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1. Introduction

Although the nonperturbative light-front coupled-cluster (LFCC) method [1] is intended for
strongly coupled theories, where perturbation theory is oflimited use, we explore its utility in the
context of a gauge theory by considering the dressed-electron state in quantum electrodynamics
(QED) [2]. The method requires the light-front coordinatesof Dirac [3, 4], where the Hamiltonian
evolves a state along the time directionx+ = t+z. The spatial coordinates arex= (x− ≡ t−z,~x⊥ ≡
(x,y)). The light-front energy conjugate to the chosen time isp− ≡ E− pz, and the corresponding
light-front momentum isp= (p+ ≡ E+ pz,~p⊥ ≡ (px, py)). In these coordinates, the fundamental

Hamiltonian eigenvalue problem isP−|ψ〉 = M2+P2
⊥

P+ |ψ〉. Ordinarily, this eigenvalue problem is
solved approximately by a truncated Fock-space expansion of the eigenstate. The LFCC method
solves the problem without Fock-space truncation by building the eigenstate as|ψ〉 =

√
ZeT |φ〉

from a valence state|φ〉 and an operatorT that increases particle number while conserving any
quantum numbers of the valence state. The constantZ is a normalization factor.

The valence state is then an eigenstate of an effective HamiltonianP− = e−TP−eT , which
can be computed using a Baker–Hausdorff expansionP− = P− + [P−,T] + 1

2[[P
−,T],T] +

· · ·. The new eigenvalue problem isP−|φ〉 = M2+P2
⊥

P+ |φ〉. When projected onto the valence and
orthogonal sectors, it becomes

PvP
−|φ〉= M2+P2

⊥
P+

|φ〉, (1−Pv)P−|φ〉= 0, (1.1)

wherePv is the projection onto the valence sector.
A matrix element such as〈ψ2|Ô|ψ1〉 can be calculated, with|ψi〉 =

√
ZieTi |φi〉 and Zi =

1/〈φi |eT†
i eTi |φi〉. We defineOi = e−Ti ÔeTi = Ôi + [Ôi ,T] + 1

2[[Ôi ,T],T] + · · · and, to avoid the
infinite sum in the denominator,

〈ψ̃i | ≡ 〈φ | eT†
i eT

i

〈φ |eT†
i eTi |φ〉

= Zi〈φ |eT†
i eTi =

√
Zi〈ψi |eTi . (1.2)

We then have

〈ψ2|Ô|ψ1〉=
√

Z1/Z2〈ψ̃2|O2e−T2eT1|φ1〉=
√

Z2/Z1〈ψ̃1|O†
1e−T1eT2|φ2〉∗, (1.3)

and, therefore,

〈ψ2|Ô|ψ1〉=
√

〈ψ̃2|O2e−T2eT1|φ1〉〈ψ̃1|O†
1e−T1eT2|φ2〉∗. (1.4)

In the diagonal case, this reduces to

〈ψ |Ô|ψ〉= 〈ψ̃ |O|φ〉. (1.5)

The〈ψ̃i | can be shown to be left eigenstates of the effective Hamiltonian.
We apply this to QED in an arbitrary covariant gauge, for which the Pauli–Villars-regulated

Lagrangian is [5]

L =
2

∑
i=0

(−1)i
[
−1

4
Fµν

i Fi,µν +
1
2

µ2
i Aµ

i Aiµ −
1
2

ζ
(
∂ µAiµ

)2
]

(1.6)

+
2

∑
i=0

(−1)iψ̄i(iγµ∂µ −mi)ψi −eψ̄γµψAµ .
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Here the fundamental physical (i = 0) and Pauli–Villars (i = 1) fields appear in null combinations

ψ =
2

∑
i=0

√
βiψi , Aµ =

2

∑
i=0

√
ξiAiµ , Fiµν = ∂µAiν −∂νAiµ . (1.7)

The coupling coefficientsξi andβi are constrained by

ξ0 = 1,
2

∑
i=0

(−1)iξi = 0, β0 = 1,
2

∑
i=0

(−1)iβi = 0. (1.8)

To fix ξ2 and β2, we require chiral symmetry restoration in the zero-mass limit [6] and a zero
photon mass [7]. The light-front Hamiltonian, without antifermion terms, is then found to be [5]

P
− = ∑

is

∫
dp

m2
i + p2

⊥
p+

(−1)ib†
is(p)bis(p)+∑

lλ

∫
dk

µ2
lλ +k2

⊥
k+

(−1)l ελ a†
lλ (k)alλ (k) (1.9)

+ ∑
i jl σsλ

∫
dyd~k⊥

∫ dp
√

16π3p+

{
hσsλ

i jl (y,~k⊥)a
†
lλ (y,

~k⊥; p)b†
js(1−y,−~k⊥; p)biσ (p)

+hσsλ∗
i jl (y,~k⊥)b

†
iσ (p)b js(1−y,−~k⊥; p)alλ (y,~k⊥; p)

}
,

with ελ = (−1,1,1,1) and thehσsλ
i jl known vertex functions.

2. The dressed-electron state

The right and left-hand valence states (P− is not Hermitian!) are|φ±
a 〉= ∑i zaib

†
i±(P)|0〉 and

〈φ̃±
a |= 〈0|∑i z̃aibi±(P). We approximate theT operator with the simplest form

T = ∑
i jlsσλ

∫
dyd~k⊥

∫ dp
√

16π3

√
p+tσsλ

i jl (y,~k⊥)a
†
lλ (yp+,y~p⊥+~k⊥) (2.1)

×b†
js((1−y)p+,(1−y)~p⊥−~k⊥)biσ (p).

The effective HamiltonianP− can then be constructed [2]. From this effective Hamiltonian, the
right and left-hand valence-sector equations become, fora= 0,1,

m2
i z±ai +∑

j
Ii j z

±
a j = M2

az±ai and m2
i z̃±ai +∑

j
(−1)i+ j I ji z̃

±
a j = M2

az̃±ai, (2.2)

with Ma theath eigenmass and the self-energy given by

I ji = (−1)i ∑
i′lsλ

(−1)i′+lελ
∫ dyd~k′

⊥
16π3 hσsλ∗

ji ′ l (y,~k⊥)t
σsλ
ii ′ l (y,~k⊥). (2.3)

The valence eigenvectors are orthonormal and complete in the following sense:

∑
i

(−1)i z̃±aiz
±
bi = (−1)aδab and ∑

a
(−1)az±iaz̃±ja = (−1)iδi j . (2.4)
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Thet functions satisfy the projection of the effective eigenvalue problem onto one-electron/one-
photon states, orthogonal to|φ〉, which gives [2]

∑
i

(−1)iz±ai

{
h±sλ

i jl (y,~k⊥)+
1
2

V±sλ
i jl (y,~k⊥)+

[
m2

j +k2
⊥

1−y
+

µ2
lλ +k2

⊥
y

−m2
i

]
t±sλ
i jl (y,~k⊥) (2.5)

+
1
2∑

i′

I ji ′

1−y
t±sλ
ii ′ l (y,~k⊥)−∑

j ′
(−1)i+ j ′t±sλ

j ′ jl (y,
~k⊥)I j ′i

}
= 0,

with the vertex correction

Vσsλ
i jl (y,~k⊥) = ∑

i′ j ′l ′σ ′sλ ′
(−1)i′+ j ′+l ′ελ ′

∫ dy′d~k′
⊥

16π3

θ(1−y−y′)

(1−y′)1/2(1−y)3/2
(2.6)

×hss′λ ′∗
j j ′l ′ (

y′

1−y
,~k′

⊥+
y′

1−y
~k⊥)t

σ ′s′λ
i′ j ′l (

y
1−y′

,~k⊥+
y

1−y′
~k′
⊥)t

σσ ′λ ′
ii ′ l ′ (y′,~k′

⊥).

To partially diagonalize in flavor, we defineC±sλ
abl (y,

~k⊥) = ∑i j (−1)i+ jz±aiz̃
±
b jt

±sλ
i jl (y,~k⊥). With anal-

ogous definitions forH, I , andV, we have

[
M2

a −
M2

b +k2
⊥

1−y
− µ2

lλ +k2
⊥

y

]
C±sλ

abl (y,~k⊥) (2.7)

= H±sλ
abl (y,

~k⊥)+
1
2

[
V±sλ

abl (y,~k⊥)−∑
b′

Ibb′

1−y
C±sλ

ab′l (y,
~k⊥)

]

to be solved simultaneously with the valence sector equations, which depend onC/t through the
self-energy matrixI . Notice that the physical massMb has replaced the bare mass in the kinetic
energy term, without any need for sector-dependent renormalization [8].

In order to compute matrix elements, such as appear in the computation of form factors, we
need the left-hand eigenstate. The dual to〈ψ̃ |=

√
Z〈ψ |eT is a right eigenstate ofP−†

|ψ̃σ
a (P)〉= |φ̃σ

a (P)〉+ ∑
jlsλ

∫
dyd~k⊥

√
P+

16π3 lσsλ
a jl (y,~k⊥)a

†
lλ (y,

~k⊥;P)b†
js(1−y,−~k⊥;P)|0〉, (2.8)

The flavor-diagonal left-hand wave functions areD±sλ
abl (y,

~k⊥) ≡ ∑ j(−1) jzs
b j l

±sλ
a jl (y,~k⊥). They sat-

isfy the coupled equations [2]

[
M2

a −
M2

b +k2
⊥

1−y
− µ2

lλ +k2
⊥

y

]
Dσsλ

abl (y,~k⊥) (2.9)

= H̃σsλ
abl (y,~k⊥)+Wσsλ

abl (y,~k⊥)−∑
b′

Jσ
b′aH̃σsλ∗

b′bl (y,~k⊥),

whereWσsλ
abl is a vertex-correction analog ofVσsλ

abl , though linear inD, andJσ
ba is a self-energy

analog ofIba. Solutions forMa, zσ
ai, z̃σ

ai, andCσsλ
abl are used as input.
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3. Anomalous magnetic moment

We compute the anomalous momentae from the spin-flip matrix element [9] of the current
J+ = ψγ+ψ coupled to a photon of momentumq in the Drell–Yan (q+ = 0) frame [10]

16π3〈ψσ
a (P+q)|J+(0)|ψ±

a (P)〉= 2δσ±F1(q
2)± q1± iq2

Ma
δσ∓F2(q

2). (3.1)

In the limit of infinite Pauli–Villars masses, and withM0 = me, the electron mass, we find [2]

F1(q
2) =

1
N

[
1+∑

s

∫
dyd~k⊥
16π3

{

∑
λ=±

l±sλ∗
000 (y,~k⊥−y~q⊥)t

±sλ
000 (y,~k⊥) (3.2)

−
3

∑
λ=0

ελ l±sλ∗
000 (y,~k⊥)t

±sλ
000 (y,~k⊥)

}]

and

F2(q
2) =± 2me

q1± iq2

1
N

∑
s

∑
λ=±

∫
dyd~k⊥
16π3 l∓sλ∗

000 (y,~k⊥−y~q⊥)t
±sλ
000 (y,~k⊥), (3.3)

with

N = 1−∑
s

∑
λ=0,3

ελ
∫

dyd~k⊥
16π3 l±sλ∗

000 (y,~k⊥)t
±sλ
000 (y,~k⊥). (3.4)

A second term is absent inF2 becausel andt are orthogonal for opposite spins. Theq2 → 0 limit
can be taken, to findF1(0) = 1 and

ae = F2(0) =±me∑
sλ

ελ
∫

dyd~k⊥
16π3 yl∓sλ∗

000 (y,~k⊥)

(
∂

∂k1 ∓ i
∂

∂k2

)
t±sλ
000 (y,~k⊥). (3.5)

As a check, we can consider a perturbative solution

tσsλ
000 = lσsλ

000 = hσsλ
000/

[
m2

e−
m2

e+k2
⊥

1−y
− µ2

lλ +k2
⊥

y

]
. (3.6)

Substitution into the expression forae gives immediately the Schwinger result [11]α/2π, in the
limit of zero photon mass, for any covariant gauge.

4. Summary

The LFCC method provides a nonperturbative approach to bound-state problems in quantum
field theories without truncation of the Fock space and without the uncanceled divergences and
spectator dependence that such truncation can cause. The approximation is instead a truncation of
the operatorT that generates contributions from higher Fock states. It issystematically improv-
able through the addition of more terms toT, with increasing numbers of particles created and
annihilated.

To complete the application to the dressed-electron state,we need to solve numerically the
coupled systems that determine thet and l functions and to use these solutions to compute the

5



P
o
S
(
Q
N
P
2
0
1
2
)
1
2
3

Application of a light-front coupled-cluster method to quantum electrodynamics Sophia CHABYSHEVA

anomalous moment. Within the arbitrary-gauge formulation, we can test directly for gauge de-
pendence [5]. A more complete investigation of QED would include consideration of the dressed-
photon state, contributions from electron-positron pairsto the dressed-electron state, and true bound
states such as muonium and positronium. These will provide some guidance for applications to
quantum chromodynamics, particularly in extensions of theholographic model for mesons [12].
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