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The Hamiltonian eigenvalue problem for bound states of a quantum field theory is formulated

in terms of Dirac’s light-front coordinates and then approximated by the exponential-operator

technique of the standard coupled-cluster method. This approximation eliminates any need for

the usual approximation of Fock-space truncation. Instead, the exponential operator is truncated

and the terms retained are determined by a set of nonlinear integral equations. These equations

are solved simultaneously with an effective eigenvalue problem in the valence sector, where the

number of constituents is small. Matrix elements can be calculated, with extensions of techniques

from standard coupled-cluster theory.
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1. Introduction

The light-front coupled-cluster (LFCC) method [1] is intended as a method for the calculation
of hadron structure in terms of Fock-state wave functions without the usual truncation of Fock
space. The Fock-state representation of a hadron, such as a proton, takes the form

|p〉= ψuud|uud〉+ψuudg|uudg〉+ψuudgg|uudgg〉+ψuudqq̄|uudqq̄〉+ · · · .

This is to be an eigenstate of the QCD Hamiltonian

(K.E.+VQCD) |p〉= Ep|p〉

with Ep =
√

m2
p+ p2 andVQCD the interaction terms of gluon emission and absorption by quarks,

quark-antiquark production and annihilation, and the three and four-gluon vertices. This is equiva-
lent to a set of coupled integral equations for the wave functions.

Usually, this infinite set of equations is made finite by truncation of Fock space; however,
this introduces uncanceled divergences [2]. For example, the Ward identity of gauge theories is
destroyed by truncation, because the limitation on the number of particles allowed in intermedi-
ate states removes some of the contributions to the identity. There is a direct analog in Feynman
perturbation theory, where separation of a covariant diagram into time-ordered diagrams, and re-
moval of those that include intermediate states with more particles than some finite limit, destroys
covariance, disrupts regularization, and induces spectator dependence for subdiagrams. In the non-
perturbative case, this happens not just to some finite orderin the coupling but to all orders.

The method is formulated in terms of light-cone coordinates[3, 4]. The time coordinate is
x+ = t + z, and the spatial coordinates arex = (x−,~x⊥), with x− ≡ t − z and~x⊥ = (x,y). The
light-cone energy isp− = E − pz, and the momentum isp = (p+,~p⊥), with p+ ≡ E + pz and

~p⊥ =(px, py). This leaves the mass-shell conditionp2=m2 asp−=
m2+p2

⊥
p+ and the mass eigenvalue

problem as [5]

P
−|P〉= M2+P2

⊥
P+

|P〉, P|P〉= P|P〉.
The advantages of this coordinate choice include the absence of spurious vacuum contribu-

tions to eigenstates and a boost-invariant separation of internal and external momenta. Vacuum
contributions are suppressed becausep+ is positive for all particles; the vacuum cannot produce
particles and conservep+. The separation of internal momenta is obtained by defining longitudinal
momentum fractionsxi ≡ p+i /P+ and relative transverse momenta~ki⊥ ≡ ~pi⊥−xi~P⊥.

The original coupled-cluster (CC) method was developed forthe many-body Schrödinger
equation in nuclear physics [6] and later applied to the many-electron problem in molecules [7].
The method has become an important tool in nuclear physics and physical chemistry for theN-
body problem in nonrelativistic quantum systems [8]. The basic idea is to form an eigenstate as
eT |φ〉, where|φ〉 is a product of single-particle states and the terms inT annihilate states in|φ〉 and
create excited states, to build in correlations; however, the number of particles does not change.
The approximation made is to truncateT at some number of excitations. The LFCC method uses
the mathematics of these constructions but applies it to a situation where|φ〉 contains a small
number of particles,T adds additional particles, and the states are eigenstates of momentum with
Dirac-delta normalization.
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2. Light-front coupled-cluster method

To solve the fundamental eigenvalue problemP−|ψ〉= M2+P2
⊥

P+ |ψ〉 by the LFCC method [1],
we write the eigenstate as|ψ(P)〉=

√
ZeT |φ(P)〉 and seek solutions for the valence state|φ(P)〉 and

the operatorT. This operator contains terms that only increase particle number, while conserving
Jz, light-front momentumP, charge, and the other quantum numbers of the eigenstate. The constant
Z controls normalization, which is chosen to be〈ψ(P′)|ψ(P)〉= δ (P′−P), with the valence state
normalized in the same way:〈φ(P′)|φ(P)〉 = δ (P′−P). Becausep+ is positive,T must include
annihilation, and powers ofT include contractions. This converts the original eigenvalue problem
into an eigenvalue problem for the valence state

PvP
−|φ(P)〉= M2+P2

⊥
P+

|φ(P)〉,

with P− = e−TP−eT the effective Hamiltonian andPv the projection onto the valence Fock
sector, and into an auxiliary equation forT

(1−Pv)P−|φ(P)〉= 0.

Calculation of expectation values, and more generally matrix elements, requires some care, to
avoid any necessity of computing the infinite sum implied by the inner product〈φ |eT†

eT |φ〉. This
can be done, with use of constructions from the CC method [8].The expectation value

〈Ô〉= 〈φ |eT†
ÔeT |φ〉

〈φ |eT†eT |φ〉

for an operatorÔ is rewritten as〈Ô〉= 〈ψ̃ |O|φ〉 in terms of an effective operatorO≡ e−TÔeT and
a left eigenvector ofP−:

〈ψ̃ |= 〈φ | eT†
eT

〈φ |eT†eT |φ〉
.

The effective operator can be computed from the Baker–Hausdorff expansionO = Ô+ [Ô,T] +
1
2[[Ô,T],T]+ · · ·. The bra〈ψ̃ | is seen to be a left eigenstate by the following steps:

〈ψ̃ |P− = 〈φ | eT†
P−eT

〈φ |eT†eT |φ〉
= 〈φ |P−† eT†

eT

〈φ |eT†eT |φ〉
=

M2+P2
⊥

P+
〈ψ̃ |.

Also, it has the normalization

〈ψ̃(P′)|φ(P)〉= 〈φ(P′)| eT†
eT

〈φ |eT†eT |φ〉
|φ(P)〉= δ (P′−P).

As formulated to this point, the new valence eigenvalue problem and the auxiliary condition
for T provide an exact representation of the original eigenvalueproblem. The LFCC method then
invokes a truncation, not of Fock space but of the terms inT and in the projection 1−Pv. This
leads to a finite set of auxiliary equations for a finite set of functions that define the truncatedT
operator and to a finite number of terms in the valence projection of the effective HamiltonianP−.
The latter is conveniently expressed in terms of a Baker–Hausdorff expansion where the number
of contributing terms is finite. Similarly, the contributions to matrix elements of operators are also
finite in number.
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3. Application to a soluble model

To illustrate the method, we apply it [1] to an exactly soluble model [9], a light-front analog
of the Greenberg–Schweber model with a static fermionic source that emits and absorbs bosons
without changing its spin. The model lacks full covariance because of the static source; all states
are limited to having a fixed total transverse momentum~P⊥, which we take to be zero. In this
context, not all features of the method are apparent, but themodel is sufficient to show how the
method is used.

The light-front Hamiltonian is [1]

P
− =

∫
dp

M2+M′
0p+

P+ ∑
s

b†
s(p)bs(p)+

∫
dq∑

l

(−1)l µ2
l +q2

⊥
q+

a†
l (q)al (q) (3.1)

+ g
P+

∫ dpdq√
16π3q+

∑ls

(
p+

p++q+

)γ [
a†

l (q)b
†
s(q)bs(p+q)+b†

s(p+q)bs(p)al (q)
]
,

wherea†
0 creates a “physical” boson of massµ0, a†

1 creates a Pauli–Villars (PV) boson of massµ1,
andb†

s creates the fermion with massM and spins. The valence state is the bare-fermion state
|φσ (P)〉= b†

σ (P)|0〉. TheT operator is truncated to a single boson emission:

T =∑
ls

∫
dqdptls(q, p)a

†
l (q)b

†
s(p)bs(p+q),

and the projection 1−Pv is truncated to the one-fermion/one-boson sector.
This form generates the exact solution, with

tls(q, p) =
−g√

16π3q+

(
p+

p++q+

)γ q+/P+

µ2
l +q2

⊥
.

The fermion self-energy contributionM′
0 is the same in all Fock sectors and the effective Hamil-

tonian [1] contains all three of the contributions analogous to those for the Ward identity in QED.
The fact that the self-energy loop is the same in the valence sector and the one-fermion/one-boson
sector plays a critical role in yielding the exact solution.

To compute an observable, we consider the Dirac form factor for the dressed fermion. It can
be obtained from a matrix element of the currentJ+ = ψγ+ψ coupled to a photon of momentum
q. The matrix element is generally [10]

〈ψσ (P+q)|16π3J+(0)|ψ±(P)〉= 2δσ±F1(q
2)± q1± iq2

M
δσ∓F2(q

2),

with F1 andF2 the Dirac and Pauli form factors. In the model, the fermion cannot flip its spin;
therefore,F2 is zero, and we compute onlyF1. Also, there are no contributions from fermion-
antifermion pairs, so that the current is simply

J+(0) = 2∑
s

∫ dp′
√

16π3

∫ dp
√

16π3
b†

s(p
′)bs(p).

In the LFCC method, the form factor is approximated by the matrix element

F1(q
2) = 8π3〈ψ̃±(P+q)|J+(0)|φ±(P)〉,

4



P
o
S
(
Q
N
P
2
0
1
2
)
1
1
3

A light-front coupled-cluster method for quantum field theories John HILLER

with J+(0) = J+(0)+ [J+(0),T]+ · · ·. The truncated left-hand eigenvector is

〈ψ̃σ (P)|= 〈φσ (P)|+∑
ls

∫
dqθ(P+−q+)lσ∗

ls (q,P)〈0|al (q)bs(P−q),

wherelσ
ls is the left-hand one-fermion/one-boson wave function. If this wave function is assumed

to take the form

lσ
ls(q,P) = δσs

−g√
16π3q+

(
P+−q+

P+

)γ q+/P+

µ2
l +q2

⊥
l̃(q+/P+),

substitution into the left-hand eigenvalue problem yieldsa one-dimensional integral equation for
l̃(y)

l̃(y) = 1+
g2

16π2

µ2
1 −µ2

0

µ2
0 µ2

1

∫ 1

0
dy′(1−y′)2γy′[(1−y)2l̃(y′(1−y))− l̃(y′)].

The solution of this equation can then be used to compute matrix elements.

Only the first two terms of the Baker–Hausdorff expansion ofJ+(0) contribute to the matrix
element. The first term contributes 1/8π3 and second contributes

〈ψ̃±(P+q)|[J+(0),T]|φ±(P)〉= 1
8π3 ∑

l

(−1)l
∫

dq′θ(P++q+−q′+)

×l±l±(q
′,P+q)[θ(P+−q′+)tl±(q

′,P−q′)− tl±(q
′,P+q−q′)]. (3.2)

The form factor is then

F1(q
2) = 1+

g2

16π2 (1+α)
µ2

1 −µ2
0

µ2
0 µ2

1

[∫ 1/(1+α)

0
dyl̃ (y)y(1−y)γ [1− (1+α)y]γ

−
∫ 1

0
dyl̃(y)y(1−y)2γ

]
, (3.3)

with α ≡ q+/P+. In the limit of q2 → 0, we haveα = 0 andF1(0) = 1, which is exactly the unit
charge in the currentJ+ = ψ̄γ+ψ .

4. Summary

The advantages of the LFCC method are the absence of Fock-space truncations that cause
uncanceled divergences, elimination of Fock-sector and spectator dependence of self-energy con-
tributions, and provision for systematic improvement, through the addition of terms to the trun-
cated operatorT. The terms inT can be organized according to the nature and number of particles
annihilated and created. Applications to theories beyond the simple model considered here are in
progress, with some preliminary work on the dressed-electron state in QED already completed [11].
Additional work in QED will include consideration of the dressed-photon state, extension of the
dressed-electron state to includee+-e− pairs, muonium, and positronium. Application to QCD will
begin with consideration of mesons in holographic QCD [12].
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