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1. Introduction

Form factors are fundamental quantities for testing the nonperturbatime of QCD. These
quantities could be calculated if hadron structure could be solved. In S@neb of such a solu-
tion, form factors provide an excellent meeting ground between expetahmaeasurements and
theoretical approaches. We investigate the shape parameters of the semndiléptdecays where
a kaon decays to a pion, a charged lepton, and a neukjgalecays provide the most accurate de-
termination of Cabibbo-Kobayashi-Maskawa (CKM) matrix elemégt These processes can be
used to derive potentially stringent constraints on new physics scenBoosids on violations of
CKM unitarity and lepton universality and deviations from the A structure provide a significant
test for the physics beyond Standard Model (SM). Significant pesgoa both the experimental
and theoretical sides has motivated us to investigate the shape param#étersarhileptonic kaon
decays. A detailed analysis of precise tests of the SM with semileptonic kaaysbas been
reviewed in [1].

2. Formalism

We apply the formalism of the unitarity bounds [2] which is based on the gepgnciples
of analyticity and unitarity and is model independent. Our primary motivation igutdysthe
parameters of the Taylor expansion of #g form factors at zero momentum transfer. These
parameters have crucial importance in the study of Chiral Perturbatiooryri@hPT), the low-
energy effective theory of QCD, and provide a solid ground to test @ODbw energies. We also
find constraints on its value at the special pgMg — M2), details may be found in [3].

Kaon decay is characterized by the vector and scalar form factoeskimbmatically allowed
region ism,2 <t < (Mg — Mn)z. The expansion of the vector form factor aboet O is

2
f+(t):f(0)<1+)\+M2 /\”%Jr ) 2.1)

whereA’ andA” are slope and curvature parameters respectivelyfaf@) = 0.964 comes from
Lattice[4]. Analogous expansion for the scalar form factor can beeefi

The formalism is based on the fact that an integral involving the modulusexdjofthe form
factor can be bounded along the unitarity cut using a dispersion relatisfiexshby a QCD corre-
lator. The QCD correlator for the vector form factor is

timry
/d ”:Lles, (2.2)

3 1 [(t—ty)(t 44}3/2” 0
= 248m t3 L
with t. = (Mk £ M,T)2 is positive definite. We can write a similar expression for the scalar form
factor. The vector correlator in pQCIMS scheme) whe® > Aqcp is [5, 6]

ImMy(t) > (2.3)

1
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Using a conformal mapping— z(t)

Vi =i =t
(t)y=+r——F—— 2.5
(t) Y = (2.5)
the dispersion relation is brought into a standard form
1 2 ) 2
— < :
o |, dolalexplio)2 <1, (2.6)
where
9(2) = F(t(2)w(2) (2.7)

andl is the value of the QCD correlator. Hengz) is an outer function, i.e., a function analytic
and without zeros ife] < 1. Square integrability allows us to write above equation in the following
form

;\gn\”él : (2.8)

Bounds on the shape parameters are obtained by truncating the serieiesiteal order.
Bounds can be improved if the phase information along the unitarity cut is rkrficsn an in-
dependent source. We use Omnés function for the implementation of the phas

o(t) = exp(:T /:, dtt,(ét,(t_/)t» , 2.9)

whered(t) is thel = 1/2 elastic P-wavéK 1T scattering phase, in the elastic region and arbitrary
Lipschitz continuous aboug, see [3]. The important feature of this formalism is its independence
of the phase information abovg. Bounds can be further improved if the modulus of the form
factor is known along the unitarity cut. In this case, contribution ftoro tj, needs to be removed
from pQCD value which is now the input for the bound given below

1 /tindt [ttt -t )2 f. ) (2.10)

|, = Xl(QZ) - W t tz(t +Q2)3

We obtain a problem identical to the above, but for functions analytic it-fiane cut fott > tj,.
The low-energy integral for the vector as well as scalar form factostisnated using the Breit-
Wigner parameterizations ¢f_ (t)| and|fo(t)| respectively in terms of the resonances given by
the Belle Collaboration for fitting the rate of— Krv; decay [7]. From Eq. 2.10 we finally obtain
constraints on the slope and curvature.

Analogously the scalar form factdp(t) may be analysed and constrained. Furthermore, in
this case, there are two low energy theorems, namely, soft pion theorem

fo(Mg —M7) = F/Fr+Act (2.11)
Act ~ 0 to two-loops in chiral perturbation theory. and a soft-kaon theorem
fo(Ma—MZ) = Fr/F + Bt (2.12)

Act = 0.03 is one-loop in chiral perturbation theory and not known at two-lo6ps.details, see
[3] and references therein. Bounds on shape parameters can beéahprsing above values of
form factors . Since higher order corrections to soft kaon theorenmatr known, we do not use
it in our analysis. Nevertheless we predict a very narrow range fdrehigrder corrections to
soft-kaon theorem. We use recent determination of decay con§iafftg = 1.193+ 0.006 [8].
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Figure 1. The best constraints for the slope and curvature of the vémtim factor when we include phase
and modulus information.
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Figure 2. Slope of the scalar form factor, when we include the phaselutlns and the Callan-Treiman
constraint.

3. Resaultsand Discussion

In Fig. 1, we present results for vector form factor. In this caseghad modulus information
are used along with the value df (0). Our constraints are satisfied by all the available data
except the results from NA48 and KLOE, which have curvatures slighttyetathan the allowed
values. We note also that the theoretical predictins- (24.9+1.3) x 103, A} = (1.640.5) x 10°
obtained from ChPT to two loops, ad = (26.05732]) x 1073, A” = (1.29"05%) x 1072 [10],
andA’ = (25.4940.31) x 103, A/ = (1.22+0.14) x 103 [11] obtained from dispersion relations
are consistent with our constraint. For more information, see, [3].
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In Fig. 2, we show allowed range for the slope of the scalar form factbe large grey
band shows the slope without phase and modulus information while the yellwvdoaresponds
to including the phase and modulus along with the soft pion theorem. Our amtstare satisfied
by all the available data as well as the most recent result from NA48 [fJhwik accomodated by
our constraints. This new NA48 analysis is based on the form factor measats oKffs-decays
using a sample of.3 x 10° events.

The theoretical prediction of ChPT to two loajs= (13.9,3+0.4) x 1073, A§ = (8.0, §5) x
10~“ is consistent within errors with our constraint. The same is true for the teairprediction

Ay = (16.0041.00) x 10-3, A} = (6.34-0.38) x 10~* obtained from dispersion relations [12].
Lastly, this formalism can also be extended to the study of zeros of the &mtor§ which
have useful phenomenological implications, see for discussions dfrttzeros in [3].
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