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The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, pro-
vides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space
and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in
physical space-time. In particular, the elastic and transition form factors of the pion and the nucle-
ons are well described in this framework. The light-front AdS/QCD holographic approach thus
gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and
excitation spectra of relativistic light-quark bound states in QCD. More generally, we show that
the valence Fock-state wavefunctions of the eigensolutions of the light-front QCD Hamiltonian
satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial
Schrödinger equation, with an effective confining potential which systematically incorporates the
effects of higher quark and gluon Fock states. The proposed method to compute the effective in-
teraction thus resembles the two-particle-irreducible functional techniques used in quantum field
theory.
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1. Introduction

Forty years after the discovery of QCD, the description of hadrons in terms of their funda-
mental quark and gluon constituents appearing in the QCD Lagrangian and the nature of color-
confinement still remain among the most challenging problems of strong interaction dynamics.
Euclidean lattice calculations provide an important numerical simulation of nonperturbative QCD.
However, the excitation spectrum of hadrons represents an important challenge to lattice QCD due
to the enormous computational complexity beyond ground-state configurations and the unavoidable
presence of multi-hadron thresholds. In contrast, the incorporation of the AdS/CFT correspondence
between gravity in AdS space and conformal field theories in physical space-time [1] has led to an
analytic semiclassical approximation for strongly-coupled quantum field theories as well as pro-
viding important new physical insight into the wavefunctions and nonperturbative dynamics of
relativistic light-hadron bound states [2].

Light-front (LF) holographic methods were originally introduced [3] by mapping the electro-
magnetic form factors in AdS space [4] to the corresponding expression at fixed LF time in physical
space-time [5]. It was also shown that one obtains an identical mapping for the matrix elements of
the energy-momentum tensor [6], by perturbing the AdS metric around its static solution [7]. In the
“bottom-up” approach to the gauge/gravity duality [8, 9], fields in the bulk geometry are introduced
to match the chiral symmetries of QCD. In contrast, in LF holography a direct connection with the
internal constituent structure of hadrons is established using LF quantization [2, 3, 6, 10].

The identification of AdS space with partonic physics in physical space-time is specific to the
light front: the transition amplitudes in AdS are expressed as a wavefunction overlap [4] which
maps precisely to the convolution of frame-independent LF wavefunctions (LFWFs) [5]. In con-
trast, the AdS convolution formula cannot be mapped to current matrix elements at ordinary fixed
time t since one must include connected currents from the vacuum which are not given by eigen-
solutions of the instant-time Hamiltonian. There are no such vacuum contributions in the LF for
current matrix elements – in agreement with the AdS formulae. Furthermore, the instant-time
wavefunctions must be boosted from the hadron’s rest frame – an intractable dynamical problem.

Unlike ordinary instant-time quantization, the Hamiltonian equation of motion in the LF is
frame-independent and has a structure similar to eigenmode equations in AdS space. This makes
the direct connection of QCD to AdS/CFT methods possible. In fact, one can also study the
AdS/CFT duality and its modifications starting from the LF Hamiltonian equation of motion for a
relativistic bound-state system in physical space-time [2]. To a first semiclassical approximation,
where quantum loops and quark masses are not included, LF holography leads to a LF Hamiltonian
equation which describes the bound-state dynamics of light hadrons in terms of an invariant impact
kinematical variable ζ which measures the separation of the partons within the hadron at equal LF
time. Remarkably, the unmodified AdS equations correspond to the kinetic energy terms of the
partons inside a hadron, whereas the interaction terms in the QCD Lagrangian build confinement
and correspond to the truncation of AdS space in an effective dual gravity approximation [2]. Thus,
all the complexities of strong-interaction dynamics are hidden in an effective confining potential
U(ζ ), which acts in the valence sector of the theory, reducing the many-particle problem in QCD
to an effective one-body problem. The derivation of the effective interaction U(ζ ) directly from
QCD then becomes the central issue.
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2. The Light-front Schrödinger equation: a semiclassical approximation to QCD

The hadronic four-momentum generator in the front form [11] is denoted by P = (P+,P−,P⊥),
where the longitudinal and transverse generators P+ and P⊥ do not depend on the interaction (they
are kinematical generators which leave the LF plane invariant) and the dynamical generator P−

which contain the interactions. It is the LF time x+ = x0 +x3 evolution operator, i ∂

∂x+ |ψ〉= P−|ψ〉,
and it is constructed canonically from the QCD Lagrangian [12]. The hadronic mass states PµPµ =
M2 are determined by the Lorentz-invariant Hamiltonian equation for the relativistic bound-state

HLF |ψ(P)〉= M2|ψ(P)〉, (2.1)

with HLF ≡ PµPµ = P−P+−P2
⊥. The hadronic state |ψ〉 is an expansion in multiparticle Fock

states |ψ〉 = ∑n ψn|n〉, where the components ψn = 〈n|ψ〉 are a column vector of states, and the
basis vectors |n〉 are the n-parton eigenstates of the free LF Hamiltonian: |qq̄〉, |qq̄g〉, |qq̄qq̄〉 · · · etc.

For certain applications it is useful to reduce the multiparticle eigenvalue problem (2.1) to a
single equation [13], instead of diagonalizing the Hamiltonian. The central problem then becomes
the derivation of the effective interaction, which acts only on the valence sector of the theory and
has, by definition, the same eigenvalue spectrum as the initial Hamiltonian problem. For carrying
out this program one most systematically express the higher Fock components as functionals of the
lower ones. The method has the advantage that the Fock space is not truncated and the symmetries
of the Lagrangian are preserved [13].

In our recent work we have shown how light front holographic methods lead to a remarkably
simple equation of motion for mesons at fixed light-front time. To this end, we write the LFWF in
terms of the invariant impact-space variable for a two-parton state ζ 2 = x(1− x)b2

⊥

ψ(x,ζ ,ϕ) = eiLϕX(x)
φ(ζ )√

2πζ
, (2.2)

thus factoring the angular dependence ϕ and the longitudinal, X(x), and transverse mode φ(ζ ). In
the limit of zero quark masses the longitudinal mode decouples and the LF eigenvalue equation
PµPµ |φ〉= M2|φ〉 is thus a light-front wave equation for φ(

− d2

dζ 2 −
1−4L2

4ζ 2 +U
(
ζ

2,J
))

φJ,L,n(ζ 2) = M2
φJ,L,n(ζ 2), (2.3)

a relativistic single-variable LF Schrödinger equation (LFSE). The effective interaction U is instan-
taneous in LF time and acts on the lowest state of the LF Hamiltonian. This equation describes the
spectrum of mesons as a function of n, the number of nodes in ζ 2, the total angular momentum
J = Jz and the internal orbital angular momentum of the constituents L = Lz 1. It is the relativistic
frame-independent front-form analog of the non-relativistic radial Schrödinger equation for muo-
nium and other hydrogenic atoms in presence of an instantaneous Coulomb potential.

3. Effective confinement interaction from the gauge/gravity correspondence

A remarkable correspondence between the equations of motion in AdS and the Hamiltonian
equation for relativistic bound-states was found in [2]. In fact, to a first semiclassical approxi-

1The SO(2) Casimir L2 corresponds to the group of rotations in the transverse LF plane.
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mation, LF QCD is formally equivalent to the equations of motion on a fixed gravitational back-
ground [2] asymptotic to AdS5, where confinement properties are encoded in a dilaton profile ϕ(z).

A spin-J field in AdSd+1 is represented by a rank J tensor field ΦM1···MJ , which is totally
symmetric in all its indices. In presence of a dilaton background field ϕ(z) the action is 2

S =
1
2

∫
ddxdz

√
geϕ(z)

(
gNN′gM1M′1 · · ·gMJM′J DNΦM1···MJ DN′ΦM′1···M′J

−µ
2gM1M′1 · · ·gMJM′J ΦM1···MJ ΦM′1···M′J + · · ·

)
, (3.1)

where M,N = 1, · · · ,d + 1,
√

g = (R/z)d+1 and DM is the covariant derivative which includes
parallel transport. The coordinates of AdS are the Minkowski coordinates xµ and the holographic
variable z labeled xM = (xµ ,z). The d + 1 dimensional mass µ is not a physical observable and is
a priory an arbitrary parameter. The dilaton background field ϕ(z) in (3.1) introduces an energy
scale in the five-dimensional AdS action, thus breaking its conformal invariance. It vanishes in the
conformal ultraviolet limit z→ 0.

A physical hadron has plane-wave solutions and polarization indices along the 3 + 1 physical
coordinates ΦP(x,z)µ1···µJ = e−iP·xΦ(z)µ1···µJ , with four-momentum Pµ and invariant hadronic mass
PµPµ = M2. All other components vanish identically. One can then construct an effective action
in terms of the spin modes ΦJ = Φµ1µ2···µJ with only physical degrees of freedom. In this case
the system of coupled differential equations which follow from (3.1) reduce to a homogeneous
equation in terms of the physical field ΦJ upon rescaling the AdS mass µ[

−zd−1−2J

eϕ(z) ∂z

(
eϕ(z)

zd−1−2J ∂z

)
+
(

µR
z

)2
]

Φ(z)J = M2
Φ(z)J. (3.2)

Upon the substitution z→ζ and φJ(ζ ) = (ζ/R)−3/2+J eϕ(z)/2 ΦJ(ζ ) in (3.2), we find for d = 4
the LFSE (2.3) with effective potential [15]

U(ζ 2,J) =
1
2

ϕ
′′(ζ 2)+

1
4

ϕ
′(ζ 2)2 +

2J−3
2ζ

ϕ
′(ζ 2), (3.3)

provided that the fifth dimensional mass µ is related to the internal orbital angular momentum
L = max|Lz| and the total angular momentum Jz = Lz + Sz according to (µR)2 = −(2− J)2 + L2.
The critical value L = 0 corresponds to the lowest possible stable solution, the ground state of the
LF Hamiltonian. For J = 0 the five dimensional mass µ is related to the orbital momentum of the
hadronic bound state by (µR)2 =−4+L2 and thus (µR)2 ≥−4. The quantum mechanical stability
condition L2 ≥ 0 is thus equivalent to the Breitenlohner-Freedman stability bound in AdS [16].

The correspondence between the LF and AdS equations thus determines the effective confining
interaction U in terms of the infrared behavior of AdS space and gives the holographic variable z
a kinematical interpretation. The identification of the orbital angular momentum is also a key
element of our description of the internal structure of hadrons using holographic principles.

A particularly interesting example is a dilaton profile exp
(
±κ2z2

)
of either sign, since it leads

to linear Regge trajectories [17] and avoids the ambiguities in the choice of boundary conditions at

2The study of higher integer and half-integer spin wave equations in AdS is based on our collaboration with Hans
Guenter Dosch. See also the discussion in Ref. [14].
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the infrared wall. For the confining solution ϕ = exp
(
κ2z2

)
the effective potential is U(ζ 2,J) =

κ4ζ 2 +2κ2(J−1) and Eq. (2.3) has eigenvalues M2
n,J,L = 4κ2

(
n+ J+L

2

)
, with a string Regge form

M2 ∼ n + L. A discussion of the light meson and baryon spectrum, as well as the elastic and
transition form factors of the light hadrons using LF holographic methods, is given in Ref. [18].

4. Effective confinement interaction from higher Fock states in light-front QCD

As we have discussed in Sec. 2, one can systematically eliminate the higher Fock states in
terms of an effective interaction U(ζ 2,J,M2) in order to obtain an equation for the valence |qq̄〉
Fock state [13]. The potential U depends on the eigenvalue M2 via the LF energy denominators
P−initial−P−intermediate + iε of the intermediate states which connect different LF Fock states. Here
P−initial = (M2 +P2

⊥)/P+. The dependence of U on M2 is analogous to the retardation effect in
QED interactions, such as the hyperfine splitting in muonium, which involves the exchange of a
propagating photon. Accordingly, the eigenvalues M2 must be determined self-consistently. The
M2 dependence of the effective potential thus reflects the contributions from higher Fock states
in the LFSE (2.3), since U(ζ 2,J,M2) is also the kernel for the scattering amplitude qq̄→ qq̄ at
s = M2. It has only “proper” contributions; i.e., it has no qq̄ intermediate state. The potential can
be constructed systematically using LF time-ordered perturbation theory. Thus the QCD theory
has identical form as the AdS theory, but with the quantum field-theoretic corrections due to the
higher Fock states giving a general form for the potential. This provides a novel way to solve
nonperturbative QCD.

This LFSE for QCD becomes increasingly accurate as one includes contributions from very
high particle number Fock states. There is only one dynamical variable ζ 2. The AdS/QCD har-
monic oscillator potential could emerge when one includes contributions from the exchange of two
connected gluons; i.e., “H” diagrams [19]. We notice that U becomes complex for an excited state
since a denominator can vanish; this gives a complex eigenvalue and the decay width.

The above discussion assumes massless quarks. More generally we must include mass terms
m2

a/x + m2
b/(1− x) in the kinetic energy term and allow the potential U(ζ 2,x,J,M2) to have de-

pendence on the LF momentum fraction x. The quark masses also appear in U due to the presence
in the LF denominators as well as the chirality-violating interactions connecting the valence Fock
state to the higher Fock states. In this case, however, the equation of motion cannot be reduced to
a single variable.

The LFSE approach also can be applied to atomic bound states in QED and nuclei. In principle
one could compute the spectrum and dynamics of atoms, such as the Lamb shift and hyperfine
splitting of hydrogenic atoms to high precision by a systematic treatment of the potential. Unlike
the ordinary instant form, the resulting LFWFs are independent of the total momentum and can
thus describe “flying atoms” without the need for dynamical boosts, such as the “true muonium”
(µ+µ−) bound states which can be produced by Bethe-Heitler pair production γ Z → (µ+µ−)Z
below threshold [20]. A related approach for determining the valence light-front wavefunction and
studying the effects of higher Fock states without truncation has been given in Ref. [21].
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5. Conclusions

Despite some limitations, AdS/QCD, the LF holographic approach to the gauge/gravity dual-
ity, has given significant physical insight into the strongly-coupled nature and internal structure of
hadrons. In particular, the AdS/QCD soft-wall model provides an elegant analytic framework for
describing nonperturbative hadron dynamics, the systematics of the excitation spectrum of hadrons,
including their empirical multiplicities and degeneracies. It also provides powerful new analytical
tools for computing hadronic transition amplitudes incorporating conformal scaling behavior at
short distances and the transition from the hard-scattering perturbative domain, where quark and
gluons are the relevant degrees of freedom, to the long-range confining hadronic region. We have
also discussed the possibility of computing the effective confining potential in light-front QCD
for a single-variable LF Schrödinger equation by systematically incorporating the effects of higher
Fock states, thus providing the basis for a profound connection between physical QCD, quantized
on the light-front, and the physics of hadronic modes in a higher dimensional AdS space.
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