Anomalous $A V^{*} V$ Green's function in soft-wall AdS/QCD

Juan José Sanz-Cillero

Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy E-mail: juan.sanzcillero@ba.infn.it

In this talk we study the Green's function of two vector and one axial-vector currents within the soft-wall anti-de-Sitter (AdS) model of Quantum Chromodynamics (QCD), with a quadratic dilaton and chiral symmetry broken through a field X which gains a vacuum expectation value. We compare our predictions at high energies with the Operator Product Expansion both in the massless quark limit and for $m_{q} \neq 0$. The soft-wall model yields a zero magnetic susceptibility $\chi=0$ and some problems are found in the case with $m_{q} \neq 0$. We also discuss the relation proposed by Son and Yamamoto between the $A V^{*} V$ and $V V-A A$ correlators, which is not obeyed at high energies in soft wall AdS/QCD.

Sixth International Conference on Quarks and Nuclear Physics, April 16-20 2012, Palaiseau, France.

This work was supported in part by the Universidad CEU Cardenal Herrera grants PRCEU-UCH15/10 and PRCEU-UCH35/11 and the MICINN-INFN fund AIC-D-2011-0818. I would like to thank the organizers for the kind scientific environment during the conference and all their help.

1. Introduction: $A V^{*} V$ Green's function

The $A V^{*} V$ Green's function was recently studied in the framework of soft-wall anti-de-Sitter (AdS) theories [1]. This analysis was motivated by a previous work by Son and Yamamoto [2] for holographic theories where chiral symmetry is broken through boundary condition [3]. In Ref. [2], the authors found an interesting relation between the $V V-A A$ correlator and the Green's function involving two vector currents $J_{\mu}=\bar{q} V \gamma_{\mu} q$ and $J_{\sigma}^{e m}=\bar{q} \mathrm{Q} \gamma_{\sigma} \mathrm{q}$ and an axial-vector current $J_{v}^{5}=\bar{q} A \gamma_{v} \gamma_{5} q$, with V and A diagonal matrices and the electric charge matrix Q :

$$
\begin{align*}
T_{\mu \nu}(q, k)= & i \int d^{4} x e^{i q \cdot x}\langle 0| T\left[J_{\mu}(x) J_{v}^{5}(0)\right]|\gamma(k, \varepsilon)\rangle \\
& =-\frac{i Q^{2}}{4 \pi^{2}} \operatorname{Tr}[\mathrm{QVA}] P_{\mu}^{T \alpha}(q)\left\{P_{v}^{T \beta}(q) w_{T}\left(Q^{2}\right)+P_{v}^{L \beta}(q) w_{L}\left(Q^{2}\right)\right\} \tilde{f}_{\alpha \beta}, \tag{1.1}
\end{align*}
$$

with $k \rightarrow 0$ and related to the three-point Green's function $\langle 0| T\left[J_{\mu}(x) J_{v}^{5}(0) J_{\sigma}^{e m}(y)\right]|0\rangle$. We use the notation $Q^{2} \equiv-q^{2}, \tilde{f}_{\mu \nu}=\frac{1}{2} \varepsilon_{\mu \nu \alpha \beta} f^{\alpha \beta}$ and $f^{\alpha \beta}=k^{\alpha} \varepsilon^{\beta}-k^{\beta} \varepsilon^{\alpha}$, and the transverse and longitudinal projectors, respectively, $P_{\mu \alpha}^{T}(q)=\eta_{\mu \alpha}-q_{\mu} q_{\alpha} / q^{2}$ and $P_{\mu \alpha}^{L}=q_{\mu} q_{\alpha} / q^{2}$.

At short-distance it is possible to use the Operator Product Expansion (OPE) for $m_{l}=0[4,5]$:

$$
\begin{equation*}
w_{L}\left(Q^{2}\right)=\frac{2 N_{C}}{Q^{2}}, \quad w_{T}\left(Q^{2}\right)=\frac{N_{C}}{Q^{2}}+\frac{128 \pi^{3} \alpha_{s} \chi\langle\bar{q} q\rangle^{2}}{9 Q^{6}}+\mathscr{O}\left(\frac{\Lambda^{6}}{Q^{8}}\right) . \tag{1.2}
\end{equation*}
$$

where the longitudinal component is completely fixed by the anomaly and does not receive any correction $[4,5,6]$ and χ is defined by the condensate $\langle 0| \bar{q} \sigma^{\alpha \beta} q|\gamma\rangle=i e \chi\langle 0| \bar{q} q|0\rangle f^{\alpha \beta}$.

If we allow $m_{q} \neq 0$, the OPE yields corrections proportional to the quark mass at one loop [4]:

$$
\begin{equation*}
w_{L}\left(Q^{2}\right)-2 w_{T}\left(Q^{2}\right)=\mathscr{O}\left(\frac{\Lambda^{4}}{Q^{6}}\right), \quad w_{T}\left(Q^{2}\right)=\frac{N_{C}}{Q^{2}}\left[1+\frac{2 m_{q}^{2}}{Q^{2}} \ln \frac{m_{q}^{2}}{Q^{2}}-\frac{8 \pi^{2} m_{q}\langle\bar{q} q\rangle \chi}{N_{C} Q^{2}}+\mathscr{O}\left(\frac{\Lambda^{4}}{Q^{4}}\right)\right] . \tag{1.3}
\end{equation*}
$$

2. The holographic setup in AdS/QCD

We will consider a gauged $U\left(n_{f}\right)_{R} \otimes U\left(n_{f}\right)_{L}$ chiral symmetry and the AdS line element $d s^{2}=g_{M N} d x^{M} d x^{N}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{v}-d z^{2}\right)$, with the coordinate indices $\quad M, N=0,1,2,3,5$, $\eta_{\mu \nu}=\operatorname{diag}(+1,-1,-1,-1), R$ the AdS curvature radius (set to unity from now on) and the 5D coordinate being in the range $0^{+} \leq z<+\infty$. The 5D Yang-Mills action describing the fields $\mathscr{A}_{L, R}^{M}$ dual to the left and right currents $J_{L, R}^{\mu}$, as well as the scalar-pseudoscalar field X, is given by

$$
\begin{equation*}
S_{Y M}=\frac{1}{k_{Y M}} \int d^{5} x \sqrt{g} e^{-\Phi} \operatorname{Tr}\left\{|D X|^{2}-\mathscr{V}(X)-\frac{1}{4 g_{5}^{2}}\left(F_{L}^{2}+F_{R}^{2}\right)\right\} \tag{2.1}
\end{equation*}
$$

with the field strength tensors $F_{L, R}^{M N}=F_{L, R}^{M N a} T^{a}, T^{a}$ the $U\left(n_{f}\right)$ group generators, the X field potential $\mathscr{V}(X)$ and g the determinant of the metric tensor $g_{M N}$. We take the quadratic dilaton background $\Phi(z)=(c z)^{2}$, chosen in order to recover linear Regge trajectories for vector resonances, and $\mathcal{l}_{\mathcal{Y} M}$ is a parameter included to provide canonical $4 d$ dimensions for the fields. The covariant derivative acting on X is defined as $D^{M} X=\partial^{M} X-i \mathscr{A}_{L}^{M} X+i X \mathscr{A}_{R}^{M}$. The gauge fields $\mathscr{A}_{L, R}^{M}$ are usually
combined into a vector field $V^{M}=\frac{\mathscr{A}_{L}^{M}+\mathscr{A}_{R}^{M}}{2}$ and an axial-vector field $A^{M}=\frac{\mathscr{A}_{L}^{M}-\mathscr{A}_{R}^{M}}{2}$. The study of the vector and scalar correlators at high energies allows one to fix the constants in the Yang-Mills action: $k_{Y M}=\frac{16 \pi^{2}}{N_{c}}$ and $g_{5}^{2}=\frac{3}{4}$ [7].

In this kind of approaches [7], one introduces a spinless field X which is dual to the quark bifundamental operator $\bar{q}_{R}^{\alpha} q_{L}^{\beta}$. This field gains the v.e.v. $X=\frac{v(y)}{2} e^{2 i \pi}$ [7]. Chiral symmetry becomes broken when $v(y) \neq 0$, as the left and right sectors of the theory get connected to each other. Moreover, a phase-shift π is induced for the v.e.v. in the bulk when the parallel axial-vector source is switched on: π gets coupled to $A^{\|}$in the equations of motion (EoM). Thus, for the bulk to boundary (B-to-b) propagators one finds the EoM, within the gauge $V_{z}=A_{z}=0$,

$$
\begin{align*}
& \partial_{y}\left(\frac{e^{-y^{2}}}{y} \partial_{y} V_{\perp}\right)-\tilde{Q}^{2} \frac{e^{-y^{2}}}{y} V_{\perp}=0, \quad \partial_{y}\left(\frac{e^{-y^{2}}}{y} \partial_{y} A_{\perp}\right)-\tilde{Q}^{2} \frac{e^{-y^{2}}}{y} A_{\perp}-\frac{g_{5}^{2} v^{2}(y) e^{-y^{2}}}{y^{3}} A_{\perp}=0 \\
& \partial_{y}\left(\frac{e^{-y^{2}}}{y} \partial_{y} A_{\|}\right)+\frac{g_{5}^{2} v^{2}(y) e^{-y^{2}}}{y^{3}}\left(\pi-A_{\|}\right)=0, \quad \tilde{Q}^{2}\left(\partial_{y} A_{\|}\right)+\frac{g_{5}^{2} v^{2}(y)}{y^{2}} \partial_{y} \pi=0, \tag{2.2}
\end{align*}
$$

with $y \equiv c z$ and $\tilde{Q}^{2} \equiv Q^{2} / c^{2}$. In momentum space the 5D fields $\tilde{\phi}(q, y)=-i \frac{q^{\mu}}{q^{2}} \tilde{A}_{\mu}^{\|}(q, y)$ and $\tilde{\pi}(q, y)$ are respectively related to the B-to-b propagators $A_{\|}(q, y)$ and $\pi(q, y)$ [1].

The vector EoM can be analytically solved [1], but for the remaining EoM one needs to specify the v.e.v. $v(y)$. Its asymptotic behaviour close to the UV brane ($y \rightarrow 0$ in our choice of coordinates) is related to the explicit (quark mass m_{q}) and spontaneous chiral symmetry breaking (quark condensate $\sigma \propto\langle\bar{q} q\rangle$ in massless QCD):

$$
\begin{equation*}
v(y) \stackrel{y \rightarrow 0}{=} \frac{m_{q}}{c} y+\frac{\sigma}{c^{3}} y^{3}+\mathscr{O}\left(y^{4}\right) . \tag{2.3}
\end{equation*}
$$

where the first terms of its power expansion in y determine the behaviour of $w_{T, L}$ at high-energies [1].
The QCD chiral anomaly will be provided by the Chern-Simons action and, more precisely, the $A V^{*} V$ amplitude studied here will be provided by the piece [1]

$$
\begin{equation*}
\left.S_{\mathrm{CS}}\right|_{A V^{*} V}=3 \kappa_{C S} \varepsilon_{A B C D E} \int d^{5} x \operatorname{Tr}\left[A^{A}\left\{F_{(V)}^{B C}, F_{(V)}^{D E}\right\}\right]=48 \kappa_{C S} d^{a b} \tilde{F}_{e m}^{\mu \nu} \int d^{5} x A_{V}^{b} \partial_{z} V_{\mu}^{a}, \tag{2.4}
\end{equation*}
$$

with the group factor $d^{a b}=\operatorname{Tr}\left[\mathrm{Q}\left\{\mathrm{T}^{\mathrm{a}}, \mathrm{T}^{\mathrm{b}}\right\}\right]$. This yields the structure functions

$$
\begin{equation*}
w_{L(T)}\left(Q^{2}\right)=-\frac{2 N_{C}}{Q^{2}} \int_{0}^{\infty} d y A_{\|(\perp)}\left(Q^{2}, y\right) \partial_{y} V_{\perp}\left(Q^{2}, y\right) . \tag{2.5}
\end{equation*}
$$

The global normalization is fixed a posteriori through $\mathcal{K}_{C S}=-\frac{N_{C}}{96 \pi^{2}}$ in the case with $m_{q}=0$.

3. $w_{T, L}$ results for $m_{q}=0$ and $m_{q} \neq 0$

In the massless quark limit one can demonstrate that $A^{\|}\left(Q^{2}, y\right)=1[1]$. The perpendicular B-to-b propagators can be solved perturbatively in $1 / \tilde{Q}^{2}$ in the form $A^{\perp}\left(Q^{2}, y\right)=\sum_{n=0}^{\infty} A_{n}^{\perp}(t)\left(1 / \tilde{Q}^{2}\right)^{n}$ and $V^{\perp}\left(Q^{2}, y\right)=\sum_{n=0}^{\infty} V_{n}^{\perp}(t)\left(1 / \tilde{Q}^{2}\right)^{n}$, with $t \equiv y Q / c$. This yields the high-energy expansion

$$
\begin{equation*}
w_{L}\left(Q^{2}\right)=\frac{2 N_{C}}{Q^{2}}, \quad w_{T}\left(Q^{2}\right)=\frac{N_{C}}{Q^{2}}\left[1-\frac{3 \tau \sigma^{2}}{2 Q^{6}}+\mathscr{O}\left(\frac{\Lambda^{8}}{Q^{8}}\right)\right], \tag{3.1}
\end{equation*}
$$

with $\tau \simeq 2.7$ defined by the integral of Bessel functions provided in Ref. [1]. The parallel B-to-b propagator $A_{\|}=1$ ensures the recovery of the OPE prediction for w_{L}, which becomes fully determined by the boundary conditions. Conversely, the QCD dynamics is contained in w_{T}. The comparison with the $\operatorname{OPE}(1.3)$ leads to a vanishing prediction for the magnetic susceptibility $\chi=0$.

In the case with $m_{q} \neq 0$, all the B-to-b propagators can be solved perturbatively in the way we did for Eq. (3.1), gaining corrections proportional to the quark mass and leading to the amplitudes

$$
\begin{gather*}
w_{L}\left(Q^{2}\right)=\frac{2 N_{C}}{Q^{2}}\left[1-\left(1-\pi\left(Q^{2}, 0\right)\right) \frac{3 m_{q}^{2}}{8 Q^{2}}+\mathscr{O}\left(\frac{m_{q} \Lambda^{3}}{Q^{4}}\right)\right], \\
w_{T}\left(Q^{2}\right)=\frac{N_{C}}{Q^{2}}\left[1-\frac{m_{q}^{2}}{4 Q^{4}}+\mathscr{O}\left(\frac{m_{q} \Lambda^{3}}{Q^{4}}\right)+\mathscr{O}\left(\frac{\Lambda^{6}}{Q^{6}}\right)\right] . \tag{3.2}
\end{gather*}
$$

As $A^{\|}$and π EoMs are coupled, the perturbative solutions for $Q^{2} \rightarrow \infty$ depend on the UV boundary condition $\pi\left(Q^{2}, 0\right)$. The comparison of the NLO term proportional to m_{q} with the OPE (1.3) yields again a vanishing magnetic susceptibility $\chi=0$. The m_{q}^{2} terms is more cumbersome since the recovery of the finite OPE $\log m_{q}^{2} \ln \frac{m_{q}^{2}}{Q^{2}}$ in $w_{L}\left(Q^{2}\right)$ requires a logarithmic dependence on Q^{2} of the UV boundary condition $\pi\left(Q^{2}, 0\right)$. The transverse component of the amplitude is even more problematic as the holographic model generates an m_{q}^{2} / Q^{2} term without logs and it is impossible to recover the finite logarithms from the OPE without including any further ingredient to the theory.

4. Checking the Son-Yamamoto relation

This work was motivated by the relation proposed by Son and Yamamoto for $m_{q}=0$ [2] in the kind of model where chiral symmetry is broken through boundary conditions [3]:

$$
\begin{equation*}
w_{T}\left(Q^{2}\right)-\frac{N_{C}}{Q^{2}}=\frac{N_{C}}{F_{\pi}^{2}} \Pi_{V V-A A}\left(Q^{2}\right) . \tag{4.1}
\end{equation*}
$$

Actually, although this kind of models fulfills this relation for any energy, the left-hand and righthand sides of (4.1) do not obey the expected OPE short distance behaviour [2]: $w_{T}\left(Q^{2}\right)-\frac{N_{C}}{Q^{2}}=$ $\mathscr{O}\left(e^{-Q}\right), \Pi_{V V-A A}\left(Q^{2}\right)=\mathscr{O}\left(e^{-Q}\right)$.

In the type of models where chiral symmetry is broken through a scalar-pseudoscalar field X that gains a v.e.v. [7], one gets the right $1 / Q^{6}$ behaviour for the $V V-A A$ correlator but the subleading corrections in the $A V^{*} V$ Green's function do not start at the expected orders [2, 1]:

$$
\begin{equation*}
w_{T}\left(Q^{2}\right)-\frac{N_{C}}{Q^{2}}=-\frac{3 N_{C} \sigma^{2} \tau}{2 Q^{8}}+\mathscr{O}\left(\frac{\Lambda^{8}}{Q^{10}}\right), \quad \Pi_{V V-A A}\left(Q^{2}\right)=-\frac{N_{C} \sigma^{2}}{10 \pi^{2} Q^{6}}+\mathscr{O}\left(\frac{\Lambda^{8}}{Q^{8}}\right) . \tag{4.2}
\end{equation*}
$$

Hence, Son-Yamamoto relation (4.1) is not fulfilled in this kind of models at high energies [1, 2].
It is worthy to mention an interesting result: if we saturate the two Weinberg sum-rules for $w_{T}\left(Q^{2}\right)-N_{C} / Q^{2}$ stemming from the OPE $[4,5]$ through the lightest multiplet of vector and axialvector resonances one gets the minimal hadronical approximation (MHA) [8],

$$
\begin{equation*}
\left.w_{T}\left(Q^{2}\right)\right|_{\mathrm{MHA}}-\frac{N_{C}}{Q^{2}}=-\frac{N_{C} M_{V}^{2} M_{A}^{2}}{Q^{2}\left(M_{V}^{2}+Q^{2}\right)\left(M_{A}^{2}+Q^{2}\right)}=\left.\frac{N_{C}}{F^{2}} \Pi_{V V-A A}\left(Q^{2}\right)\right|_{\mathrm{MHA}}, \tag{4.3}
\end{equation*}
$$

which fulfills the Son-Yamamoto relation (4.1). Although the MHA may lead to inaccurate shortdistance determinations it provides a fair estimate of the low-energy constants [9]. This may explain the reasonable agreement for the low-energy relation $C_{22}^{W}=-\frac{N_{C}}{32 \pi^{2} F^{2}} L_{10}$ [10].

5. Conclusions

We have studied the $A V^{*} V$ Green's function in the soft-wall [1]. When $m_{q}=0$ one has the B-tob propagators $\pi=A_{\|}=1$. This ensures the exact recovery of the longitudinal structure amplitude $w_{L}\left(Q^{2}\right)=2 N_{C} / Q^{2}$ prescribed by QCD [4, 5, 6]. On the other hand, the transverse component corrections predicted in the soft-wall model start at $\mathscr{O}\left(1 / Q^{8}\right)$, producing a zero magnetic susceptibility χ. This hints the need for further ingredients in our holographic description like, e.g., the inclusion of a five-dimensional field $B^{M N}$ dual to the tensor operator $\bar{q} \sigma^{\alpha \beta} q$ [11].

The case $m_{q} \neq 0$ brings further problems. One needs to specify the value of $\pi\left(Q^{2}, y\right)$ at $y \rightarrow 0$ and the study of the subleading terms in the OPE proportional to $m_{q} \sigma$ yields again $\chi=0$. Thus, the problem of the m_{q} corrections needs further understanding which might be obtained from the longitudinal part of the $\Pi_{A A}\left(Q^{2}\right)$ correlator.

We have also tested the Son-Yamamoto relation between the $A V^{*} V$ Green's function and the $V V-A A$ correlator [2]. The hard and soft-wall models show problems at high energies and the OPE is not well recovered [1, 2]. However, the low-energy relation between even and odd-sector low-energy constants $C_{22}^{W}=-\frac{N_{C}}{32 \pi^{2} F^{2}} L_{10}$ seems to be reasonably well satisfied [10].

References

[1] P. Colangelo et al., Phys. Rev. D 85 (2012) 035013.
[2] D. T. Son and N. Yamamoto, [arXiv:1010.0718 [hep-ph]].
[3] D.T. Son and M.A. Stephanov, Phys. Rev. D 69 (2004) 065020; T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113 (2005) 843; 114 (2005) 1083; J. Hirn, V. Sanz, JHEP 0512, 030 (2005).
[4] A. Vainshtein, Phys. Lett. B 569 (2003) 187; A. Czarnecki, W. J. Marciano, A. Vainshtein, Phys. Rev. D 67 (2003) 073006 [Erratum-ibid. D 73 (2006) 119901].
[5] M. Knecht et al., JHEP 0403, 035 (2004).
[6] S. L. Adler, Phys. Rev. 177 (1969) 2426; J. S. Bell and R. Jackiw, Nuovo Cim. A 60 (1969) 47; S. L. Adler and W. A. Bardeen, Phys. Rev. 182 (1969) 1517.
[7] J. Erlich et al., Phys. Rev. Lett. 95 (2005) 261602; L. Da Rold and A. Pomarol, Nucl. Phys. B 721, 79 (2005); A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D 74, 015005 (2006); P. Colangelo et al., Phys. Rev. D 78 (2008) 055009.
[8] M. Knecht and E. de Rafael, Phys. Lett. B 424 (1998) 335.
[9] P. Masjuan and S. Peris, JHEP 0705 (2007) 040 [arXiv:0704.1247 [hep-ph]].
[10] M. Knecht, S. Peris, E. de Rafael, JHEP 1110, 048 (2011).
[11] L. Cappiello, O. Cata and G. D’Ambrosio, Phys. Rev. D82, 095008 (2010); S. K. Domokos, J. A. Harvey and A. B. Royston, JHEP 1105, 107 (2011); R. Alvares, C. Hoyos and A. Karch, [arXiv:1108.1191 [hep-ph]]; A. Gorsky et al., Phys. Rev. D 85 (2012) 086006.

