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1. Introduction

The spacelike pion electromagnetic form factorFπ(t) is of interest for studying the onset of
perturbative QCD (pQCD). At leading order (LO), the expression forFπ(t), calculated in pQCD is
given by [1, 2, 3, 4]

FLO
pert(−Q2) =

8π f 2
π αs(µ2)

Q2 , t(= −Q2) < 0 (1.1)

while the next-to-leading order (NLO) correction with theMS-renormalization scheme and asymp-
totic distribution amplitudes (DAs) reads [5]

FNLO
pert (−Q2) =

8 f 2
π α2

s (µ2)

Q2

[

β0

4

(

ln
µ2

Q2 +
14
3

)

−3.92

]

, (1.2)

where fπ = 130.4 MeV is the pion decay constant andαs(µ2) the strong coupling at the renor-
malization scaleµ2. The quantityβ0 = 11−2n f /3 denotes the first coefficient in the perturbative
expansion of theβ -function,n f being the number of active flavors.

There is an interplay of perturbative with soft, nonperturbative processes especially in the
intermediateQ2 region as a result of which the asymptotic regime sets in quite slowly in the case
of the pion form factor. Therefore, it remains an open question as to at what value ofQ2 do
the nonperturbative contributions become negligible so that the perturbative QCD description of
the form factor becomes reliable. Several nonperturbative approaches have been proposed for
the study of the spacelike pion form factor [6, 7, 8, 9, 10, 11, 12]. On the experimental side,
measurements of the spacelike pion form factor at various energies are available, the most recent
data coming from theJLAB, [13, 14]. Further, we now have more accurate information on the
phase [15] and modulus [16] of the pion form factor on the unitarity cut. Inthis paper, we perform
an analytic continuation from the timelike to the spacelike region using in a most conservative way
the available information on the phase and modulus on the unitarity cut, and also the spacelike
information available. Using a mathematical formalism discussed in [17, 18], wefind stringent
upper and lower bounds at different values of spacelike momenta, whichallows us to find a lower
limit for the onset of the QCD perturbative behavior [19].

2. Formalism

Our formalism requires the knowledge of the phase belowtin and an integral over the modulus
squared fromtin to ∞. We relate the phase of the pion form factor with that of the associatedππ
scattering amplitude via the Fermi Watson theorem. In this case, we consider therelation

Arg[F(t + iε)] = δ 1
1 (t), 4M2

π ≤ t ≤ tin, (2.1)

whereδ 1
1 (t) is the phase shift of theP wave ofππ elastic scattering andtin = (Mπ + Mω)2 is the

upper limit of the elastic region, which corresponds to the first important inelastic threshold due to
theωπ pair. We use the recent experimental data on the modulus up to

√
t = 3GeV [16]. Above
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this energy, we make conservative assumptions and obtain a rather accurate estimate of an integral
of modulus squared fromtin to infinity. More precisely, we assume the following condition,

1
π

∫ ∞

tin
dtρ(t)|Fπ(t)|2 = I, (2.2)

whereρ(t) is a suitable positive-definite weight, for which the integral converges, and the number
I can be estimated with sufficient precision. The optimal procedure is to varyρ(t) over a suitable
admissible class and take the best result. In principle, a large class of positive weights, leading to
a convergent integral for|Fπ(t)| compatible with the asymptotic behavior (1.1) of the pion form
factor, can be adopted. In our calculations, we consider an expression of the form

ρa(t) =
1
ta , 0≤ a ≤ 2 (2.3)

We use additional information inside the analyticity domain namely the normalizationFπ(0) =

1 and the pion charge radius,F ′
π(0) = 〈r2

π〉/6, with 〈r2
π〉 varied within reasonable limits [20, 21],

and the values of the form factor at some spacelike valuesF(tn) wheretn < 0 [13, 14]. In this
paper, we derive rigorous upper and lower bounds onFπ(t) in the regiont < 0, for functionsFπ(t)
belonging to the class of real analytic functions in thet-plane cut fort > 4M2

π defined by all the
inputs specified.

For solving the problem, we apply a standard mathematical method discussed in detail in
[17, 18]. We transform our problem via a conformal map, cast the integral equation into a canonical
form and derive a determinant (see ref. [19] for more details) which is central to our investigations
for obtaining bounds onFπ(t) in the spacelike region.

3. Inputs

In the elastic regiont ≤ tin we use the phase shift parameterization determined recently with
high precision from Roy equations applied to theππ elastic amplitude given in [15] (see ref.[19]
for more details). Abovetin we chooseδ as a continuous function, sufficiently smooth which ap-
proaches asymptoticallyπ. The results are independent of the choice ofδ (t) abovetin, as discussed
in detail in [18]. For the calculation of the integral defined in (2.2), we use the BaBar data [16]
from

√
tin = 0.917 GeV up to

√
t = 3 GeV, and have taken a constant value for the modulus in the

range 3 GeV≤
√

t ≤ 20 GeV, continued with a 1/t decrease above 20 GeV. It may be noted that
our estimates are based on very conservative assumptions of the input quantities which makes our
procedure very robust. In our analysis, we consider the weights of theform given in (2.3). The
values ofI corresponding to several choices of the parametera are given in Table 1 of ref. [19],
where the uncertainties are due to the BaBar experimental errors. We findfrom our analysis that
the best results come from an optimal choice of the weight corresponding toρ1/2(t). We use also
as input,

〈r2
π〉 = 0.43±0.01fm2, F(−2.45GeV2) = 0.167±0.010+0.013

−0.007, (3.1)

respectively for the pion charge radius [20, 21] and the spacelike datum [13, 14].
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4. Results

The main results emerging from our analysis are presented in Figs. 1 and 2.In the figures,
the white band corresponds to the bound obtained by using only the centralvalues of the inputs
while the grey bands are obtained from the errors associated with the inputs. The error bands have
been obtained by adding quadratically the errors produced by the variation of the phase, the charge
radius, the integralI for a = 1/2 from Table 1 of ref. [19], and the spacelike datum. We find that the
greatest contribution to the size of the grey domain is the experimental uncertainty associated with
the spacelike value (3.1). In Fig. 1, we compare our constraints with some ofthe data available
from experiments (see [19] for references). We find that at lower values ofQ2 most of the data
are consistent with the narrow allowed band predicted by our analysis. InFig. 2, we compare our
allowed domain with the pQCD predictions both at LO and NLO and with various nonperturbative
models. The perturbative prediction to NLO is sensitive to the choice of the renormalization scale,
and also of the factorization scale in the case when pion DAs different from the asymptotic ones are
used in the calculation [5, 22] . Several prescriptions for scale setting have been adopted, but there
is no general consensus on the issue. For illustration, in Fig. 2 we show thesum of the LO and
NLO terms (1.1) and (1.2), obtained with the scaleµ2 = Q2 and the one loop coupling. This curve
is compatible with our bounds enlarged by errors only forQ2 > 6 GeV2. We show also several
nonperturbative models proposed in the literature for the spacelike form factor at intermediate
region [6, 7, 8, 9, 10, 11, 12]. In Ref. [6], the authors applied light-cone QCD sum rules and
parametrized with a simple expression the nonperturbative correction, to beadded to the LO+NLO
perturbative prediction in the region 1< Q2 < 15GeV2. We show the sum of the soft correction and
the perturbative QCD prediction to NLO, evaluated at a scaleµ2 = 0.5Q2+M2 with M2 = 1GeV2

as argued in [6]. The model is quite compatible with our bounds, the corresponding curve being
inside the small white inner domain forQ2 > 6 GeV2. The model based on local duality [7] is also
consistent with the allowed domain derived here forQ2 > 1GeV2. We mention that this model,
proposed in [23], was recently developed by several authors [11].The other models shown in
Fig. 2 are consistent with the bounds derived by us at lowQ2, but are at the upper limit of the
allowed domain at higherQ2. The agreement is somewhat better for the model discussed in [8],
which is a LO+NLO perturbative calculation using nonasymptotic pion DAs evolved to NLO, with
a modification of the QCD coupling by the so-called analytic perturbation theory. The AdS/QCD
model considered in [9] is in fact a simple dipole interpolation, which is valid at low energies but
seems to overestimate the form factor at larger momenta. The same remark holdsfor the models
discussed in [10] and [12], based on QCD sum rules with nonlocal condensates, and the chiral limit
of the hard-wall AdS/QCD approach, respectively.

5. Conclusion

We have derived upper and lower bounds on the pion electromagnetic form factor along the
spacelike axis, by exploiting in a conservative way the precise information on the phase and mod-
ulus of the timelike axis as well as the available spacelike data. We have used themethod of
analytic continuation to obtain information on the spacelike region of the pion form factor. Using
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Figure 1: Allowed domain obtained with the weightρ1/2(t) compared with several sets of experimental
data.
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Figure 2: Comparison of the bounds for the weightρ1/2(t), with perturbative QCD and several nonpertur-
bative models.

the weightρ1/2(t) which is the optimal choice as discussed in Sec. 3, we have obtained upper and
lower bounds enlarged by errors associated with the various inputs entering our analysis. From Fig.
2, we can conclude that perturbative QCD to LO is excluded forQ2 < 7 GeV2, and perturbative
QCD to NLO is excluded forQ2 < 6 GeV2, respectively. If we restrict to the inner white allowed
domain obtained with the central values of the input, the exclusion regions becomeQ2 < 9 GeV2

andQ2 < 8 GeV2, respectively. Among the theoretical models, the light-cone QCD sum rules [6]
and the local quark-hadron duality model [7] are consistent with the allowed domain derived here
for a large energy interval, while the remaining models are consistent with the bounds at low ener-
gies, but seem to predict too high values at higherQ2. To increase the strength of the predictions, a
reduction of the grey bands produced by the uncertainties of the input is desirable. As mentioned
in Sec.4, the biggest contribution to the error band comes from the experimental errors associated
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with the spacelike datum (3.1). As such, in order to increase the predictivepower of our formal-
ism, more accurate data at a few spacelike points, particularly at larger values ofQ2, would be very
useful.
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