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1. Variational Analysis

The success of the CSSM lattice program in identifying resonance states on the lattice is
founded upon variational techniques[1, 2] that isolate individual excited states by constructing an
operator basis that couples to the states of interest and then considering their cross-correlation
matrix in order to diagonalise the operator space. To access N states of the spectrum, we require at
least N operators.

The parity-projected, two-point correlation function matrix for p = 0 can be written as

N-1
G;;(t) = Y uop (T (Qui(0)7Z;(0)[Q) = Y A% A%e ™, (1.1)
X a=0

where I'; are the parity-projection operators and A% and I;?‘ are, respectively, the couplings of
interpolators y; and ) ; at the sink and source to eigenstates & = 0,...,N — 1 of mass my. The idea
now is to construct N independent operators ¢; that isolate N baryon states |Bg); that is, to find
operators §% = YN | u%y; and ¢* = YN | v**y; such that

<Bﬁ,p’s|$a|Q> = S(Xl;z“ﬁ(oc,p,s), and
<Q’¢a’Bﬁ,p,S> - 5&[3Zau(aapvs)v (L.2)

where z* and z% are the coupling strengths of % and ¢ to the state |Bg ). It follows that
+ a _ qo=0,—mgt
Gij(t)uj =" ", (1.3)

where, for notational convenience, we take the repeated Latin indices to be summed over while
repeated Greek indices are not.
The only ¢ dependence in Eq. (1.3) is in the exponential term, so we immediately construct the

recurrence relation G?; (t)uf = e MaM G (¢ + At)u?, which can be written as

(GE(1+ A1) 'GE(r)u® = e A u?, (1.4)

This is an eigensystem equation for the matrix (G*(r + At))~'G*(¢), with eigenvectors u® and
eigenvalues e "4
Similarly, we can construct the associated left-eigensystem equation v*' G* (1) (G* (1 +At)) ™! =

e MMy and then Eq. (1.2) implies that
GL (1) == v* T GE(r)u® = %%, (1.5)

Thus, the only state present in G (¢) is |Bg,) of mass myg.

2. Nucleon Spectrum

The first positive-parity excited state of the nucleon, known as the Roper resonance, N %+(144O
MeV) Py, has presented a long-standing puzzle since its discovery in the 1960’s due to its lower
mass compared to the adjacent negative parity, N %_(1535 MeV) S, state. In constituent quark
models with harmonic oscillator potentials, the lowest-lying odd-parity state naturally occurs below
the Py state [3, 4]. In nature the Roper resonance is almost 100 MeV below the Sy state.
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Figure 1: The even parity nucleon spectrum in full QCD. (Left) The mass spectrum resulting from the
superposition of two 8 x8 correlation matrix analyses. (Right) The low-lying nucleon spectrum resulting
from a 4x4 correlation matrix analysis. Scattering channels are shown to demonstrate that the first excited
state on the lattice is consistent with the Roper resonance.

Using the variational techniques described above, the CSSM [5, 6, 7] has successfully iso-
lated the Roper on the lattice, first in quenched QCDI[8], then in full QCD[9]. The highlights
of the CSSM results for the even-parity nucleon spectrum in Full QCD are shown in Figure 1.
These results (and the full QCD results that follow below) were calculated on the 2+1 flavour non-
perturbatively improved clover configurations|[10] made available by the PACS-CS collaboration
via the ILDG[11]. Critical to our results is the construction of a large operator basis by considering
different amounts of gauge-invariant Gaussian smearing[12].

3. Lambda Spectrum

The 1405 MeV resonance of the Lambda baryon has puzzled researchers for many years. It is
the lowest-lying excited state of the Lambda, and yet it has negative parity (a property associated
with angular momentum). Moreover, it lies lower than the lowest negative-parity state of the nu-
cleon, even though it has valence strange quarks. It also lacks a nearby spin-orbit partner, with the
lowest spin-3/2" state being the A(1520). The internal structure of this resonance has remained a
mystery for many years. On the one hand, it is regarded as a conventional three-quark state, while
on the other it is interpreted as a kaon-nucleon bound state. There have so far been several Lattice
QCD studies of this resonance [13, 14, 15, 16], however most of these have used the quenched
approximation, and very few have managed to identity the mass-suppression associated with the
A(1405).

The highlights of the CSSM results for the odd-parity A spectrum[17] calculated in full QCD
on the PACS-CS configurations are shown in Figure 2. The results in the left plot use the isospin-0
“common” interpolating fields x§ and x5 [18] that make no assumptions about SU(3)-flavour sym-
metry, whereas the results in the right plot use the traditional purely octet ( xf and )(28 ) and purely
singlet (x!) operators to isolate all three low-lying states. Note that on the PACS-CS configurations
the kaon mass comes out a little too high. We correct for this in our A results by adjusting the
value for the strange quark propagators in order to correctly reproduce the kaon mass.
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Figure 2: Results for the low-lying odd-parity A spectrum (with corrected s-quark mass), making use of
three different smearing values. (Left) Results from the 6x6 correlation matrix analysis using x{ and x3.
(Right) Results from the 9x9 correlation matrix analysis using %, x5 and x'.

4. Neutron Magnetic Moment

The magnetic moment and magnetic polarisability are fundamental properties of a particle that
describe its response to an applied magnetic field. The background field method is a well-known
technique for examining these properties via lattice QCD and elsewhere[19, 20, 21, 22, 23, 24]. In
this method a uniform background magnetic field is imposed on the lattice in the form of a U(1)
phase factor applied to the usual QCD gauge field. This causes a shift in the calculated ground-state
energy of the particle which is combined with an energy relation to extract the magnetic moment
reported here.

The CSSM results for the energy difference between the spin-up and spin-down neutron cal-
culated on the four heaviest PACS-CS ensembles are shown in Figure 3. For each quark mass, we
perform a fit of the energy-difference as a function of background field strength, using a linear plus
cubic fit function. The magnetic moment is derived from the coefficient of the linear term in the
fits. The full QCD results for the neutron magnetic moment as a function of m2 are shown in Fig-
ure 4. Results from a previous quenched study[25] using the background field method are shown
for comparison. It is anticipated that there are significant finite-volume corrections that need to be
made in order to reach the physical value.
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Figure 3: The energy difference between the spin-up and spin-down neutron as a function of background
field strength, with linear plus cubic fits. Results are shown for the four heaviest PACS-CS masses.

Figure 4: Results for the neutron magnetic moment as a function of m2, using the background field method.
Current full QCD results are compared against older quenched results using the same method.
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