitudes with definite isospin I and angular momentum J are
then unitarized through the nonperturbative N/D approach [4]

T IJ(s) =
[
1+NIJ(s)gIJ(s)

]−1NIJ(s) , (2.1)

where gIJ(s) takes care of the nonperturbative resummation of the unitarity cuts and all the con-
tributions from the crossed-channel cuts are collected in NIJ(s). The explicit forms for gIJ(s) and
NIJ(s) are given in Ref. [1]. With the unitarized partial waves in Eq. (2.1), it is straightforward
to calculate the phase shift, inelasticity and invariant mass distribution, which can be used to fit
experimental data.

In addition to the phenomenological aspects, there also exist theoretical constraints on the
scattering amplitudes. We focus on the semi-local duality in ππ scattering between the Regge
theory and hadronic degrees of freedom in this work. One of the objects to quantify the semi-local
(or average) duality is the FESR∫ ν2

ν1

ν−n ImT (I)
t,Regge(ν , t)dν =

∫ ν2

ν1

ν−n ImT (I)
t,Hadrons(ν , t)dν , (2.2)
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with ν = s−u
2 = 2s+t−4m2

π
2 and s, t,u the standard Mandelstam variables. In ππ scattering, the rela-

tions between the t- and s-channel amplitudes with definite isospin I are [6]

T (0)
t (s, t) =

1
3

T (0)
s (s, t)+T (1)

s (s, t)+
5
3

T (2)
s (s, t) ,

T (1)
t (s, t) =

1
3

T (0)
s (s, t)+

1
2

T (1)
s (s, t)− 5

6
T (2)

s (s, t) ,

T (2)
t (s, t) =

1
3

T (0)
s (s, t)− 1

2
T (1)

s (s, t)+
1
6

T (2)
s (s, t) , (2.3)

where the subscript of T labels the t- or s-channel and the superscript stands for the isospin I. The
left hand side of Eq. (2.2) can be evaluated in Regge theory. The explicit expressions and results
can be found in Ref. [11] and references therein. For the right hand side of Eq. (2.2), we decompose
the isospin amplitudes into a sum of partial wave amplitudes

ImT (I)
s (ν , t) = ∑

J
(2J+1) ImT IJ(s)PJ(zs) , (2.4)

with zs = 1+2t/(s−4m2
π) the cosine of the scattering angle in the s-channel center of mass frame

and PJ(zs) the Legendre polynomials. By combining Eqs. (2.4) and (2.3), we can first obtain
ImT (I)

t,Hadrons(ν , t) and then compare the hadronic contributions with those from Regge theory.
One expects that the “averaging” in Eq. (2.2) should start to work at least for one resonance

tower and this means the integration range ν2 −ν1 should be set as a multiple of 1 GeV2. In this
work we are interested in the energy region below 2 GeV2. To proceed the discussion, it is advisory
to consider the following ratios to cancel the uncertainties caused by the Regge couplings [2, 11]

RI
n =

∫ ν2
ν1

ν−n ImT (I)
t (ν , t)dν∫ ν3

ν1
ν−n ImT (I)

t (ν , t)dν
, (2.5)

F II′
n =

∫ νmax
ν1

ν−n ImT (I)
t (ν , t)dν∫ νmax

ν1
ν−n ImT (I′)

t (ν , t)dν
, (2.6)

with ν1 the ππ threshold, ν2 = 1 GeV2, ν3 = 2 GeV2 and νmax = 2 GeV2 in later discussions.

3. Discussions

We fit the unknown parameters in our theory to a large amount of experimental data, consisting
of phase shifts and inelasticities of ππ → ππ(KK̄) and πK → πK scattering, with different isospin
and angular momentum numbers, and also the invariant mass distribution of the πη system [1,
2]. The fit quality is fairly good and with the fitted parameters we obtain seven scalar and three
vector resonances from our unitarized scattering amplitudes in the complex energy plane: f0(600),
f0(980), f0(1370), K∗

0 (800), K∗
0 (1430), a0(980), a0(1450), ρ(770), K∗(892) and φ(1020). Their

masses and widths agree well with the PDG values. In addition, we also calculate the coupling
strengths of the resonances to the pseudo-Goldstone boson pairs. This comprises the couplings
of the f0 resonances to ππ , KK̄, ηη , ηη ′ and η ′η ′, the couplings of K∗

0 to Kπ , Kη and Kη ′,
the couplings of a0 resonances to πη , KK̄ and πη ′ and also the relevant coupling strengths for
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n R0
n R0

n R1
n R1

n F21
n F21

n

t = tth t = 0 t = tth t = 0 t = tth t = 0

Regge 0 0.225 0.233 0.325 0.353 ∼ 0 ∼ 0

1 0.425 0.452 0.578 0.642 ∼ 0 ∼ 0

2 0.705 0.765 0.839 0.908 ∼ 0 ∼ 0

3 0.916 0.958 0.966 0.990 ∼ 0 ∼ 0

Ours 0 0.669 0.628 0.836 0.817 -0.113 0.040

S+P 1 0.837 0.812 0.919 0.908 -0.230 -0.087

Waves 2 0.934 0.924 0.966 0.962 -0.129 0.028

3 0.979 0.976 0.989 0.988 0.169 0.345

Ours 0 0.410 0.400 0.453 0.468 0.531 0.587

S+P+D 1 0.653 0.643 0.694 0.706 0.154 0.236

Waves 2 0.850 0.844 0.875 0.882 0.027 0.155

3 0.954 0.953 0.965 0.968 0.225 0.388

Table 1: Values for RI
n and F II′

n . Results by using two values of t, 0 and tth = 4m2
π , are shown in the table.

the vector resonances. One important lesson we learn is that the f0(600) resonance is marginally
coupled to η and η ′ mesons, indicating its insensitivity to the η and η ′ dynamics. The explicit
numbers can be found in Refs. [1, 2].

Now, it is interesting to explore the scattering amplitudes, which contain the relevant reso-
nances, in finite energy sum rules. We compare the results from Regge theory and the unitarized
U(3) χPT amplitudes in Table 1. When considering the D-wave contributions, we include the ten-
sor resonances in meson-meson scattering following the framework in Ref. [12]. The first lesson
we can learn from the numbers in Table 1 is that the results are stable when switching from t = 0 to
t = 4m2

π . Next, let us focus on the ratios RIt
n with It = 0,1 and our current results qualitatively agree

with the conclusions in Ref. [11]. The semi-local duality with n = 3 can be well satisfied by just
S- and P-waves, while the fulfillment for the n = 2 case is marginal. About the cases with smaller
values of n, higher partial waves and cut-offs are needed in order to fulfill the semi-local duality.
As one can see in Table 1, the inclusion of the D-waves clearly improves the situations for n = 0,1.

Concerning the ratios F21
n with the isotensor amplitude involved, we observe different results.

Due to the suppression of the Regge exchanges in It = 2 amplitude, the Regge theory predicts
almost vanishing values for F21

n . From Eq. (2.3), one can simply conclude that if the P-(S-) wave
contributions are dropped the ratios of F21

n should approach to +1(-1), which can be viewed as
the criteria to claim the extreme violation of semi-local duality. By only considering the S- and
P-waves, we find that semi-local duality is well satisfied for all values of n and there is no clear
sign that it is better satisfied for a specific value of n, contrary to the situations of RI

n. While the
introduction of the D-waves, instead of improving the situation, deteriorates the fulfillment of the
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semi-local duality for n = 0.
All the discussions above are made in the physical situation, i.e. at NC = 3. It is interesting

to investigate the fulfillments of semi-local duality by extrapolating the values of NC to larger
numbers [11]. In order to perform this study, we need to know the NC scaling of the parameters
in our theory. For the NC scaling at leading order, it is known without any ambiguity, which can
be found in Refs. [1, 10]. While if one wants to consider the sub-leading order NC scaling, extra
assumptions need to be provided. In order to estimate the uncertainties of the sub-leading order
effects, we propose four different scenarios to discuss semi-local duality. It is interesting to point
out that semi-local duality indeed can distinguish different scenarios and hence provides us a way
to constrain the NC evolution of parameters [2]. This also gives us a valuable onset to study the NC

evolution of the resonance poles and spectral sum rules [2]. In Fig. 1, we show how the different
scenarios can be distinguished in the study of the ratios F21

n . Taking into account the criteria we
mentioned above, it is easy to conclude that Scenario 3 is the best one to satisfy semi-local duality.
In Scenario 4, we take into account the D-wave contributions, in addition to the S- and P-waves
that are included in Scenarios 1-3. The reason why Scenario 4 is disfavoured is due to the fact that
the D-wave overbalances the vector resonance contributions and hence it leads to too large values
for the n = 0 case. In the physical situation, as we mentioned before, the semi-local duality can be
well satisfied by the S- and P-waves, mainly due to the cancellations of the f0(600) and ρ(770) in
the amplitudes. At large values of NC, although the f0(600) resonance fades away in the complex
energy plane and hence, barely contributes to the amplitudes [1, 2], another scalar strength survives
and behaves like a standard qq̄ resonance. The latter one corresponds to the singlet scalar S1 which
is part of the f0(980) for NC = 3. This is a crucial source to oppose the ρ(770) contribution and
hence guarantees the fulfillment of semi-local duality at large values of NC.
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Figure 1: F21
n (t = 4m2

π). Detailed definitions for the different scenarios can be found in Ref. [2].
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