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Polyakov has demonstrated that a monopole plasma gives confinement in Georgi Glashow model
in three Euclidean dimensions. However his semi classical techniques are not applicable for pure
YM3. Even though the gauge potential ansatz of ’t Hooft Polyakov monopole has a finite action
in YM3, it is not a stable classical solution, indeed, larger the ‘size’ smaller the action.
We develop techniques for summing over such large overlapping monopole configurations. This
is based on i) characterizing the configurations using eigenfunctions of Bi(x) ·B j(x), ii) obtaining
a two potential formalism for Yang Mills theory. These techniques provide a way for combining
renormalized perturbation theory and asymptotic freedom with confining effects of fluctuations
of topological significance.
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1. Introduction

Quantum Chromodynamics is accepted as the theory of strong interactions. Renormalizability
and asymptotic freedom make the theory well under control. It is supposed to confine quarks
in the infrared. Strong coupling expansion of lattice gauge theory and computer simulations are
supporting this fact. However, the confinement mechanism is not understood fully. There are very
few firm insights into this aspect. Topological configurations are believed to play a crucial role
but calculational schemes are not available in the literature. However, in 2+1 dimensional Georgi-
Glashow model confinement has been shown by Alexander Polyakov [1] using non perturbative
calculation. The perturbative spectrum of Georgi Glashow Model consists of a massless photon,
massive charged vector bosons and a massive Higgs. However, non-perturbative effects change the
spectrum of the theory drastically. The action has a stable, topologically non-trivial extremum and
it is called the ’t Hooft-Polyakov monopole (playing the role of an instanton here). In a certain
regime of coupling constant the partition function can be written as a partition function of grand
canonical ensemble of dilute monopole gas. In this regime of coupling constants, a dilute gas
approximation of (anti)monopole plasma can be justified and the effects can be reliably computed.
The ‘plasma’ of monopoles and anti-monopoles screens the photon and the ‘dual photon’ acquires
a tiny mass, O(exp−(MW/g2)). The ‘plasma’ of monopoles and anti-monopoles forms a dipole
sheet across a Wilson loop to give area law.

2. Yang-Mills theory and monopoles

Yang-Mills theory in three Euclidean dimensions is defined as,

Z =
∫

DA exp
(
− 1

2g2

∫
d3xBa(x) ·Ba(x),

)
, (2.1)

Ba(x) = ∇×Aa(x)− 1
2 εabcAb(x)×Ac(x), the non-Abelian magnetic field in the vector represen-

tation of the group SO(3). Theory is super renormalizable under the perturbation in the coupling
constant g. Coupling constant square has a dimension of mass so naturally the perturbation theory
has severe infrared divergences. However, it is expected that the theory is confining, so that there
is a mass gap and no infrared divergences. This is supported by lattice gauge theory in a strong
coupling expansion and also by simulations.

Yang-Mills potential in ’t Hooft-Polyakov ansatz for the monopole

Aa
i (x) = εiabxb 1−K(r)

r2 ,r =
√

xaxa (2.2)

K(r) = 1+O(r2) as r→ 0 and K(r)→ 0 as r→ ∞ : this configuration is also of non zero finite
action in pure Yang-Mills theory. However, there is no non-trivial classically stable configurations
with a finite action. The configuration (2.2) is unstable against an indefinite expansion, as may be
checked by a rescaling. We need techniques very different from the case of GGM. Nevertheless
we may expect (Refs. [2], [4]-[13]) that topological configurations are relevant for the infrared
behaviour of the theory. The first question is whether the configurations (2.2) have any topological
significance. They have the telltale effects of a monopole on a large Wilson loop. They contribute a
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phase proportional to the solid angle subtended by the loop at the monopole (center). But we need
to characterize how they are distinct from perturbative fluctuations. As a consequence, monopoles
of very large size have smaller action and therefore proliferate. The situation is exactly opposite of
one where the dilute gas approximation can be justified. Techniques required to handle large, light,
overlapping monopole configurations and must be very different from the case of the GGM.

So to understand monopoles we should focus on the topological centers of monopoles. For
a configuration with many monopoles and anti-monopoles in GGM the topological features can
be located by the zeroes of the Higgs field and its behaviour in the neighborhood [14, 15]. In
Ref.[16, 17] it has been proposed that for the Yang-Mills field of (2.2), the topological aspects
are characterized by the degeneracies in eigenvalues of the gauge invariant symmetric matrix field,
Si j(x) = ∑a Ba

i (x)B
a
j(x) ,

Si j(x)ξ jA(x) = λ
A(x)ξ iA(x), A = 1,2,3 (2.3)

The (anti-)monopoles can be located at points where the three eigenvalues become degenerate. At
such points one of the eigenfunctions, say A = 3, has a ’radial’ behaviour.

We compare and contrast this proposal with the Abelian projection proposal of t’Hooft [15].
There a composite scalar transforming in the adjoint representation of the gauge group is formed
out of the gauge field and used in place of the fundamental Higgs of the GGM. The location of
the zeroes depends on the composite chosen, though the net ‘monopole charge’ is an invariant. In
contrast we are using a gauge invariant composite (2.3) for locating the topological aspects. In spite
of this difference there is a direct connection with the abelian projection proposal. We also have a
closely related entity, sab(x) = Ba(x) ·Bb(x) ,

Ba(x) ·Bb(x)ξ A
b = λ

A(x) ξ
A
a (x) (2.4)

which transforms homogeneously in the symmetric tensor representation of gauge group SO(3).
Its eigenvalues are the same as of 2.3 and hence gauge invariant. Each of the three eigenfunctions
are in the adjoint representation. One of these, say A = 3, plays the role of the scalar composite
of t’Hooft. We have located the monopoles at points where the eigenvalues in (2.3) are triply
degenerate. Our choice for locating the topological aspects has an added advantage. As sab(x) is
a symmetric (real) matrix, the three eigenfunctions ξ A

a (x) in (2.4) (after normalization) form an
orthonormal set and give an SO(3) matrix which can be used for a local gauge transformation.
Note that a given Yang-Mills field uniquely prescribes this gauge transformation (up to a trivial
ambiguity in the choice of the eigenvectors). At points of degeneracy of the eigenvalues the gauge
transformation is singular. In case of the ’t Hooft-Polyakov ansatz (2.2), the SO(3) matrix takes
the form (θ̂ , φ̂ , r̂) i.e. the unit vectors of the spherical coordinate system [3, 14, 17]. Even though
the Yang-Mills configuration (2.2) looks innocuous the transformed gauge field has singularities.
Indeed, the third component (in group space) is precisely the Dirac vector potential of a monopole.
The Dirac string along the third direction is due to an arbitrary choice of the ‘curling’ eigenvectors
θ̂ , φ̂ among the degenerate eigenvectors. Thus our gauge transformation which is dictated by the
gauge configuration itself, highlights the topological aspects of the given gauge field. Even though
our gauge transformation has singularities, it is an SO(3) matrix at each x. Therefore, even though
the transformed gauge potential has singularities, the transformed non-abelian field strength, which
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was finite to begin with, remains finite everywhere. This is the reason why the Dirac string does
not contribute a singular term to the action. This is shown explicitly in Ref. [20].

3. Local field theory of interactions of monopole charges and electric currents in
three Euclidean dimensions

Consider the free Maxwell theory in three Euclidean dimensions.The partition function is Z =∫
D~A e

(
− 1

2g2
∫

d3x(∇×~A(x))2
)
. Using auxiliary field b we write Z =

∫
DbD~A e

∫
d3x(− g2

2 b(x)2+ib(x)·∇×~A(x)).
Note the presence of i =

√
−1 in the term linear in a in the exponent. Now the integration over a

gives a constraint: Z =
∫

Db ∏x δ (∇×b(x))e
(
− g2

2
∫

d3xb(x)2
)
. The constraint has the solution b(x) =

∇χ(x). Therefore Z =
∫

Dχ e
(
− g2

2
∫

d3x(∇χ(x))2
)

describes a free massless scalar. This field has the
interpretation as the ‘dual’ photon. In three dimensions the ‘photon’ has only one transverse degree
of freedom which is described by the scalar χ . In the presence of monopole sourse partition func-

tion can be written as, Z [ρ] =
∫

Dχ(x)e
∫

d3x
[
− g2

2 (~∇χ(x))
2
+iρ(x)χ(x)

]
. ρ(x) is the monopole density

coupling locally to χ(x). Integrating over χ we can write Z [ρ] =
∫

D~Ae
∫

d3x
[
− 1

2g2 (~∇×~A(x)−n̂3∂
−1
3 ρ(x))

2]
.

As a consequence of this singular dislocation lines, the configurations ~A which matter in the func-
tional integration, are not the usual plane waves. For the action to be finite, ~∇×~A(x) should also
be singular and cancel the Dirac string.

Consider now the interaction between sources j of Dirac monopoles and electric currents J.

This is described by the partition function Z =
∫

D~ADχ e
SE+

∫
d3x

(
igJiAi+ig−1 jχ

)
, where

SE =
∫

d3x
(
− 1

2(∂3χ)2− 1
2(n̂3× (∇×~A))2 + i∂3χn̂3 ·∇×~A

)
. The above partition function de-

scribes the local quantum field theory involving monopole charges, photons and electric currents[19].
This is the two-potential formalism of Zwanziger for quantum electrodynamics of monopoles and
charges in three Euclidean dimensions.

4. Monopole plasma

In Abelian theory we can construct monopole plasma by writing down Grand canonical parti-
tion function with the addition of an external chemical potential µ . So the single monopole partition
function will look like, Z1 =

∫
d3xmξ 3 ∫ DχD~Aexp(SE + iχ(xm)−µ) The N monopole partition

function will be, ZN =
∫
[· · ·]

∫
∏

N
a=1 d3~xa

ξ 3N

N! e[SE (χ,~A)+∑a iqmχ(~xa)−Nµ], where ξ is a constant and
related to monopole mass. Partition function for monopole plasma can be written as

ZP =
∫

DχD~A ∑
n+n−

∫ n+

∏
a=1

d3~xa

n−

∏
b=1

d3~yb
ζ 2(n++n−)

n+!n−!
e[SE+∑a,b i(χ(~xa)−χ(~yb))] (4.1)

here ζ 2 = ξ 3e−µ . In Polyakov’s calculation ζ is determined to be ζ
2
P =

M
7
2

W
g

α

(
MH

MW

)
e
− 2πMW

g2 ε(
MH
MW

)

Plasma partition function can be written as Z =
∫

DχD~AeS

S =
∫

d3x
(
−g2

2
(∂3χ)2− 1

2g2 (n̂3× (∇×~A))2 + i∂3χ n̂3 ·∇×~A+ iJiAi +g2M2 cos χ

)
(4.2)
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where M2 = 2ζ 2

g2 The correlation functions can be calculated by expanding the cos χ term.

g2〈χ(−k)χ(k)〉 = 1
k2 +M2 , 〈Ai(−k)χ(k)〉= i

k⊥i

k3

1
k2 +M2 ,

〈Ai(−k)A j(k)〉 =
g2

k2 δi j +
k⊥ik⊥ j

k2
3

(
g2

k2 −
g2

k2 +M2

)
−〈Bi(−k)B j(k)〉 = g2

(
δi j−

kik j

k2 +M2

)
,−〈B3(−k)B3(k)〉=

g2k⊥
2

k2
3

(
k2

3 +M2

k2 +M2

)
So all correlation functions are short ranged. However, 〈B3(−k)B3(k)〉 has a remnant of the Dirac
string but still short ranged.

5. Non Abelian theory

Situation is more complicated in Yang-Mills case. We also have to handle the interactions of
the monopoles with the massless charged vector bosons. The partition function can be written as,

Z =
∫

DA e
(
− 1

2g2
∫

d3xBa(x)·Ba(x)
)
, Ba(x) = ∇×Aa(x)− 1

2 εabcAb(x)×Ac(x) and this can be written
as,

Z =
∫

DAa
i Dχ

ae
∫ [
− 1

2g2 (
~B2

1+
~B2

2)−
g2
2 (D3[A]χ)2+i(D3[A]χ)aBa

3

]
(5.1)

This can be easily checked in A3 = 0 gauge. Then D3[A]χ→ ∂3χ and integrating over χ results

with an innocent (det∂ 2
3 )
− 1

2 . This is fine even if we do not choose A3 = 0 gauge. For example the
local gauge transformation V (x) = Pexp

[
−i
∫ x3
−∞

dx′3A3
]

can be considered.
Under singular gauge transformation we will get Dirac string in the action. As a result the

end point of the Dirac string will couple locally to χ . Sum over all monopole and anti monopole
contribution will produce cos χ term in the action like Abelian theory.

Measure and Massgap

For the Semi-classical quantization about an instanton the measure can be obtained by the
collective coordinate method. The quadratic terms in fluctuations about an instanton have zero
modes related to translation and other continuous symmetries of the theory that are broken by the
choice of position and other degrees of freedom of the instanton. The fluctuations which translate
the instanton (for example) are replaced by an integration over the position of the instanton using
the Faddeev-Popov trick. In pure YM theory there is no zero modes due to monopoles. However
to get the integration over monopoles one can write the measure for single monopole case as,

DA = DA(x,xm)
∫

d3xm
√

g(A) (5.2)

where gpq =
∫

d3x∂pA(x,xm) ·∂qA(x,xm,) and DA(x,xm) is the measure for the sum over all con-
figuration with monopole position fixed at xm. This determinant will come as a coefficient in front
of the cos χ term and we can replace it by its expectation value. This will tell us the stories about
mass gap.
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6. Conclusion

To handle confinement we need techniques to sum over topologically non-trivial
configurations beyond a semi-classical approximation. Here we described topology locally and
used this to get a singular gauge transformation which highlights the topological objects. We have
incorporated the effects of the topological configurations in auxiliary fields of the first order
formalism. This way the renormalized perturbation theory is still possible. Our description using
singular configurations highlights how the topological aspects give contributions different from
perturbation theory and it also helps in obtaining the functional measure. We can sum over
positions of the topological objects in favour of a local action and the effects are contained in new
terms involving the auxiliary fields of the first order formalism.
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