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1. Introduction

One important problem in QCD is the investigation of the ground state at nonzero temperature
and density. At finite density there are different possible mechanisms for the quarks or hadrons to
condense. For instance, at very high densities perturbative QCD predictions indicate the forma-
tion of a color superconducting ground state. This phase is spatially isotropic and homogeneous.
However, in the large-N limit there is a competing mechanism suggesting the formation of a non-
homogeneous configuration [2].

We investigate the vacuum of low temperature QCD at large-N in the presence of a chiral
chemical potential [1]. A nonzero chiral density can be interpreted as the imbalance between quarks
with different chirality 1. Using the holographic Sakai-Sugimoto model [3] we map this problem to
a five dimensional Maxwell-Chern-Simons theory. As shown in [4, 5], these class of theories may
be unstable depending on the Chern-Simons coupling. We find that above a critical chiral density
the homogeneous configuration is unstable towards the formation of a spatially modulated phase.

2. Large-N QCD from holography : The Sakai-Sugimoto model

Consider the background generated by a stack of N D4-branes in type IIA string theory. It has
a metric, Ramond-Ramond four-form and dilaton given by

ds2 =
u3/2

R3/2 ηµνdxµdxν +
u3/2

R3/2 f (u)dτ
2 +

R3/2

u3/2

du2

f (U)
+R3/2u1/2dΩ

2
4 ,

eφ = gs
u3/4

R3/4 , F4 =
(2πls)3N

VS4
ε4 , f (u) = 1− u3

KK
u3 , (2.1)

where ε4 is the volume form on S4 and VS4 its volume. The index µ defines the directions of the
4-d dual gauge theory, and τ is an extra coordinate on a circle. The curvature radius is given by
R = (πgsN)1/3ls where gs is the string coupling and ls =

√
α ′ is the string length. The period of the

compact coordinate introduces a four-dimensional mass scale

δτ =
4π

3
R3/2

u1/2
KK

≡ 2π

MKK

, (2.2)

It is useful to introduce a pair of dimensionless coordinates y and z defined by the relations

u = uKK

(
1+ y2 + z2)1/3

, τ =
δτ

2π
arctan

(
z
y

)
. (2.3)

Sakai and Sugimoto considered N f D8-D8 branes in the probe limit (N f � N) [3]. These
branes fill out the 4-d spacetime and the 4-sphere and trace out a curve in (u,τ). In this work
we consider the antipodal brane embedding that corresponds to y = 0. In this case the D8 branes
and (D8) branes are positioned at antipodal points at the boundary u→∞ and merge at the infrared
cut-off u = uKK . The merging of D8 branes and (D8) branes is a holographic realization of the spon-
taneous breaking of the U(N f )L×U(N f )R chiral symmetry in large-N QCD. As a consequence, the
Sakai-Sugimoto model includes the chiral lagrangian for the pion at low energies.

1A possible source of this imbalance is an instanton configuration.

2



P
o
S
(
Q
N
P
2
0
1
2
)
1
2
2

A non-homogeneous vacuum in a holographic model for large N QCD Carlos Alfonso Ballon Bayona

The induced metric corresponding to the antipodal brane embedding takes the form

ds2
D8 = a(z)gmn(z)dxmdxn +b(z)dΩ

2
4 ≡ GMNdxMdxN , (2.4)

where

gmndxmdxn = M2
KKK2/3

z ηµνdxµdxν + K−2/3
z dz2 , Kz ≡ 1+ z2 ,

a(z) =
8

27
MKKR3K−1/6

z , b(z) =
2
3

MKKR3K1/6
z . (2.5)

The abelian Dirac-Born-Infeld (DBI) action and the Chern-Simons term corresponding to the
D8-D8 brane are given by

SDBI = −µ8

∫
D8

d9xe−φ
√
−|GMN +2πα ′FMN | ,

SCS = µ8
(2πα ′)3

3!

∫
D8

A ∧F 2∧F4 , (2.6)

where A and FMN are the one-form and field strength associated with the 9-d gauge field. If we
restrict to 5-d gauge fields Am depending only on the coordinates xm = (xµ ,z) we can integrate the
S4 coordinates and obtain

SDBI +SCS =−
∫

d4xdzγ(z)
√
−|gmn +β (z)Fmn|+α

∫
M4×R

A F 2 (2.7)

where

γ(z) =
λ̄ 3N
π2 K−1/3

z , β (z) =
1

2λ̄
K1/6

z , λ̄ =
λ

27π
, λ = g2

Y MN = 2πMKKgsN ls , α =
N

24π2 . (2.8)

In the large λ limit the DBI term reduces to the Maxwell action so we obtain

SMax +SCS =−κ

2

∫
d4xdz

√
−gF mnFmn +

α

4
ε

`mnpq
∫

d4xdzA`FmnFpq . (2.9)

with κ = λ̄N/(8π2). In the non-abelian case, the large λ limit of the DBI action reduces to a 5-d
Yang-Mills action and we obtain

SY M +SCS =−κ

2

∫
d4xdz

√
−g tr [F mnFmn]+α

∫
M4×R

tr
(

A F 2− 1
2
A 3F +

1
10

A 5
)

. .(2.10)

A gauge field fluctuation can be expanded, in the Az = 0 gauge, as

Aµ(x,z) = V̂µ(x)+ ˆAµ(x)ψ0(z)+
∞

∑
n=1

[
vn

µ(x)ψ2n−1(z)+an
µ(x)ψ2n(z)

]
(2.11)

where

V̂µ(x) =
1
2

U−1 [A L
µ +∂µ

]
U +

1
2

U
[
A R

µ +∂µ

]
U−1 ,

ˆAµ(x) =
1
2

U−1 [A L
µ +∂µ

]
U− 1

2
U
[
A R

µ +∂µ

]
U−1 , U(x) = exp

(
iπ(x)

fπ

)
, (2.12)
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and ψn(z) are Kaluza-Klein modes in the z direction. Using (2.11) and the Kaluza-Klein equations
we get a 4-d lagrangian of mesons and external U(1) fields. The vector (axial vector) mesons are
represented by the fields vn

µ(x) (an
µ(x)) and the pion is represented by the field π(x). In addition,

we have external U(1) fields represented by A
L/R

µ .
The 4-d effective action arising from the DBI term includes the Skyrme action :

SSkyrme =
∫

d4x
(

f 2
π

4
tr
(
Lµ

)2 +
1

32e2
S

tr[Lµ ,Lν ]2
)

, (2.13)

where

Lµ ≡U−1
∂µU , f 2

π ≡
4
π

κ =
1

54π4 λNc , , e−2
S ≡ κ

∫
dzK−1/3

z (1−ψ
2
0 )2 . (2.14)

On the other hand, the CS term leads to the WZW action :

SWZW =− Nc

48π2

∫
M4

Z− Nc

240π2

∫
M4×R

tr(gdg−1)5 , (2.15)

where Z is a 4-d function of the pion and the U(1) fields and g is a 5-d gauge function that satisfies
the boundary conditions g(x,z→−∞) = 1 and g(x,z→ ∞) = U−1(x).

3. Holographic currents and chiral chemical potential

We can always split the gauge field Am into a vector field A V
m and axial-vector field A A

m

Am(x,z) = A V
m (x,z)+A A

m (x,z) . (3.1)

The vector and axial-vector fields transform under z→−z as

A
V/A
µ (−z,x) =±A

V/A
µ (z,x) , A

V/A
z (−z,x) =∓A

V/A
z (z,x) , (3.2)

and the µ component of these fields satisfy the boundary conditions

A V
µ (z =±∞,x) = AV

µ(x) , A A
µ (z =±∞,x) =∓AA

µ(x) , (3.3)

where AV/A
µ (x) are boundary vector and axial-vector gauge fields that couple to 4-d vector and axial

currents. Holography relates these currents to the 5-d action :

〈Jµ

V/A(x)〉= δS

δAV/A
µ (x)

=± δS

δA
V/A
µ (x,z = ∞)

. (3.4)

Adding a chiral chemical potential to the 4-d large-N QCD corresponds to adding a source to the
chiral density J0

A(x), which implies the boundary condition AA
µ(x) = µAδµ,0 and AV

µ(x) = 0. The
chiral density 〈J0

A〉 can be obtained from the holographic map (3.4).
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4. The non-homogeneous ansatz

A homogeneous phase corresponds to turning on the A0(z) component only. In this case the
Chern-Simons contribution to the equations of motion vanishes and the solution is trivial :

A0(z) =
2
π

µA arctanz . (4.1)

If we turn on the transverse part of the gauge field we still can find a non-trivial solution of the
form 2.

A0 = f (z) , ~A = h(z) [cos(kx1)x̂2− sin(kx1)x̂3] . (4.2)

In this case we obtain the coupled equations

M2
KKKz∂z f = ρ̃− 3

2
α

κ
k h2 , (4.3)

M4
KKKz∂z [Kz∂zh]−M2

KKK2/3
z k2h+3

α

κ
kh
[

ρ̃− 3
2

α

κ
kh2
]

= 0 , (4.4)

where ρ̃ is an integration constant. The axial density is proportional to this constant, i.e. 〈J0
A〉 =

−4κρ̃ . In addition we get non-zero expectation value for the transverse currents :

〈J2
V 〉=−4κM2

KK lim
z→∞

[Kz∂zh]cos(kx1) , 〈J3
V 〉= 4κM2

KK lim
z→∞

[Kz∂zh]sin(kx1) . (4.5)

Here we assumed that h(z) is even in z. In order to solve numerically this system it is convenient
to introduce dimensionless variables defined by

f = λ̄ MKK f̂ h = λ̄ MKK ĥ k = MKK k̂ , ρ̃ = λ̄ M3
KK ρ̂ . (4.6)

5. Analysis of the ground state

The left panel of Fig. 1 shows the values of ρ̂ and k̂ for which an instability of the homoge-
neous phase sets in. The dashed and dotted curves correspond to additional instabilities of axial
and vectorial nature respectively, which set in at higher values of the density. This is obtained from
an analysis of linear fluctuations of the form (4.2). For values of ρ̂ above ρ̂crit ≈ 2.35 there is a
non-homogeneous phase in a region k̂1 < k̂ < k̂2 corresponding to a solution of the non-linear equa-
tions (4.3) and (4.4). The non-homogeneous phase (4.2) has a lower energy than the homogeneous
configuration and achieves its minimum energy for k̂ = k̂min. We show in the right panel of Fig. 1
that k̂min is almost independent of the critical chiral density ρ̂ .

The thick line in the left panel of Fig. 2 shows the chemical potential µ̂A as a function of
the chiral density ρ̂ for the non-homogeneous ground state. The thin diagonal dashed line shows
the relation µ̂A = πρ̂A/2 for the homogeneous vacuum. The normalizable solution ĥ(z) can be ex-
panded as ĥ(z) = α0/z+ . . . . The expectaction values of the currents 〈J2

V 〉 and 〈J3
V 〉 are proportional

to α0. The right panel of Fig. 2 shows α0 as a function of ρ̂ .
It is important to remark that a non-homogeneous ground state has been previously obtained in

the deconfined chirally symmetric phase of the Sakai-Sugimoto model at finite quark density [6].
2This ansatz is motivated by the construction of [4, 5] in five dimensional Maxwell-Chern-Simons theories
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Figure 1: Left: Region in the ρ̂ vs k̂ plane where an instability sets in. Right: The momentum of the spatial
modulation as a function of ρ̂ for the non-homogeneous ground state.
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Figure 2: Left: Chiral chemical potential µ̂A as a function of the chiral density ρ̂ for the non-homogeneous
ground state. Right: Coefficient α0 as a function of ρ̂ .
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