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We report our results on the nature of the lightest scalar resonances, where we show that a ¯qq or

glueball interpretation of the scalarsf0(600) andK∗
0(800) requires a very unnatural fine tuning to

satisfy 1/Nc–expansion predictions for ¯qqor glueball states, which is not needed in the case of the

lightest vector mesonsρ(770) andK∗(892). For this we consider scattering observables whose

value is fixed to 1 for ¯qqand glueball states up to corrections suppressed by more than one power

of 1/Nc, thus enhancing contributions of other nature. This allowsus to evaluate these observables

and check the 1/Nc predictions atNc = 3 without the need to extrapolate to unphysicalNc values.

This is done using recent and very precise dispersiveππ andπK scattering data analyses.
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1. Introduction

Light scalar mesons are an object of great interest in hadronand nuclear physics. They are
largely responsible for the attractive part [1] of the nucleon–nucleon interaction; some have the
quantum numbers of the lightest glueball, which is interesting for the non–abelian nature of Quan-
tum Chromodynamics (QCD); also, some have the quantum numbers of the vacuum, so they should
play a relevant role in the spontaneous Chiral Symmetry breaking of QCD. However, the precise
properties of the light scalar mesons, as their nature, spectroscopic classification, and even their ex-
istence —as in the case of theK∗

0(800)— are still the subject of an intense debate. Regarding their
spectroscopic nature, several models [4] suggest that theymight not be of ordinary ¯qqnature, but of
other kind of spectroscopic classification, such as tetraquarks, meson–meson molecules, glueballs,
or a complicated mixture of all these.

A powerful tool to study the spectroscopic nature of mesons is the QCD 1/Nc expansion [5]. It
is valid in the entire energy range and gives a clear definition of different spectroscopic components
in terms of their mass and width 1/Nc scaling, which is well known for ¯qq and glueball states. By
combining the 1/Nc expansion with Chiral Perturbation Theory (ChPT) [3] unitarized with the
Inverse Amplitude Method [14], some of us studied [6, 7] the 1/Nc behavior of light resonances. It
was found that whereas theρ(770) andK∗(892) vectors behave predominantly as expected for ¯qq
states, the scalarsf0(600) andK∗

0(800) do not [6]. However, the two–loop analysis [7] showed that
a possible subdominant ¯qqcomponent for thef0(600) may exist, but with a mass around 1 GeV or
more.

In [6, 7] unitarized ChPT was used to changeNc and study the 1/Nc scaling of the mass
and width of the light resonances generated. However, the 1/Nc leadingq̄q scaling,M = O(1),
Γ =O(1/Nc) receives subleading corrections suppressed by 1/Nc, and for physicalNc = 3 this may
not seem a large suppression. Thus, we report here our results [8] using adimensional observables
with corrections suppressed further than 1/Nc, that allow us to obtain conclusions directly from
real data atNc = 3, without the need to extrapolate to largerNc using unitarized ChPT.

The observables mentioned above are related to the three different criteria commonly used
to identify resonances in elastic two–body scattering, which are equivalent for largeNc. One of
these criteria is the position of the pole associated to the resonance in the unphysical sheet,sR,
which gives a definition of the resonance mass and width,sR = m2

R− imRΓR. A second possibility
is to define the mass as the energy at which the phase shift reachesπ/2, which for bothππ and
πK scalar scattering phase shifts occur relatively far from the pole position. Third, the resonance
mass can also be identified with the point where the phase derivative is maximum. The relation
between the first two criteria, which are equivalent up toO(1/N2

c ) corrections for ¯qq states [9],
was studied in [9] for thef0(600) with a relatively inconclusive result about its assumed ¯qqnature.
A more reliable parametrization and better data were calledfor and we will use it here with more
conclusive results.

Thus in section 2 we define and obtain the 1/Nc scaling of the observables used to test the 1/Nc

predictions suppressed by more than one power of 1/Nc. These are related to the phase shift and its
derivative evaluated at the resonance “pole” massm2

R = Re(sR). In section 3 we discuss the results
obtained, where we see that the coefficients needed for considering thef0(600) andK∗

0(800) asq̄q
or glueball states are unnaturally large by two orders of magnitude.

2



P
o
S
(
Q
N
P
2
0
1
2
)
0
8
3

Enhanced non-quark-antiquark and non-gluebal Nc behavior of light scalar mesons Guillermo Rios

2. Highly suppressed 1/Nc observables

Consider the elastic scattering of two mesons with a resonance associated to a pair of conjugate
poles on the unphysical sheet of the scattering amplitude, located atsR = m2

R± imRΓR, wheremR

andΓR are the resonance mass and width. It was found in [9] that if the resonance behaves as a ¯qq
state, i. e.,mR = O(1), ΓR = O(1/Nc), then the phase shift satisfies

δ (m2
R) =

π
2
−

Ret−1

σ

∣
∣
∣
∣
m2

R
︸ ︷︷ ︸

O(N−1
c )

+O(N−3
c ), δ ′(m2

R) =−
(Ret−1)′

σ

∣
∣
∣
∣
m2

R
︸ ︷︷ ︸

O(Nc)

+O(N−2
c ), (2.1)

wheret(s) is the scattering partial wave,σ = 2k/
√

s, k is the center of mass momentum of one of
the mesons ands is the usual Mandelstam variable. The prime denotes derivatives with respect to
s. Note that the subleading 1/Nc corrections are suppressed by two powers of 1/Nc. This particular
1/Nc counting, as shown in [9], comes from the expansion of the real and imaginary parts of the
pole equation, as we detail next.

The inverse of the partial wave, which generically scales asNc, can be written ast−1 = R+ iI ,
whereR and I are analytic functions that coincide with the real and imaginary parts oft−1 over
the right cut, i. e.,R(s) = Ret−1(s) and I(s) = Im t−1(s) = −σ(s) for s> sth. Then, the inverse
partial wave on the second sheet is given byt−1

II = R− iI , and the equation for the resonance pole
position,t−1

II (sR) = 0, can be written asR(sR) = iI (sR). If the resonance is a ¯qq state,mR = O(1)
andΓR = O(N−1

c ), and we take the real and imaginary parts of the expansion of the pole equation
aroundm2

R, we arrive at

Ret−1(m2
R) = mRΓR

[
mRΓR

2
(Ret−1)′′s=m2

R
−σ ′(m2

R)

]

︸ ︷︷ ︸

O(N−1
c )

+O(N−3
c ),

(Ret−1)′s=m2
R
=

σ(m2
R)

mRΓR
︸ ︷︷ ︸

O(Nc)

+O(N−1
c ).

(2.2)

Since the expansion parameterimRΓR ∼ 1/Nc is purely imaginary, the different orders in the ex-
pansion, which are suppressed by the corresponding 1/Nc factors, are real or purely imaginary
alternatively. Then, when taking the real and imaginary parts of the equation, the different orders
are suppressed by two powers of 1/Nc, as shown in Eqs. (2.2), from where we also see that the in-
verse amplitude scales as 1/Nc instead of as the genericNc when evaluated atm2

R. Then, Eqs. (2.1)
are obtained noting that the phase shiftδ (s) satisfiesδ − π/2 = −arctan(Ret−1/σ), and using
Eqs. (2.2) to expand the arctan function in 1/Nc powers.

We can now define from Eqs. (2.1) the following adimensional observables,

π
2 −Ret−1/σ

δ

∣
∣
∣
m2

R

≡ ∆1 = 1+
a

N3
c
, −

[Ret−1]′

δ ′σ

∣
∣
∣
m2

R

≡ ∆2 = 1+
b

N2
c
, (2.3)

whose value should be one for predominantly ¯qq resonances up toO(1/N3
c ) andO(1/N2

c ) correc-
tions, respectively. We have written explicitly the corresponding 1/Nc powers in the subleading
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terms, so the coefficientsa andb should naturally beO(1) or less. Note that it is relatively simple
to makea andb much smaller than one by taking into account higher order contributions of natural
size, but very unnatural to make them much larger. In the caseof a glueball nature of the reso-
nance, whose mass and width scale asmR = O(1) andΓR = O(1/N2

c ), the above derivations can
be repeated, but now the subleading corrections are even more suppressed since the width scales as
1/N2

c instead of only 1/Nc. Then, for a glueball resonance, the observables∆1 and∆2 satisfy

∆1 = 1+
a′

N6
c
, ∆2 = 1+

b′

N4
c
, (2.4)

wherea′ andb′ should of naturalO(1) size.
In the following section we will calculate these observables to see how well the above pre-

dictions for∆1 and∆2 are fulfilled assuming a ¯qq nature (or also glueball for thef0(600)) for the
resonances found in elastic ofππ andπK scattering.

3. Results

In Table 1 we show the values of thea andb parameters for the lightest resonances found in
ππ andπK scattering, which have been calculated from the data analyses that we detail below. Let
us first note thatfor theρ(770) and K∗(892) vector resonances all parameters are of order one or
less, as expected for̄qq states. In contrast,for the f0(600) and K∗

0(800) scalar resonances we find
that all parameters are larger, by two orders of magnitude, than expected for̄qq states. This is one
of our main results and make the ¯qq interpretation of both scalars extremely unnatural.

The data analyses that we have used in each case are the following. For theππ scattering
phase shifts we use the very precise and reliable output of the data analysis in [10] constrained to
satisfy Roy equations, once subtracted Roy–like equations(GKPY equations) and forward disper-
sion relations, which is therefore model independent and specially suited to obtain thef0(600) pole
[11]. This analysis is also in good agreement with previous dispersive result based on Roy equa-
tions [12]. For the case of isospin 1/2 scalar channel ofπK scattering, where we find theK∗

0(800),
we have also used the rigorous dispersive calculation in [13] that uses Roy-Steiner equations, al-
though in this case we can only provide a central value. For the isospin 1/2 vector channel ofπK
scattering, where we find theK∗(892), there are no very precise purely dispersive descriptions of
data, so we use unitarized ChPT in the form of the elastic IAM [14]. We have checked that using
the IAM for theρ(770) we obtain results within 50% of the results using the GKPY dispersive rep-
resentation. Since theK∗(892) is narrower than theρ(770), the IAM is likely to provide a better
approximation than in theρ(770) case, but even with that 50% uncertainty we can check that thea
andb parameters are smaller than one.

ρ(770) K∗(892) f0(600) K∗
0(800)

a −0.06±0.01 0.02 −252+119
−156 -2527

b 0.37+0.04
−0.05 0.16 77+28

−24 162

Table 1: Normalized coefficients of the 1/Nc expansion for different resonances. For ¯qq resonances, all
them are expected to be of order one or less.
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One might argue that, since the first of Eqs. (2.1) comes from the expansion of arctan(x) =
x− x3/3+ ..., the correctiona/N3

c to ∆1 = 1 is really the cube of aO(N−1
c ) quantity, (ã/Nc)

3,
where now the coefficient that should be natural is ˜a instead ofa. That explains the very small
values obtained for theρ(770) and theK∗(892), that come froma = ã3/3, with ã= 0.56±0.03
and ã = −0.4 for theρ(770) andK∗(892) respectively, which are quite natural values. For the
f0(600) and theK∗

0(800) we obtain ˜a = 9.1+1.3
−2.5 and−19.6, still rather unnatural values. In the

case of∆2, where the corrections are only suppressed by 1/N2
c instead of 1/N3

c , we do not find this
issue, because theb/N2

c term is not the square of a natural 1/Nc quantity,

b
N2

c
=

Ret−1

σ

[ σ ′

(Ret−1)′
−

Ret−1

σ

]

+O(N−4
c ). (3.1)

Despite containing a cancellation between two 1/Nc terms, its value for theρ(770) andK∗(892)
is rather natural. However, the value for the scalars is almost two orders of magnitude larger than
expected for predominantly ¯qqstates.

In the case of a glueball interpretation of thef0(600), the coefficientsa′ andb′ from Eqs. (2.4)
are even more unnatural, this time too large by three or four orders of magnitude,a′ =−6800+3200

−4200

andb′ = 2080+760
−650. In other words, a very dominant or pure glueball nature for the f0(600) is very

disfavored by the 1/Nc expansion. Of course, as in the ¯qqcase we could worry about the fact that,
due to the arctan(x) = x−x3/3+ ... expansion, thea′ should be interpreted asa′ = ã′/3. However,
even with that interpretation we would still find ˜a′ = 27+5

−7, again rather unnatural. Once more, in
the case ofb′, its value is genuinely unnatural, disfavoring the glueball interpretation.

Finally, in [8] we also showed that what really happens for the scalars is that they do not even
follow the 1/Nc expansion of ¯qq or glueball states given in Eqs. (2.3) and (2.4). This was done by
calculating the 1/Nc scaling of the quantities∆i −1 for the different resonances using the Inverse
Amplitude Method, where the 1/Nc expansion can be implemented through the ChPT low energy
constants. We refer however the reader to our original work [8] for further details.

4. Summary

We have reviewed our results in [8] where we study the 1/Nc expansion of elastic meson–
meson scattering phase shifts around the pole mass of a ¯qq or glueball resonance. In particular,
we have defined the observables (2.3) and (2.4), whose value is fixed to one up to corrections
suppressed by more than one power of 1/Nc for q̄qor glueball states. Using very precise dispersive
analyses ofππ andπK scattering data we have shown that a ¯qq or glueball interpretation for the
f0(600) or K∗

0(800) needs unnaturally large coefficients in the expansion. Thus, a predominant
q̄q or glueball nature for these resonances is heavily disfavored by the 1/Nc expansion, and this
has been shown without extrapolating beyondNc = 3. However, when extrapolating to largerNc

using the IAM, we checked in [8] that the scalars do not followthe pattern of the 1/Nc expansion
expected for ¯qqor glueball states.

This work is partially supported by the FPA2011-27853-C02-02 Spanish grant.
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