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One of the primary aims of lattice QCD is to accurately compute the spectrum of hadronic ex-
citations from first principles. However, obtaining an accurate resolution of excited states using
methods of lattice QCD is not a trivial problem due to faster decay of excited-states correlation
functions in Euclidean space in comparison to those of ground states. To overcome this difficulty,
anisotropic lattices with a finer temporal discretization are used.
To go beyond the spectrum, in order to study the properties of the states, one needs to compute
corresponding matrix elements. Thus, for example, the quark distribution amplitudes in mesons
are given by matrix elements of quark bilinear operators, while in baryons, the corresponding
quark distribution amplitudes are related to matrix elements of three-quark operators. To relate
the matrix elements calculated on the lattice to those in the continuum, and hence to relate to
the measured experimentally, it is necessary to evaluate matching coefficients. In this work we
describe the calculation of the matching coefficients using perturbation theory for the improved
anisotropic-clover fermion action used for our studies of excited states.
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1. Introduction and motivation

Understanding the hadron spectrum in the light and heavy quark sectors of QCD remains one
of the fundamental aims of strong interaction physics. In this ongoing project, we apply methods
of perturbation theory to lattice quantum chromodynamics in order to investigate the momentum
distribution of quarks inside hadrons, relevant for processes at high momentum transfers. A de-
tailed investigation of the spectrum of mesons composed of light quarks is the goal of Jefferson
Lab GlueX experiment at 12 GeV, which aims to photoproduce mesons with exotic quantum num-
bers and reveal the role of gluonic degrees of freedom in the spectrum.

In the case of mesons, their simple valence structure presents the ideal testing ground for
our understanding of bound quark systems, and a key aim of this project is to come to a better
understanding of the pion form factor, which describes the distribution of charges inside the pion,
as well as those of the excited states of the pion and other mesons.
This factor Fπ(Q2) is defined by

〈π(p f )|Vµ(0)|π(pi)〉= Fπ(Q2)(pi + p f )µ , (1.1)

here pi and p f are initial and final momenta, Vµ is vector current, and Q2 is the four-momentum
transfer. By measuring the pion form-factor at short distances, or high Q2, it is possible to study its
transition to a regime where quarks dynamics predominates; the 12 GeV upgrade in Jefferson Lab
will extend form-factor measurements up to a value of Q2≈ 6(Gev/c)2. The major issue here is that
at the largest energy scale where reliable experimental measurements have so far been obtained, the
pion form-factor data are far larger than the perturbative QCD asymptotic prediction. Lattice cal-
culations have the potential to address the question of how rapidly the form factor approaches the
perturbative-QCD expectations, and whether it is at a scale likely to be accessible to experiment.
The corresponding distributions for excited meson states are still largely unexplored in lattice QCD.

The transition from factors to excited baryon states at large Q2 are important elements of
the CLAS program at 12 GeV [1]. In [2], the first lattice calculations of light-cone distribution
amplitudes of the N∗(1535) resonance were reported, and these distribution amplitudes were used
to calculate the transition form factors to nucleon excited states at large momentum transfers.

The lattice approach to QCD offers a non-perturbative method of performing a computation
of the QCD spectrum from first principles. Experiments reveal a rich spectrum of excited states,
and lattice calculations can help in identifying their properties. However, obtaining an accurate
resolution of excited states using methods of lattice QCD is not a trivial problem due to the faster
decay of excited-states correlation functions in Euclidean space in comparison with those of ground
states, and the severe degradation in the signal-to-noise ratio at increasing temporal separations.
To get a better signal, one needs lattices with a fine lattice spacing in the time direction but, at
the same time, it is desirable to avoid finite-volume effects that would be very large were a fine
lattice spacing to be used in all four directions given current computational resources. A possible
solution to this conflicting requirements is the use of anisotropic lattices with a finer temporal than
spatial lattice spacing. The first applications of this approach were to glueballs and to heavy-quark
physics. Recent calculations on anisotropic lattices with the use of variational method, which
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employs a large basis of interpolating operators satisfying the symmetries of the lattice, allowed
the extraction of the spectrum of excited states, both for mesons [3, 4, 5] and for baryons [6, 7].

In our current research, we are performing perturbative calculations of renormalization fac-
tors using an improved anisotropic Sheikholeslami-Wohlert ("clover") action with stout smearing
of the gauge links. The main focus in this study is on renormalization of operators from which
quark distribution amplitudes can be extracted, i.e., quark bilinear operators in case of mesons,
or three-quarks operators for baryons. Lattice perturbation theory provides us with a method for
systematically matching regularization schemes so that we could establish the right connection be-
tween results obtained within particular lattice scheme and physical continuum theory (or, in other
words, between lattice simulations and experimental data).

2. Calculational details: improved anisotropic lattice action with stout-smeared link
variables.

The action used in our calculations can be represented through the following formulae. For
the gauge (gluon) sector we use a O(a2)-improved Symanzik and tadpole improved action [8]:

SG[U ] =−β{ξ0[
4
3 ∑

x,s
Pts−

1
12 ∑

x,s
Rts]+

1
ξ0

[
5
3 ∑

x,s<s′
Pss′−

1
12 ∑

x,s<s′
(Rss′+Rs′s)]} (2.1)

Here β = 2Nc
g2

0
(g0 is a coupling constant); ξ0 denotes a bare anisotropy parameter. Pss′ is a plaquette,

and Rss′ is a 2×1 rectangular Wilson loop, with two links long in the s′ direction, summed over all
lattice sites.

For the fermion action, we use the "clover" action with stout-smearing of gauge links in the
spatial directions. This fermion sector can be represented as:

SF [ψ, ψ̄,U ] =ata3
s ∑

x
ψ̄(x){m0 + γt∇t −

at

2
∆t +νs ∑

k
(γk∇k−

as

2
∆k)+ (2.2)

+
1
2
[ctas ∑

k
σtkFtk + csas ∑

k<l
σklFkl]}ψ(x).

Here at and as are temporal and spatial lattice spacings respectively, ∇k and ∆k are the covariant
derivatives and Laplacian corresponding to the Wilson term, respectively, and Fkl is a clover-leaf
discretized field strength tensor. The clover coefficients ct and cs must to be tuned; their tree-level
values for massless quarks are ct =

1
2(νs +

1
ξ0
) and cs = νs. Setting the coefficient νt , multiplying

the kinetic term, to νt = 1, measured aspect ratio as
at

specifies the renormalized gauge anisotropy.
To smooth the short-distance fluctuations in the clover fermion action, we use three-dimensional

stout-smeared links. Following the analytic algorithm of smearing link variables, which is pre-
sented in [9], at each step n the links U (n)

µ (x) are mapped into links U (n+1)
µ (x):

U (n+1)
µ (x) = exp(iQ(n)

µ (x))U (n)
µ (x), (2.3)

where the matrix Qµ(x) defined as a product of weighted sum of the perpendicular staples which
begin at lattice site x and terminate at neighboring site x+ µ , and U+

µ (x). After iterating this step
nρ times (twice in our case), we can finally produce so-called "stout link" Ũ :

U →U (1)→U (2)→ ...→U (nρ ) ≡ Ũ . (2.4)
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We use the common choice of staple weights,

ρi j = ρ,

ρ4µ = ρµ4 = 0, (2.5)

so only the spatial links are smeared. In particular, our smearing parameters are ρ = 0.22 and
nρ = 2.

3. Feynman rules on the lattice: first results

Due to the breaking of Lorentz symmetry, lattice perturbation theory in general is more com-
plicated than continuum perturbation theory. But the process of deriving Feynman rules on the
lattice is essentially the same as in continuum theory: one firstly needs to perform a Taylor expan-
sions of the particular lattice action in order to obtain the expressions for propagators and vertices,
and then it is possible to build Feynman diagrams from these rules and evaluate them by integrating
over phase space. This common procedure is explained in great details in [10]. Explicitly, we de-
fine Fourier transforms on the lattice; in infinite volume (a standard setting of perturbation theory)
they are given by formulae:

ψ(x) =
∫ π

a

− π

a

d4 p
(2π)4 eixp

ψ(p), (3.1)

ψ̄(x) =
∫ π

a

− π

a

d4 p
(2π)4 e−ixp

ψ̄(p), (3.2)

Aµ(x) =
∫ π

a

− π

a

d4k
(2π)4 ei(x+a µ

2 )kAµ(k), (3.3)

Then, by substituting these Fourier transforms into terms of the action, corresponding to quark
and gluon propagators or quark-gluon vertices, we can get expressions for Feynman rules. For the
anisotropic clover action, we find the following:
- for quark propagator:

Sq̄q ∼ [m0 +
i

at
γtsin(at pt)+

2
at

sin2(
at pt

2
)+

i
as

νs ∑
s

γssin(as ps)+
2
as

νs ∑
s

sin2(
as ps

2
)]−1, (3.4)

- for quark-gluon vertex:

Sq̄gq ∼g0[sin(
at(p+ p′)t

2
)+ iγtcos(

at(p+ p′)t

2
)+

+νs ∑
s

sin(
as(p+ p′)s

2
)+ iνs ∑

s
γscos(

as(p+ p′)s

2
)+

+
ct

at
∑

s

σts

2
{atsin(asks)cos(

atkt

2
)−assin(atkt)cos(

asks

2
)}+

+
cs

as
∑
s<s′

σss′

2
{assin(as′ks′)cos(

asks

2
)−as′sin(asks)cos(

as′ks′

2
)}]. (3.5)

Here p and p′ are the quark momenta, and k is the gluon momentum.
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4. Current state and future plans

While controlling short-distance fluctuations, stout-smeared links used in our study complicate
significantly the process of calculation. Once we have derived the Feynman rules for the stout-link
action, we are going to apply these rules for evaluation of Feynman diagrams corresponding to
quark bilinear operators and thereby calculate matching coefficients in order to confront experi-
mental data.
We are also beginning the computation of the low moments of the meson distribution amplitudes
for both the ground and excited states using the anisotropic lattices employed in the study of the
excited meson spectra [5]. When combined with the perturbative program outlined here, this will
enable us to go beyond the spectrum to explore the properties and internal structure of these states.
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