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1. Introduction

The existing experimental information fromvt scattering has many conflicting data sets at
intermediate energies and no data at all close to the interesting threshold. rEgiomany years
this fact has made it very hard to obtain conclusive resultgmacattering at low energies or in the
o (or fo(600)) and fp(980) region. However, recent [1] and precise experiments on kaon gecay
related torrrt scattering at very low energies, have renewed the interest on thissgroce

The dispersive integral formalism is model independent, just basedabytiaity and crossing,
and relates thetrr amplitude at a given energy with an integral over the whole energy range,
increasing the precision and providing information on the amplitude at esengiere data are
poor, or where there is no data, like the complex plane. In addition, it ma&gmatiametrization of
the data irrelevant once it is included in the integral and relates diffecattesing channels among
themselves.

Roy equations (RE), based on twice subtracted dispersion relationg@sging symmetry
conditions forrrr — it amplitudes were obtained in 1971 [2]. In recent years, these equations
have been used either to obtain predictions for low enemgycattering, either using Chiral Per-
turbation Theory (ChPT)[3, 4], or to test ChPT [5, 6, 7], as well asoleesold data ambiguities
[8]. The RE are relevant for the sigma pole, whose position has alsodveditted very precisely
with the help of ChPT [9]. Our group [6, 7] has also used RE with Forvizispersion Relations
(FDR) to obtain a precise determinationrof scattering amplitudes from data consistent with ana-
lyticity, unitarity and crossing. On purpose, we have not included ChR$tcaints, so that we can
use our results as tests of the ChPT predictions. Unfortunately, the bgpgeraental error of the
scattering lengttaZ of the isospin 2 scalar partial wave, becomes a very large error foighs
pole determination using RE. For this reason, a new set of once-sultREiecalled GKPY egs.
for brevity, have been derived [10]. Both the RE and GKPY equatioogige analytic extensions
for the calculation of poles in the complex plane. Actually, we review hergemnant results [10]
on simple data fits constrained to satisfy these dispersive representatioal as our results [11]
for the o and fp(980) poles in the SO wave obtained from GKPY egs.

2. Overview of theanalysis

The approach we have followed throughout a series of works [@),7,2] can be summarized
as follows:

We first obtain simple fits to data for eactir scattering partial wave (the so calleshcon-
strained Fits to Dataor UFD for short). These fits are uncorrelated, therefore they can be very
easily changed when new, more precise data become available. Let uk teatdor our latest re-
sults we have used previous fits for all waves except the SO wave, ¢hatpvove in [10]. For this
wave, below 850 MeV, we have included the very pre#gedata [1], we got rid of the controver-
sial K — 7T point, and we have included the isospin correctioKjtpdata from [13]. Above 850
MeV we have updated the SO wave using a polynomial fit to improve the intertaeditching
between parametrizations (with a continuous derivative) and the flexibilitiyeofo(980) region,
which is of particular importance for the discussion of the “dip” and “nd-@igenarios that we
will comment below.. At different stages of our approach we have alsd fRegge theory [14] to
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rirt high energy data, and as our precision was improving, we have improvee af the UFD fits
with more flexible parametrizations.

Then, these UFD are checked against FDR, several sum rules,dREKIRY eqs. The UFD
fit does not satisfy very well these dispersion relations. Particularly Ki@YGegs. for the SO wave
in the fp(980) region are satisfied very poorly [10].

Finally, we impose these dispersive relations in the previous fits as additonatraints.
These newConstrained Fits to DatdCFD for short) are much more precise and reliable than the
UFD set, being consistent with analyticity, unitarity, crossing, etc. The poigay is that now all
the waves are correlated.

In order to quantify how well the dispersion relations are satisfied, waalsfk quantitieg;
as the difference between the left and right sides of each dispersatiomevhose uncertainties we
call 4. Next, we define the average discrepancies

j2 1 Di(sy) \?
d numberofpoints?—(cmi(sq» ’ (2.1)

where the values of, are taken at intervals of 25 MeV. Note the similarity with an averaged
x?/(d.o.f) and thusdT2 < 1 implies fulfillment of the corresponding dispersion relation within
errors. In Table 1 we show the average discrepancies of the UFCaétr EDR eq. up to 1420
MeV, and for each RE and GKPY eq. up to 1100 MeV. Since the total geedescrepancies lie
between 1 and 1.6 standard deviations, they can be clearly improved bying@a®ultaneous
fulfillment of dispersion relations. This is actually done in the CFD set, whichbotained by
minimizing:

X% = {3+ g, +d2_,+d+d%+d3}wW (2.2)

— — expy 2
+d|2+d§+zi('°'6§; ) , (2.3)

wherep>*? are all the parameters of the different UFD parametrizations for each araRegge
trajectory, thus ensuring the data description, énendd; are the discrepancies for a couple of
crossing sum rules, see reference [10] for details. Note that weselfdoz 9 — 12 for the effective
number of degrees of freedom needed to parametrize curves like thpsareng in the SO, P and
S2 waves.

From Table 1 it is clear that the CFD set satisfies remarkably well all digmerslations
within uncertainties, and hence can be used directly if one needs a cohpestametrization. But,
in addition, it can be used inside certain sum rules to obtain precise predi@iothe threshold
parameters of the effective range expansionrfarscattering [10, 15]. At least for the scattering
lengths and slopes, they are remarkably compatible with the prediction oBideem to be eas-
ily accommodated within two-loop ChPT [15]. However, the description of tizgpe parameters
(third order in the effective range expansion) seem to call for evemehigrders of ChPT [15].

A relevant remark about the use of GKPY Egs. is that it has allowed ust§l8ettle a
longstanding controversy between a “dip” and “non-dip” solution for itiedasticity of the SO
wave right above th&K threshold. The “dip” solution is clearly favored by the GKPY Egs., and
this is of relevance for the precise determination off§{®80) resonance properties from scattering
data.
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In summary the CFD set provides a model independent and very presesggtion of thertrt
scattering data consistent with analyticity and crossing.

(UFD) (CFD)
st/2 < 1420MeV || s¥/2 < 1420MeV
mm° FDR 2.13 0.51
" m° FDR 1.11 0.43
li_; FDR 2.69 0.25
st/2 < 1100MeV || s¥/2 < 1100MeV
Roy eg. SO 0.56 0.04
Roy eq. S2 1.37 0.26
Roy eq. P 0.69 0.12
GKPY eq. SO 2.42 0.24
GKPY eq. S2 1.14 0.11
GKPY eq. P 2.13 0.60

Table 1. Average discrepanciei?— of the UFD and CFD for each FDR and RE. Note the remarkable CFD
consistency.

3. Position of the o and fp(980) poles

The mass and width of the meson quoted in the Particle Data Table are very widely spread [17]

T _
Mg —i= ~ (400~ 1200 —i(250— 500 MeV. (3.1)

The main reason of these uncertainties is tiv@scattering data are few and sometimes contradic-
tory. Moreover, all quoted theoretical models are not equally reliabl]ess so when extending
the amplitude to the complex plane. Thus the position of the sigma pole in varioussnuifde
fer significantly [17], although, with a couple of exceptions, they tend reagoughly around
~ (450+50) —i (2504 50), particularly those results based on dispersion theory.

The mass and width of thi(980) meson quoted in the Particle Data Table are [17]

T fo(980)

Mi,(080 — | ~ (970—990) — (20— 50)MeV. (3.2)

The recent data from E865 collaboration at Brookhaven [18] and Mé48/2 [1] provide us
with new and very precise information on ther scattering at low energies. Thanks to these new
data we are able to construct, with our Constrained Fits to Data, a very reledxeption for the
0 wave especially near thert threshold.

With those precise data parametrizations, we can now use either RE or G4&? Yoeextend
the partial waves analytically to the complex plane and look for poles in thendedweet of the
S-matrix. As it is well known, a pole on the second Riemann sheet (unghgsieet) is associated
with a zero on the first—the physical one.
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Depending on whether we use Roy or GKPY Egs. we find a differeniracg in our results,
namely:

/S0 = (445+ 25) —(278"22) MeV (RE) (3.3)
VS0 = (457713) —i (279731 MeV  (GKPY) (3.4)

and for thefy(980) pole:

fo(080 = (1003"3,) —i (2113%) MeV (RE) (3.5)
/Sto(e80 = (996:£7) —i(252%) MeV (GKPY). (3.6)

These values are in good agreement with each other. Note that f&(889) we have had to add
a 4 MeV systematic uncertainty on the imaginary part of the pole position, wioictes as the
difference between using our isospin symmetric formalism with the chargédteareutral kaon
mass.

In the caser, on the one hand, both the mass and width lie less than 1 standard deviation awa
from the prediction of twice-subtracted RE combined with ChPT results fasdhtering lengths
[9]: /So = 44173°—i272"],.MeV. On the other hand our pole determination above is roughly
two standard deviations from the mass and width in our simple fit of a confaxpainsion to low
energy data [20]/S; = (484+17) —i(255+10) MeV.

In the case of thdp(980), the mass is somewhat higher than that quoted in the PDG-980
MeV, although note that ours is the pole position and is model independemte@ing the width,
which once again we obtain from the pole positionfas: —2Im, /St 980 = SOﬁgMeV it lies
within the range given in the PDG, namely, 4Q00 MeV.

4. Conclusions

The GKPY equations [20, 21]—Roy-like dispersion relations with one agbtian for therrrr
amplitudes—provide stringent constraints for dispersive analysis arempntal data. We have
provided simple and ready to use parametrizations, constrained to satisfydteations as well
as Roy equations and froward dispersion relations, that simultaneouwsslsitoethe existing data.

The main advantage of GKPY eqs. is that, for the same input, in #e®eV < /s <
1.1 GeV region they have significantly smaller errors than standard RoyHeqee, they provide
better accuracy tests and analytic extensions of the amplitudes in that ragioarticular, using
just a data analysis consistent within errors with Forward Dispersion RedatlRoy egs. and
GKPY egs. (and no ChPT input), we have presented here our reegnprecise determination of
the o pole position:

VS0 = (457713) —i (27973 Mev, (4.1)
and of thefp(980):
/Sto(e80 = (996:£7) —i(25'5°) MeV. (4.2)
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