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1. Introduction

The light-front coupled-cluster (LFCC) method [1] is intld as a method for the calculation
of hadron structure in terms of Fock-state wave functionthovit the usual truncation of Fock
space. The Fock-state representation of a hadron, suchratoa,gakes the form

|P) = Yuudluud) + Puudguudg + Yuudgguudgg + l.UuudcpﬂUUdCﬁ} +-e

This is to be an eigenstate of the QCD Hamiltonian
(K.E.+Vacp) |p) = Eplp)

with Ep = /m%+ p? andVocp the interaction terms of gluon emission and absorption karikg)
quark-antiquark production and annihilation, and thedtaed four-gluon vertices. This is equiva-
lent to a set of coupled integral equations for the wave fanst

Usually, this infinite set of equations is made finite by tatian of Fock space; however,
this introduces uncanceled divergences [2]. For examp&Ward identity of gauge theories is
destroyed by truncation, because the limitation on the rasmb particles allowed in intermedi-
ate states removes some of the contributions to the iderthgre is a direct analog in Feynman
perturbation theory, where separation of a covariant diaginto time-ordered diagrams, and re-
moval of those that include intermediate states with morégbes than some finite limit, destroys
covariance, disrupts regularization, and induces spmati@ipendence for subdiagrams. In the non-
perturbative case, this happens not just to some finite andbe coupling but to all orders.

The method is formulated in terms of light-cone coordind®&s4]. The time coordinate is
X" =t+2z and the spatial coordinates are= (x ,X, ), with x- =t—zandX, = (x,y). The
light-cone energy igp~ = E — p;, and the momentum ip = (p*,p.), with p* = E + p, and

m+p? .
;m and the mass eigenvalue

B. = (Px, py). This leaves the mass-shell conditiph=n? asp~ =
problem as [5] .
_ M+ P
7B = =5

The advantages of this coordinate choice include the abseinspurious vacuum contribu-
tions to eigenstates and a boost-invariant separationtefial and external momenta. Vacuum
contributions are suppressed becapseis positive for all particles; the vacuum cannot produce
particles and conseryg". The separation of internal momenta is obtained by defimingitudinal
momentum fractiong; = piJr/P+ and relative transverse momeﬁt@ =B —xP,.

The original coupled-cluster (CC) method was developedttier many-body Schrddinger
equation in nuclear physics [6] and later applied to the ralagtron problem in molecules [7].
The method has become an important tool in nuclear physidgphpsical chemistry for th&l-
body problem in nonrelativistic quantum systems [8]. Theib#dea is to form an eigenstate as
e | @), where| ) is a product of single-particle states and the ternig @mnihilate states ifyp) and
create excited states, to build in correlations; howeVer,rtumber of particles does not change.
The approximation made is to truncéteat some number of excitations. The LFCC method uses
the mathematics of these constructions but applies it tduatgn where|@) contains a small
number of particles] adds additional particles, and the states are eigenstatesrmentum with
Dirac-delta normalization.

P), Z|P)=PIP).
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2. Light-front coupled-cluster method

To solve the fundamental eigenvalue probleaT |@) = sztpf |@) by the LFCC method [1],
we write the eigenstate ag(P)) = v/Ze"|@p(P)) and seek solutions for the valence statgP)) and
the operatoil. This operator contains terms that only increase partictalyer, while conserving
J;, light-front momentun®, charge, and the other quantum numbers of the eigenstagecoRistant
Z controls normalization, which is chosen to @g(P')|@/(P)) = (P’ — P), with the valence state
normalized in the same wayp(P')|@(P)) = d(P' — P). Becausep™ is positive,T must include
annihilation, and powers df include contractions. This converts the original eigemegbroblem
into an eigenvalue problem for the valence state

2 2
P |0(P)) = S p(P),

with Z— = e T2~ €' the effective Hamiltonian an®, the projection onto the valence Fock
sector, and into an auxiliary equation for
(1-R)Z"|¢(P)) =0.

Calculation of expectation values, and more generally imnalements, requires some care, to
avoid any necessity of computing the infinite sum implied ey inner produc(<p|eT*eT|<p>. This
can be done, with use of constructions from the CC methodT[&. expectation value

(ple” O | )
(pleT" e |o)

for an operatof is rewritten agO) = ((|O|g) in terms of an effective operat@= e TOe' and
a left eigenvector of?—:

(0) =

e'el
W= eerg

The effective operator can be computed from the Baker—HatisekpansionO = O+ [O,T] +
%[[O,T],T] +---. The bra{{| is seen to be a left eigenstate by the following steps:

— e’ el —_+ ellel M?2 4 P?
(|7 = <¢|M = (9|7~ o) P =({.
Also, it has the normalization
el'el
BE)NOE) = ()7 s 10(B) = 8(E ~P)

As formulated to this point, the new valence eigenvalue lgraband the auxiliary condition
for T provide an exact representation of the original eigenvaloblem. The LFCC method then
invokes a truncation, not of Fock space but of the term$ @nd in the projection £ R,. This
leads to a finite set of auxiliary equations for a finite setwfctions that define the truncatéd
operator and to a finite number of terms in the valence prioject the effective Hamiltoniam? —.
The latter is conveniently expressed in terms of a BakersHeaif expansion where the number
of contributing terms is finite. Similarly, the contributi® to matrix elements of operators are also
finite in number.
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3. Application to a soluble model

To illustrate the method, we apply it [1] to an exactly sotubhodel [9], a light-front analog
of the Greenberg—Schweber model with a static fermioniccgthat emits and absorbs bosons
without changing its spin. The model lacks full covarianegduse of the static source; all states
are limited to having a fixed total transverse momenﬁlm which we take to be zero. In this
context, not all features of the method are apparent, buinibgel is sufficient to show how the
method is used.

The light-front Hamiltonian is [1]

2 - MypT 2. 2
7 /dfw % b5(R)bs(p) +/d92(—1)' %&T(g)a (9) (3.1)

18 5 () [l @bl@bs(p+0)+ bl(p+ Q)bs(pa (@)

whereag creates a “physical” boson of magg, aI creates a Pauli-Villars (PV) boson of mass
andb! creates the fermion with ma$é and spins. The valence state is the bare-fermion state
|99 (P)) = bl (P)|0). TheT operator is truncated to a single boson emission:

T= Z/dngtls(gv_p)alT(g)bl(E)bs(E‘i‘9)7

and the projection % R, is truncated to the one-fermion/one-boson sector.
This form generates the exact solution, with

ts(6,P) = —— < i )quﬁ-
=5 V1emdgt \pt+at ) pP+oh

The fermion self-energy contributiod, is the same in all Fock sectors and the effective Hamil-
tonian [1] contains all three of the contributions analagtuthose for the Ward identity in QED.
The fact that the self-energy loop is the same in the valeec®isand the one-fermion/one-boson
sector plays a critical role in yielding the exact solution.

To compute an observable, we consider the Dirac form factothie dressed fermion. It can
be obtained from a matrix element of the currént= y" ¥ coupled to a photon of momentum
g. The matrix element is generally [10]

1:|:| 2
(W7 (P+q)[16m3" (0)|¢* (P)) = 255+ Fu(0f) + R el
with F; andF, the Dirac and Pauli form factors. In the model, the fermionnz flip its spin;
therefore,F, is zero, and we compute onky. Also, there are no contributions from fermion-
antifermion pairs, so that the current is simply

T /
=2y [ [ mip)

In the LFCC method, the form factor is approximated by therixnatement

Fi(o?) = 87°(§*(P+ )37 (0) |9 (P)),
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with J¥(0) = J*(0) 4-[J*(0), T] +---. The truncated left-hand eigenvector is
@)= (@ B+ [0 ~a")IZ (@ PO @b ).

wherel? is the left-hand one-fermion/one-boson wave functionhii tvave function is assumed
to take the form

19(q,P) = &

substitution into the left-hand eigenvalue problem yieddsne-dimensional integral equation for

()

~ 2 ~ ~
=14 55558 [ay(a-y Pyl -y2ity -y) )L

The solution of this equation can then be used to computex@éments.
Only the first two terms of the Baker—Hausdorff expansiodof0) contribute to the matrix
element. The first term contributeg&r® and second contributes

R+ QI O T (B) = 55 3 (1) [ 9d0P” +a" ")
<1 (d . P+ [0(PT —d )t (d,P—q) —to(d,P+g—d)]. (3.2)
The form factor is then
gZ u u 1/(+a) .
A(F) = 1t g1+ 0)7 72 [/O dyl(y)y(1—y)"[1 = (1+a)y)”
/dyl y(1— yZV] (3.3)

with a = g /P*. In the limit of g> — 0, we havear = 0 andF;(0) = 1, which is exactly the unit
charge in the current™ = gy .

4. Summary

The advantages of the LFCC method are the absence of Foc&-spmcations that cause
uncanceled divergences, elimination of Fock-sector aedtapor dependence of self-energy con-
tributions, and provision for systematic improvementptigh the addition of terms to the trun-
cated operatof . The terms ifil can be organized according to the nature and number of lgartic
annihilated and created. Applications to theories beybredstmple model considered here are in
progress, with some preliminary work on the dressed-aladtate in QED already completed [11].
Additional work in QED will include consideration of the ci&ed-photon state, extension of the
dressed-electron state to incluglee™ pairs, muonium, and positronium. Application to QCD will
begin with consideration of mesons in holographic QCD [12].
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