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1. Introduction: AV*V Green’sfunction

The AV*V Green’s function was recently studied in the framework of soft-wall anti-de-Sitter
(AdS) theories [1]. This analysis was motivated by a previous work by Son and Yamamoto [2]
for holographic theories where chiral symmetry is broken through boundary condition [3].
Ref. [2], the authors found an interesting relation between the VV — AA correlator and the Green’s
function involving two vector currents J, = qVy,q and J§" = qQ¥,q and an axial-vector current

= gAYy, 150, with V and A diagonal matrices and the electric charge matrix Q:
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with k — 0 and related to the three-point Green’s function (0] T[J,(x)J3(0)J&M(y)] |0). We use the
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notation 7 = —¢?, f,y = >Euvap @B and foP = k*eP —KkPe®, and the transverse and longitudinal

projectors, respectively, Py, (0) = Mua — 0uGe/q* and Py, = 00 /0P
At short-distance it is possible to use the Operator Product Expansion (OPE) for ny =0 [4, 5]:
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where the longitudinal component is completely fixed by the anomaly and does not receive any
correction [4, 5, 6] and  is defined by the condensate (0|Go*?q|y) = iex (0|qq|0) f*B.

If we allow my # 0, the OPE yields corrections proportional to the quark mass at one loop [4]:
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2. The holographic setup in AdS/QCD

We will consider a gauged U (n;)r® U (ns)L chiral symmetry and the AdS line element
ds = gundxMdxN = ;52(17de”dxv —dZ), with the coordinate indices M,N =0,1,2,3,5,
Nuv =diag(+1,—-1,-1,-1), Rthe AdS curvature radius (set to unity from now on) and the 5D
coordinate being in the range 0" < z < +oo. The 5D Yang-Mills action describing the fields %Y'R
dual to the left and right currents \]ffR, as well as the scalar-pseudoscalar field X, is given by
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(FL2+FF§)} : (2.1)
with the field strength tensors FMy' = FMT?, T2 the U (ny) group generators, the X field potential
¥ (X) and g the determinant of the metric tensor gun. We take the quadratic dilaton background
®(2) = (cz)?, chosen in order to recover linear Regge trajectories for vector resonances, and ki
is a parameter included to provide canonical 4d dimensions for the fields. The covariant derivative
acting on X is defined as DMX = oMX —ieqMX +iX.a!. The gauge fields 1"} are usually
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combined into a vector field VM = &R a0 an axial-vector field AM = “L~ 7R g

study of the vector and scalar correlators at high energies allows one to fix the constants in the

: . 1672
Yang-Mills action: kym = % and gé = % [71.

In this kind of approachgs [7], one introduces a spinless field X which is dual to the quark

bifundamental operator quf. This field gains the viev. X = @eﬁ” [7]. Chiral symmetry
becomes broken when v(y) # 0, as the left and right sectors of the theory get connected to each
other. Moreover, a phase-shift 7 is induced for the v.e.v. in the bulk when the parallel axial-vector
source is switched on: 7 gets coupled to Al in the equations of motion (EoM). Thus, for the bulk
to boundary (B-to-b) propagators one finds the EoM, within the gauge \ = A, =0,
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with y = czand Q% = Q?/c2. In momentum space the 5D fields ¢(q,y) = —ig—gﬂﬂt(q,y) and 7(q,y)
are respectively related to the B-to-b propagators A(q,y) and 7(q,y) [1].

The vector EOM can be analytically solved [1], but for the remaining EoM one needs to specify
the v.e.v. v(y). Its asymptotic behaviour close to the UV brane (y — 0 in our choice of coordinates)
is related to the explicit (quark mass my) and spontaneous chiral symmetry breaking (quark con-
densate o < (qq) in massless QCD):

wy) = Dy + Y+ o). @23
where the first terms of its power expansion in y determine the behaviour of wt | at high-energies [1].

The QCD chiral anomaly will be provided by the Chern-Simons action and, more precisely,

the AV*V amplitude studied here will be provided by the piece [1]

Ss| = 3keseascor / ox Tr[AA{F(%?,F(?,)E}} — 48icsd®FLY / XA AV2, (2.4)
AV
with the group factor d® =Tr[Q{T?, T®}]. This yields the structure functions
2y = Mo [Tgun 2y) Vv, (Q° 2.5
w (1) (Q7) = & Jo YA (L)(Q%Y) AVL(Q%Y). (2.5)
The global normalization is fixed a posteriori through s = —% in the case with my = 0.

3. Wy resultsfor my=0and mg #0

In the massless quark limit one can demonstrate that AU(QZ,y) = 1[1]. The perpendicular B-
to-b propagators can be solved perturbatively in 1/Q? in the form AL (Q%,y) = 35 o AL (1) (1/Q?)"
and V- (Q2y) = 3 oV (1) (1/@)", with t = yQ/c. This yields the high-energy expansion
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with 7 ~ 2.7 defined by the integral of Bessel functions provided in Ref. [1]. The parallel B-
to-b propagator A = 1 ensures the recovery of the OPE prediction for w_, which becomes fully
determined by the boundary conditions. Conversely, the QCD dynamics is contained in w. The
comparison with the OPE (1.3) leads to a vanishing prediction for the magnetic susceptibility y = 0.

In the case with my # 0, all the B-to-b propagators can be solved perturbatively in the way we
did for Eq. (3.1), gaining corrections proportional to the quark mass and leading to the amplitudes

(@) = B [1- 1 n(@0) o o))
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As Al and 7 EoMs are coupled, the perturbative solutions for % — o depend on the UV boundary
condition 7z(Q?,0). The comparison of the NLO term proportional to my, with the OPE (1.3) yields
again a vanishing magnetic susceptibility y = 0. The r’rf] terms is more cumbersome since the

recovery of the finite OPE log nﬁlng in wi (Q?) requires a logarithmic dependence on @ of
the UV boundary condition 7(Q?,0). The transverse component of the amplitude is even more
problematic as the holographic model generates an rrg/Q2 term without logs and it is impossible to

recover the finite logarithms from the OPE without including any further ingredient to the theory.

4. Checking the Son-Yamamoto relation

This work was motivated by the relation proposed by Son and Yamamoto for my = 0 [2] in the
kind of model where chiral symmetry is broken through boundary conditions [3]:

wr(Q) — = = —Tlw-aa(Q). (4.1)

Actually, although this kind of models fulfills this relation for any energy, the left-hand and right-
hand sides of (4.1) do not obey the expected OPE short distance behaviour [2]: w(Q?) — N—% =

Q
0(e Q), Tlyy-aa(Q%) = 0(e Q).
In the type of models where chiral symmetry is broken through a scalar-pseudoscalar field
X that gains a v.e.v. [7], one gets the right 1/Q behaviour for the VV — AA correlator but the
subleading corrections in the A/*V Green’s function do not start at the expected orders [2, 1]:

N 3Nco?T (AS > Neo? (A8>
2 C 2 C
—==—-———+4+0 ==, Ty = — +0|—=|.42
VVT(Q ) Q2 2Q8 Qlo AVAY AA(Q ) 10ﬂ2Q6 Q8 ( )
Hence, Son-Yamamoto relation (4.1) is not fulfilled in this kind of models at high energies [1, 2].
It is worthy to mention an interesting result: if we saturate the two Weinberg sum-rules for
wr (Q%) — N /Q? stemming from the OPE [4, 5] through the lightest multiplet of vector and axial-
vector resonances one gets the minimal hadronical approximation (MHA) [8],

2 N NcMZ M3 ~Ne ) 3
wr(Q) wia @ QM+ (ME+QY)  F? Hhw-aa(Q) MHA (#3)
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which fulfills the Son-Yamamoto relation (4.1). Although the MHA may lead to inaccurate short-
distance determinations it provides a fair estimate of the low-energy constants [9]. This may explain

the reasonable agreement for the low-energy relation Gy = — 32er2|:2 Lo [10].

5. Conclusions

We have studied the AV*V Green’s function in the soft-wall [1]. When m, = 0 one has the B-to-
b propagators = = Ay = 1. This ensures the exact recovery of the longitudinal structure amplitude
W (Q%) = 2Nc/Q? prescribed by QCD [4, 5, 6]. On the other hand, the transverse component cor-
rections predicted in the soft-wall model start at ¢(1/@), producing a zero magnetic susceptibility
x . This hints the need for further ingredients in our holographic description like, e.g., the inclusion
of a five-dimensional field BN dual to the tensor operator qo®Aq [11].

The case my # 0 brings further problems. One needs to specify the value of 7(C,y) aty — 0
and the study of the subleading terms in the OPE proportional to myo yields again y = 0. Thus,
the problem of the my corrections needs further understanding which might be obtained from the
longitudinal part of the TIaa(Q?) correlator.

We have also tested the Son-Yamamoto relation between the A/*V Green’s function and the
VV — AA correlator [2]. The hard and soft-wall models show problems at high energies and the
OPE is not well recovered [1, 2]. However, the low-energy relation between even and odd-sector
low-energy constants qg = —%Lm seems to be reasonably well satisfied [10].
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