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1. Introduction

Form factors are fundamental quantities for testing the nonperturbative regime of QCD. These
quantities could be calculated if hadron structure could be solved. In the absence of such a solu-
tion, form factors provide an excellent meeting ground between experimental measurements and
theoretical approaches. We investigate the shape parameters of the semileptonic Kl3-decays where
a kaon decays to a pion, a charged lepton, and a neutrino.Kl3-decays provide the most accurate de-
termination of Cabibbo-Kobayashi-Maskawa (CKM) matrix elementVus. These processes can be
used to derive potentially stringent constraints on new physics scenarios. Bounds on violations of
CKM unitarity and lepton universality and deviations from theV −A structure provide a significant
test for the physics beyond Standard Model (SM). Significant progress on both the experimental
and theoretical sides has motivated us to investigate the shape parameters ofthe semileptonic kaon
decays. A detailed analysis of precise tests of the SM with semileptonic kaon decays has been
reviewed in [1].

2. Formalism

We apply the formalism of the unitarity bounds [2] which is based on the general principles
of analyticity and unitarity and is model independent. Our primary motivation is to study the
parameters of the Taylor expansion of theKl3 form factors at zero momentum transfer. These
parameters have crucial importance in the study of Chiral Perturbation Theory (ChPT), the low-
energy effective theory of QCD, and provide a solid ground to test QCDat low energies. We also
find constraints on its value at the special point(M2

π −M2
K), details may be found in [3].

Kaon decay is characterized by the vector and scalar form factors. The kinematically allowed
region ism2

l ≤ t ≤ (MK −Mπ)
2. The expansion of the vector form factor aboutt = 0 is

f+(t) = f+(0)

(

1+λ ′
+

t
M2

π
+

1
2

λ ′′
+

t2

M4
π
+ · · ·

)

, (2.1)

whereλ ′
+ andλ ′′

+ are slope and curvature parameters respectively andf+(0) = 0.964 comes from
Lattice[4]. Analogous expansion for the scalar form factor can be defined.

The formalism is based on the fact that an integral involving the modulus squared of the form
factor can be bounded along the unitarity cut using a dispersion relation satisfied by a QCD corre-
lator. The QCD correlator for the vector form factor is

χ1(Q
2) =

1
π

∫ ∞

0
dt

tImΠ1(t)
(t +Q2)3 , (2.2)

ImΠ1(t)≥
3
2

1
48π

[(t − t+)(t − t−)]
3/2

t3 | f+(t)|2, (2.3)

with t± = (MK ±Mπ)
2 is positive definite. We can write a similar expression for the scalar form

factor. The vector correlator in pQCD (MS scheme) whenQ ≫ ΛQCD is [5, 6]

χ1(Q
2) =

1
8π2Q2(1+

αs

π
−0.062α2

s −0.162α3
s −0.176α4

s ) . (2.4)
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Using a conformal mappingt → z(t)

z(t) =
√

t+−√
t+− t√

t++
√

t+− t
, (2.5)

the dispersion relation is brought into a standard form

1
2π

∫ 2π

0
dθ |g(exp(iθ))|2 ≤ I , (2.6)

where
g(z) = F(t(z))w(z) , (2.7)

andI is the value of the QCD correlator. Herew(z) is an outer function, i.e., a function analytic
and without zeros in|z|< 1. Square integrability allows us to write above equation in the following
form

∞

∑
n=0

|gn|n ≤ I . (2.8)

Bounds on the shape parameters are obtained by truncating the series at adesired order.
Bounds can be improved if the phase information along the unitarity cut is known from an in-
dependent source. We use Omnès function for the implementation of the phase

O(t) = exp

(

t
π

∫ ∞

t+
dt

δ (t ′)
t ′(t ′− t)

)

, (2.9)

whereδ (t) is theI = 1/2 elastic P-waveKπ scattering phase, in the elastic region and arbitrary
Lipschitz continuous abovetin, see [3]. The important feature of this formalism is its independence
of the phase information abovetin. Bounds can be further improved if the modulus of the form
factor is known along the unitarity cut. In this case, contribution fromt+ to tin needs to be removed
from pQCD value which is now the input for the bound given below

I′ = χ1(Q
2)− 1

32π2

∫ tin

t+
dt

[(t − t+)(t − t−)]3/2| f+(t)|2
t2(t +Q2)3 . (2.10)

We obtain a problem identical to the above, but for functions analytic in thet-plane cut fort > tin.
The low-energy integral for the vector as well as scalar form factor is estimated using the Breit-
Wigner parameterizations of| f+(t)| and | f0(t)| respectively in terms of the resonances given by
the Belle Collaboration for fitting the rate ofτ → Kπντ decay [7]. From Eq. 2.10 we finally obtain
constraints on the slope and curvature.

Analogously the scalar form factorf0(t) may be analysed and constrained. Furthermore, in
this case, there are two low energy theorems, namely, soft pion theorem

f0(M
2
K −M2

π) = FK/Fπ +∆CT (2.11)

∆CT ≃ 0 to two-loops in chiral perturbation theory. and a soft-kaon theorem

f0(M
2
π −M2

K) = Fπ/FK +∆CT (2.12)

∆CT = 0.03 is one-loop in chiral perturbation theory and not known at two-loops.For details, see
[3] and references therein. Bounds on shape parameters can be improved using above values of
form factors . Since higher order corrections to soft kaon theorem are not known, we do not use
it in our analysis. Nevertheless we predict a very narrow range for higher order corrections to
soft-kaon theorem. We use recent determination of decay constantsFK/Fπ = 1.193±0.006 [8].
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Figure 1: The best constraints for the slope and curvature of the vector form factor when we include phase
and modulus information.

-0.02 0 0.02 0.04 0.06
λ

0

/

Alexopoulos, KTeV (2004)

Yushchenko, ISTRA (2004)

Lai, NA48 (2007)

Ambrosino, KLOE (2007)

Sciascia, Flavianet Kaon WG (2008)

Amsler, PDG (2009)

Abouzaid, KTeV (2009)

Veltri, NA48 (2011)

Figure 2: Slope of the scalar form factor, when we include the phase, modulus and the Callan-Treiman
constraint.

3. Results and Discussion

In Fig. 1, we present results for vector form factor. In this case phase and modulus information
are used along with the value off+(0). Our constraints are satisfied by all the available data
except the results from NA48 and KLOE, which have curvatures slightly larger than the allowed
values. We note also that the theoretical predictionsλ ′

+ =(24.9±1.3)×103, λ ′′
+ =(1.6±0.5)×103

obtained from ChPT to two loops, andλ ′
+ = (26.05+0.21

−0.51)×10−3, λ ′′
+ = (1.29+0.01

−0.04)×10−3 [10],
andλ ′

+ = (25.49±0.31)×10−3, λ ′′
+ = (1.22±0.14)×10−3 [11] obtained from dispersion relations

are consistent with our constraint. For more information, see, [3].
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In Fig. 2, we show allowed range for the slope of the scalar form factor.The large grey
band shows the slope without phase and modulus information while the yellow band corresponds
to including the phase and modulus along with the soft pion theorem. Our constraints are satisfied
by all the available data as well as the most recent result from NA48 [9] which is accomodated by
our constraints. This new NA48 analysis is based on the form factor measurements ofK±

µ3-decays
using a sample of 3.4×106 events.

The theoretical prediction of ChPT to two loopsλ ′
0=(13.9−0.4

+1.3±0.4)×10−3, λ ′′
0 =(8.0−1.7

+0.3)×
10−4 is consistent within errors with our constraint. The same is true for the theoretical prediction
λ ′

0 = (16.00±1.00)×10−3, λ ′′
0 = (6.34±0.38)×10−4 obtained from dispersion relations [12].

Lastly, this formalism can also be extended to the study of zeros of the form factors which
have useful phenomenological implications, see for discussions on theKπ zeros in [3].
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