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1. Introduction

Although the nonperturbative light-front coupled-clus(eFCC) method [1] is intended for
strongly coupled theories, where perturbation theory iknoited use, we explore its utility in the
context of a gauge theory by considering the dressed-efestiate in quantum electrodynamics
(QED) [2]. The method requires the light-front coordinaté®irac [3, 4], where the Hamiltonian
evolves a state along the time directioh=t +z The spatial coordinates axe= (X =t—zX, =
(x,y)). The light-front energy conjugate to the chosen timpis= E — p,, and the corresponding

light-front momentum i = (p* = E+ pz, b1 = (Px, Py))- In these coordinates, the fundamental

Hamiltonian eigenvalue problem &~ |Y) = M +Pi|(,u> Ordinarily, this eigenvalue problem is

solved approximately by a truncated Fock-space expangitmeeigenstate. The LFCC method
solves the problem without Fock-space truncation by hujdhe eigenstate dg)) = /Ze' |@)
from a valence statgp) and an operatolf that increases particle number while conserving any
guantum numbers of the valence state. The con&anta normalization factor.

The valence state is then an eigenstate of an effective anaih 22— =e T2 €', which
can be computed using a Baker—Hausdorff expan%: P+, T)+ %[[@*,T],T] +
+F>L

--. The new eigenvalue problem i&~|@) =
orthogonal sectors, it becomes

|@). When projected onto the valence and

D — M2+ L D —
R&~|p) = @), (1-R)Z~|g) =0, (1.1)
whereR, is the projection onto the valence sector.

A matrix element such aéy,|O|ys) can be calculated, withyi) = v/Zie"|@) andz =
1/(@le"e"|@). We definel; = e e = G + (6, T] + 1[G, T), T] +--- and, to avoid the
infinite sum in the denominator,

-
TEEI Zi{gle" " = VZ (ife". (1.2)
We then have

(Un|Olyn) = \/Z1/Zo(F[O02e e @) = \/Zo/Z1({1|Ofe e | )", (1.3)

and, therefore,

(Y(Olyn) = \/ ((o[Oze~T2€™|gn) ({11|Ofe e | gn) . (1.4)
In the diagonal case, this reduces to
(WIOly) = (§[Olg). (1.5)

The ({i| can be shown to be left eigenstates of the effective Hanliton
We apply this to QED in an arbitrary covariant gauge, for whiece Pauli-Villars-regulated
Lagrangian is [5]

2 .
L= G U~ 5T (04’ (16)

2

+_;(_1)i47i(iy'uau —m) Y —elﬁVHWAu'
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Here the fundamental physical=€ 0) and Pauli—Villarsi(= 1) fields appear in null combinations
2 2
Y= %\/EWH Au = %\/EAW’ I:mv = duAiv - a\/Aiu- (1-7)
i= i=
The coupling coefficient§; and3; are constrained by
&o=1, Zj E._O Bo=1, Zj =0. (1.8)

To fix & and 32, we require chiral symmetry restoration in the zero-masst [j6] and a zero
photon mass [7]. The light-front Hamiltonian, without d&@tmion terms, is then found to be [5]

7 z/dp”‘”pi bl (p)bs(p +z/dk’“‘““ eal, (Wan () (19)

£y [ dyek /7— {hg (v Ko )af, (K. pbl(1 -y, ki p)b
ijI;sA yoK, \/W ijl (y J_)a|,\(y L _p) JS( Y. L E) |a(£’)
+ S (Kbl (P)bjs(1 -y, —K1i p)an (vKuip) |

with e = (—1,1,1,1) and theh?™ known vertex functions.

2. The dressed-€electron state

The right and left-hand valence stateg{ is not Hermitian!) areg) = 5; zaib;ri (P)|0)y and
(@F| = (0] 3i Zaibi (P). We approximate th& operator with the simplest form

S [avd [ 22 o k) PP +Ku) @Y

x bl(1—y)p*, (1-y)pL —K)bio(p).

I]|SG/\

The effective HamiltonianZ?— can then be constructed [2]. From this effective Hamiltonthe
right and left-hand valence-sector equations becomey o0, 1,

Mz + Y lijzey = M2z and iz + 3 (-1) 71z = M2z, 2.2)
! ]
with Mg the ath eigenmass and the self-energy given by
i ” dydk R
li = (—1)' Z (—1)i e o ;hj‘l,l (v, KT (v, k). (2.3)

i"IsA

The valence eigenvectors are orthonormal and completeifottowing sense:

Z 1)'z5z5 = (—1)%p and Z 127575 = (1) ;. (2.4)
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Thet functions satisfy the projection of the effective eigemegbroblem onto one-electron/one-
photon states, orthogonal @), which gives [2]

L1 . me+ki pd + k2
Z(—l)é{hﬁﬁg(y,kﬂ+§\/iji|$\(yak¢)+ = 4

mz] i (k) (2.5)

. 1-y y
+; 1' t,ﬁ“ y,k.) Jz DS y,kL)Ij/i} =0,
with the vertex correction
Vig (vki) = i’j’I’za’s/\/(_l)ilH/Hls}v di/éj;l (1_9)(/1)17232_2)3 - (2.6)

<t (R, 1{@%’#(% K+ 2RO (R

To partially diagonalize in flavor, we defi@s (y,k, ) = 1)+l zﬁjiﬁjt”l (y,K.). With anal-

ogous definitions foH, |, andV, we have
M2~ Mf f;i - y+ < cs ko) (2.7)
= Hi (k) + ; Vi (K1) glb” Cabt (y,h)]

to be solved simultaneously with the valence sector equstiohich depend o€/t through the
self-energy matriX. Notice that the physical ma$g, has replaced the bare mass in the kinetic
energy term, without any need for sector-dependent rerlizatian [8].

In order to compute matrix elements, such as appear in th@uiation of form factors, we
need the left-hand eigenstate. The dualdid= +/Z(|e" is a right eigenstate Sz

TR =1 @)+ S [ dydkiy/ oI ek )al, (uk s PIBL(1 -y, —KiP)O), 2.9

Jls)\

|ﬂ:s)\
ajl

The flavor-diagonal left-hand wave functions ﬁ)§0l (Y, kL zgj
isfy the coupled equations [2]

(Y, k 1). They sat-

ME+KE K
1-y y
A (v, K1) +WE (v, k1) — gJUaHé’S? “(y,kp),

M2 —

abl (y kJ_) (2-9)

whereWJs is a vertex-correction analog Mdm , though linear inD, andJ¢, is a self-energy
analog oflpa. Solutions forMa, z3;, 25, andCalol are used as input.
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3. Anomalous magnetic moment

We compute the anomalous momegtfrom the spin-flip matrix element [9] of the current
J* =y Y coupled to a photon of momentugyin the Drell-Yan ¢ = 0) frame [10]

ql + |q2

a

16 (W (P+a)|37 (0)|@3 (P)) = 280+ F1(of) & o+ Fa (). (3.1)

In the limit of infinite Pauli-Villars masses, and wilihy = me, the electron mass, we find [2]

dydk - =
Al T Z/ 13:3 o7 { l5o0 " (v. ke — ya)toe0 (v:K1) (3.2)
- Z eMage ™ (v Kt (y’ki)}]
and
dydki o
2 S)\* sA

Fa(qr) =+ qu:|q2</1/ Z)\Zi/ 1683 IC:JFOO (v, kL _yqi)técoo (v,kp), (3.3)

with
d ok . .
S 2=0,3

A second term is absent B becausé andt are orthogonal for opposite spins. Ttye— O limit
can be taken, to finé (0) = 1 and

. ) ;
8e = :I:meZS / 1678 y(j)Fos(? y7 kJ—) <ak1 :Flak2>t0i05(;\ (yka_) (35)

As a check, we can consider a perturbative solution

me+k  pg +ke
— | — h _ _
000 000 000 [' “g 1y y

(3.6)

Substitution into the expression feg gives immediately the Schwinger result [1d} 27, in the
limit of zero photon mass, for any covariant gauge.

4. Summary

The LFCC method provides a nonperturbative approach todstate problems in quantum
field theories without truncation of the Fock space and withtbe uncanceled divergences and
spectator dependence that such truncation can cause. piloxapation is instead a truncation of
the operatoiT that generates contributions from higher Fock states. dyssematically improv-
able through the addition of more termsTo with increasing numbers of particles created and
annihilated.

To complete the application to the dressed-electron stageneed to solve numerically the
coupled systems that determine thand| functions and to use these solutions to compute the
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anomalous moment. Within the arbitrary-gauge formulatiwe can test directly for gauge de-
pendence [5]. A more complete investigation of QED wouldude consideration of the dressed-
photon state, contributions from electron-positron paitke dressed-electron state, and true bound
states such as muonium and positronium. These will provideesguidance for applications to
guantum chromodynamics, particularly in extensions otblegraphic model for mesons [12].
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