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1. Introduction

Since observable particles are colorless the process of the hadronization plays a key role in
QCD. The problem complicates when hadrons are mesons, since such particles are governed by
the Bose-Einstein statistics while they consist of interacting fermions.

The bosonization generally means a description of fermionic systems in terms of the collective
boson degrees of freedom[1, 2]. It is preferable to bosonate a fermionic system by solving the
motion equation for interacting fermions. Although this way is the most correct and elegant it has
been still made in the case of the Minkowski space-time(1+ 1). Following such technique the
bosonization of the strong interaction matter is considered many times[3, 4, 5, 6, 7, 8, 9]. The heart
of the method developed in the papers[3, 4, 5, 6, 7, 8, 9] is existence of the so-called flux tube, when
the strong interacting matter is suggested to be in the condition of the longitudinal dominance and
transverse confinement in the Minkowski space-time.

In the present paper the bosonization as a process of arising observable hadrons is studied
in terms of the QCD lagrangian in the standard(1+ 3) Minkowski space-time without any prior
fragmentation. Considering the bosonization as the equilibrium phase transition of the second kind,
the boson spectrum is derived in the quasi-classical approximation far from the fluctuation region
of the transition. The obtained spectrum is free from the zero point energy. When the confinement
phase is governed by the equations of the self-consistent quasi-classical model[10, 11] a boson mass
is calculated provided that a quark-gluon plasma is bosonated into the lightest bosons (pions).

2. General equations

The gauge invariant actionA in the SU(N) field theory is[12]:

A =
∫

d4x

{[
ψ̄(x)γk(i∂k +gTaAa

k) ψ(x)− ψ̄(x)mψ(x)
]
− 1

16π
Fa

µν Fµν
a

}
, (2.1)

whereFa
µν is the tensor of the non-abelian gauge filed which is given by the expression:

Fa
µν = ∂µAa

ν −∂νAa
µ +g fa

bcA
b
µAc

ν (2.2)

The action integral (2.1) generates the energy-momentum tensor

Tµν =
i
2

{
Ψ̄(x)γµ∂ νΨ(x)− Ψ̄(x)γµ←−∂ ν

Ψ(x)
}

+g(Ja(x))µAν
a(x)

+
1

4π

{
−Fµ i

a (x)(Fa)ν
i (x)+

G µν

4
F ik

a (x)Fa
ik(x)

}
(2.3)

and the motion equations:

∂µFνµ
a (x)−g· f c

ab Ab
µ(x)Fνµ

c (x) =−gJa
ν(x), Ja

ν(x) = Ψ̄(x)γνTaΨ(x), (2.4)

2



P
o
S
(
Q
N
P
2
0
1
2
)
1
2
4

Hadronization in SU(N) Gauge Field Theory Andrey V. Koshelkin

In this way, the fermion fieldsΨ(x),Ψ̄(x) are governed by the Dirac equation:

{
iγµ (

∂µ + ig ·Aa
µ(x)Ta

)−m
}

Ψ(x) = 0. (2.5)

In Eqs.(2.1) - (2.5) we introduce the following notations;m is a fermion mass,g is the coupling
constant;γν are the Dirac matrices,x ≡ xµ = (x0;x) is a vector in the Minkowski space-time;
∂µ = (∂/∂ t;∇); the Roman letters numerate a basis in the space of the associated representation of
theSU(N) group, so thata,b,c = 1. . .N2−1. We use the signaturediag(G µν) = (1;−1;−1;−1)
for the metric tensorG µν . The line overΨ means the Dirac conjugation. Summing over any pair of
the repeated indices is implied. The symbolsTa in Eqs.(2.1) - (2.5) are the generators of theSU(N)
group , while f c

ab are the structure constants therein;δab is the Kroneker symbol.
We assume that the fieldAa

ν(x) depends on coordinates via some scalar functionϕ(x) in the
Minkowski space-time which is normally named as the eikonal:

Aν
a(x) = Aν

a(ϕ(x)). (2.6)

Let the axial gauge be for the fieldAa
µ(x) :

∂ µAa
µ = 0; kµ Ȧa

µ = 0, (2.7)

where the dot over the letter means differentiation with respect to the introduced variableϕ while
the vectorkµ = ∂ µ ϕ(x).

The introduced vectorkµ indicates the direction along the eikonal, while Eq.(2.7) means the
local transversion of the gauge fieldAa

µ .
Due to Eq.(2.6) the hamiltonian generated by the action (2.1) is explicitly independent of the

time variably. This means that some stationary states of fermions, which energy isε(~p), exist.
Then, the hamiltonian of interacting fermions can be written as follows:

H =
∫

d3~x T00 = ∑
~p;σ ,α

ε(~p) [nσ ,α(~p)+(1− n̄σ ,α(~p))]+
∫

d3~x T00
g , (2.8)

whereT00
g is the zeroth component of the momentum-energy tensor of the gauge field;nσ ,α(~p))

andn̄σ ,α(~p)) are the occupation numbers of fermions and anti-fermions, respectively.

3. Bosonization

In studying the bosonization we assume the bosonization starts when the fermion vacuum is
full such that the occupation number of both particlesnσ ,α(~p) and anti-particles̄nσ ,α(~p) are equal
to unit:

nσ ,α(~p) = 1; n̄σ ,α(~p) = 1. (3.1)
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As for the gluon field, we assume that the number of gluons is largeng À 1 due to the self-
interaction of them. SincengÀ 1, the gluon field can be considered quasi-classically. Besides that
fermion and gauge fields are suggested to be in equilibrium.

On the other hand,Aa
µ is self-interacting field that leads to the generation of new quanta of

Aa
µ in spite of the equilibrium state. Then, creation of additional quanta on the background of the

fullness of the fermion vacua has to result in arising new particles since the entropy is in maximum.

Let us consider the matter consisting of interacting quarks and gluons. We assume that the
matter transits to the deconfinement phase so that bosons only arise as observable particles.

We present the gauge field as sum of two orthogonal terms in the group space such thatAa
µ has

the following form:

Aa
µ(ϕ) = A a

µ +ea
µΦ(ϕ); A a

µ eµ
b = 0; ea

µ eµ
b =−δ a

b , (3.2)

whereA a
µ is amplitude of the gauge field just before the phase transition. The amplitudeA a

µ is
taken to be constant in the Minkowski space-time, whileΦ(ϕ) is a scalar function therein. The
field Φ(ϕ) only is not to equal to zero in the deconfinement phase, and plays a role of the order
parameter. We note that the presentation ofA a

µ in the form given by Eq.(3.2) means that the phase
transition is considered far from the fluctuation region.

Then, the gluon part of the momentum-energy tensorT00
g , which is given by Eq.(2.8), is of the

form:

T00
g =

1
16π

{
4(N2−1)

(
∂ 0Φ

)2−2(N2−1)(∂ νΦ)(∂νΦ)+2Ng2A2Φ2

+g2 f bc
a f a

b1c1
A ν

b A µ
c A b1

ν A c1
µ +g2N(N2−1)Φ4

}
; −A2 ≡A a

µ A µ
a (3.3)

We study the situation when the densityn0 of particles governed by the fieldΦ is not too large,
so thatn1/3

0 λC ¿ 1, whereλC = 1/M is the Compton wave length of the particle with a massM.

Then, the last term in Eq.(3.3) is small. As a result, taking into account the inequalityn1/3
0 λC¿

1 , we rewrite the hamiltonian given by Eq.(2.8) by the following way:

H = ∑
~p;σ ,α

ε(~p)+
1

16π

∫
d3~x

{
4(N2−1)

(
∂ 0Φ

)2−2(N2−1)(∂ νΦ)(∂νΦ)+2Ng2A2Φ2 +

g2 f bc
a f a

b1c1
A ν

b A µ
c A b1

ν A c1
µ

}
. (3.4)

By changingΦ→ ~Φ, the relations (3.4) is easy generalized to the case when the field~Φ is the
triplet of pseudoscalar mesons, where~Φ is the vector in the isospace.

We expand~Φ(ϕ) over the whole set of the plane waves:
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~Φ(ϕ) = ∑
~q

√
8π

V(N2−1) ω(~q)
{
~e c(~q)exp(−iqx)+~e ∗ c†(~q)exp(iqx)

}
,

ω(~q) =
√

~q 2 +M2, M2 =
Ng2A2

(N2−1)
; ~e~e ∗ = 1, (3.5)

where~e is the unit vector in the isospace;c(~q) and c†(~q) are the operators of annihilation and
creation of the on-shell particle (q2 = M2) with the 4-momentumq= (ω(~q);~q). The operatorsc(~q)
andc†(~q) satisfy the standard Bose-Einstein commutative relations.

Let us substitute the expansion given by Eq.(3.5) into the formula (3.4) and average the ob-
tained relation over the vacuum of the field~Φ. As a result, we derive the energy of the particles
governed by the pseudoscalar field~Φ:

E = ∑
~q

ω(~q) < c†(~q) c(~q) > +

{
1
2 ∑

~q

ω(~q)+ ∑
~p;σ ,α

ε(~p)+g2 f bc
a f a

b1c1
A ν

b A µ
c A b1

ν A c1
µ

}
, (3.6)

where the angle brackets mean averaging over the pseudoscalar vacuum.
Since the vacuum of arising pseudoscalar particles should be empty the term in the curl brack-

ets has to be equal to zero. This condition (the zero magnitude of the curl bracket in Eq.(3.6))
determines the spectrumε(~p) of quarks via the gauge fieldA c

µ just before the phase transition. We
should note here that the last term in the curl bracket should be negative.

As a result, we obtain the energy spectrum of scalar hadrons:

Eh = ∑
~q

ω(~q)Nh(~q); ω(~q) =
√

~q 2 +M2 (3.7)

provided that

{
1
2 ∑

~q

ω(~q)+ ∑
~p;σ ,α

ε(~p)+g2 f bc
a f a

b1c1
A ν

b A µ
c A b1

ν A c1
µ

}
= 0, (3.8)

whereNh(~q) is the number of the on-shell hadrons with the 4-momentumq = (ω(~q);~q).

4. Bosonization in quasi-classical model

Let us apply the results obtained in the previous sections to calculation of a boson mass in terms
of the self-consistent quasi-classical model developed in Ref.[10, 11]. In this case the convolution
in Eqs.(3.3), (3.4) is equal to[11]:

− f bc
a f a

b1c1
A ν

b A µ
c A b1

ν A c1
µ = (N2−1)∑

σα

∫
d3p

p(0)(2π)3
. (4.1)
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Then, the boson massM is given by a formula:

M2≈
2 N Nf αs

2|C|π Q2; αs =
g2

4π
, C =− f bc

a f a
b1c1

cos(ϕb−ϕb1)cos(ϕc−ϕc1) > 0, (4.2)

whereαs is the strong interaction coupling constant,Q is the transferred momentum corresponding
to the confinement-deconfinement phase transition which is of the order of the phase transition
temperature . The parametersϕb,c,b1,c1 are the phases of the amplitudesA ν

b,c,b1,c1
which are fixed

such that the convolutionC is negative.
In the caseNf = 2; N = 3, we have

M ≈
√

12αs

π
Q. (4.3)

The last formula establishes relation of the hadron massM to the momentum of interacting
particles in the matter which depends strongly on the matter temperatureT.

SettingT = Q = 213MeV[13], we haveαs = 0.12. As a result we obtain:

M ≈ 144MeV ; |C| ∼ 1, (4.4)

that corresponds to the pion mass.
Although the derived pion mass is very nearly to the tabulated data Eq.(4.3) should be mainly

treated as the formula giving the relation of a hadron mass to the temperature of phase transition.
In particular, when the phase transition temperature is around 200 MeV the result for the mass of
observable particles is found to be correct.
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