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For many years a combined analysis of pionic hydrogen and deuterium atoms has been known

as a good tool to extract information on the isovector and especially on the isoscalars-waveπN

scattering length. However, given the smallness of the isoscalar scattering length, the analysis

becomes useful only if the pion–deuteron scattering lengthis controlled theoretically to a high

accuracy comparable to the experimental precision. To achieve the required few-percent accuracy

one needs theoretical control over all isospin-conservingthree-bodyπNN → πNN operators up

to one order before the contribution of the dominant unknown(N†N)2ππ contact term. This term

appears at next-to-next-to-leading order in Weinberg counting. In addition, one needs to include

isospin-violating effects in both two-body (πN) and three-body (πNN) operators. In this talk we

discuss the results of the recent analysis where these isospin-conserving and -violating effects

have been carefully taken into account. Based on this analysis, we present the up-to-date values

of thes-waveπN scattering lengths.
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a+ and a− from pionic atoms V. Baru

1. Introduction

TheπN scattering lengths are fundamental quantities of pion physics. As low-energy param-
eters they are subjects for an investigation in Chiral Perturbation Theory (ChPT), the low-energy
effective field theory of QCD, see e.g. Ref. [1] for a recent review. In fact, the leading effect of
chiral symmetry on theπN scattering lengths, derived by Weinberg [2], shows a strongsuppression
of the isoscalar scattering length (a+) with respect to its isovector counterpart (a−)

a− =
Mπ

8π(1+Mπ/mp)F2
π
≈ 80·10−3M−1

π , a+ = 0, (1.1)

whereMπ (mp) is the mass of the charged pion (proton),Fπ is the pion decay constant, and the
scattering lengths are defined in the isospin symmetric world. Higher-order corrections toa+ and
a− involve low-energy constants (LECs) [3]. Unfortunately, the lack of information about the LECs
and large cancellations between individual contributionsstrongly restrict the predictive power of
the chiral expansion fora+. Meanwhile, a precise determination ofπN scattering lengths is of
high importance. The smallness of the isoscalar scatteringlength leavesa+ as a measure of the
explicit breaking of chiral symmetry. The scattering lengths appear as input to a determination of
the pion–nucleon coupling constant (via the Goldberger–Miyazawa–Oehme sum rule [4]) and to a
dispersive analysis of theπN σ -term [5].

The most promising way to get access to theπN scattering lengths is the experimental inves-
tigation of pionic atoms, the simplest of which are pionic hydrogen and pionic deuterium. Pionic
atoms are loosely bound states of pions and light nuclei, which are formed mainly by a static
Coulomb potential. However, the energy spectrum measured experimentally to a very high preci-
sion exhibits a small deviation from the Coulombic spectrum. This shift is predominantly due to
strongπN interactions. Deseret al. derived the expression which connects the shift of the ground
(1s) state level of a hadronic atom due to strong interactions to the scattering length in the elastic
channel (Rea) [6]. Further, if there are open channels below threshold, the scattering length is
complex and the ground state level of a hadronic atom has a non-zero width. The energy shiftε1s

and the line widthΓ1s of the ground state are given by [6, 7, 8]

ε1s−
i
2

Γ1s = −2α3µ2
Ha

(

1−2αµH(lnα −1)a

)

, (1.2)

whereα = e2/4π, µH is the reduced mass of the hadronic system and the term∝ O(α4) stands
for the corrections at higher order inα [7, 8]. In principle, the measurement of the shift and the
width of theπH atom [9] is already sufficient to extract botha+ anda−. Indeed, the level shift
of πH in the isospin limit is sensitive toa+ + a−, whereas the width is solely determined bya−.
However, due to the chiral suppression ofa+ and a relatively large experimental uncertainty inΓ1s

[9] additional experimental information stemming from theshift of theπD atom [10] is extremely
useful. Schematically, the system of three equations to determinea+ anda− can be written as

aπ−p = ã+ +a− + ∆ãπ−p,

aπ−p→π0n = −
√

2a− + ∆aπ−p→π0n,

Reaπd = 2
1+ Mπ

mp

1+ Mπ
2mp

(

ã+ + ∆ã+
)

+aIC
(3−body) +aIV

(3−body), (1.3)
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where the first two equations stem from the data onπH,1 whereas the last line corresponds to the
πd scattering length from the shift of theπD atom [10]. Here, ˜a+ includes isospin-violating (IV)
corrections toa+ at leading order (LO) [11, 12]

ã+ = a+ +
1

4π(1+ Mπ
mp

)

(

4(M2
π −M2

π0)

F2
π

c1−2e2 f1

)

, (1.4)

with c1 and f1 being low-energy constants,Mπ0 the mass of the neutral pion, and∆ã+, ∆aπ−p→π0n,
∆ãπ−p stand for IV corrections to the scattering lengths at next-to-leading (NLO) order [13]. In ad-
dition to isospin violation in the two-body sector, a precise determination of ˜a+ anda−, that means
with an accuracy better than 1·10−3M−1

π [14], requires a careful analysis of three-body (nuclear)
contributions in the isospin-conserving (IC) and isospin-violating case. The termsaIC

(3−body) and

aIV
(3−body) in Eq. (1.3) take these corrections into account. We discussthem in Secs. 2 and 3.

2. Isospin-conserving three-body contributions to aπd

As usual in EFT, in order to provide an estimate of the theoretical uncertainty one needs to
classify the diagrams according to some counting scheme. Inparticular, it was shown in Ref. [15]
that an application of the Weinberg scheme allows one to systematically account for IC three-
body contributions toaπ−d to very high accuracy. The hierarchy of the isospin-conserving three-
body diagrams in the Weinberg counting scheme is illustrated in Table 1 with the order quoted
as the predicted size in the counting relative to the leading, double-scattering term. The goal is to
include all three-body operators up to one order lower than the contribution of the leading unknown
(N†N)2ππ contact term, which appears at next-to-next-to-leading order (N2LO). Its contribution
cannot easily be determined from data, and is a key source of uncertainty in our result. Given that
O(p) ∼ χ = Mπ/mp, we anticipate an accuracy of a few per cent for thresholdπ−d scattering.

A detailed discussion of the power counting, relevant scales and the role of the individual
diagrams can be found in Ref. [14]. Here we briefly sketch the main results. By far the largest
contribution to theπd scattering length stems from the double scattering diagramat LO. At this
order the nucleons in the deuteron are treated as being static. This contribution is comparable with
the experimental value of the scattering length. The contribution of the other diagrams at LO (with
3πNN and 4π vertices) is numerically negligible, see [16, 17, 15] for more details.

The operators at NLO (the first line of NLO diagrams in Table 1)involve sub-leading vertices
and were shown to cancel amongst themselves in [18]. In addition, at NLO there is a triple-
scattering term. The actual size of this diagram is enhancedas compared to the estimate based
on dimensional analysis, which predicts that this diagram contributes only at N2LO. The origin of
this enhancement was associated in [15] with the special topology of the diagram consisting of two
consecutive pion exchanges with Coulombic-type pion propagators. Numerically the contribution
of the triple-scattering diagram is around 10% of the double-scattering term. The other (higher-
order) contributions of multiple-scattering topology appear to be negligible [23, 14].

In addition, starting from NLO, nucleon recoil effects to the leading double-scattering oper-
ator have to be taken into account. This means the nucleon kinetic energies enter and the static

1the shift (width) is proportional to the elasticπ−p (charge-exchangeπ−p→ π0n) scattering length
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Chiral order Three-body operator Reference

LO = O(1) [16, 17]

NLO = O(p) [18]

[18, 15]

Effect of nucleon recoil in LO diagrams [19, 20]

N3/2LO = O(p3/2) [21]

[22]

Effect of nucleon recoil in LO diagrams [19, 20]

N2LO = O(p2)
+ · · ·

Table 1: Hierarchy of isospin-conserving three-body operators within Weinberg power counting. Solid
(open) circles correspond to leading (sub-leading) vertices, grey blobs indicate the deuteron wave functions,
and the black ellipse corresponds toNN interactions in the intermediate state. Solid single, solid double, and
dashed lines correspond to nucleons,∆(1232)-isobars, and pions, respectively.

pion propagator needs to be replaced by the full propagator corresponding to the three-bodyπNN
intermediate state. Due to a non-perturbative regime in which the three-body propagator goes to
zero the expansion of the double-scattering diagram contains half-integer powers ofMπ/mp. Note
that the largest isovector recoil correction at orderO(p1/2) fully determined by the small scales
vanishes exactly as a consequence of the Pauli principle [19, 20], see also [24]. Furthermore, it was
demonstrated in [20] that the recoil effect forπ−d scattering is relevant only at ordersO(p) and
O(p3/2), which partially cancel each other.

At order O(p3/2) there are two additional contributions to theπ−d scattering length. First,
diagrams with pureNN or NNγ intermediate states yield so-called dispersive corrections. Also
diagrams with explicit∆ degrees of freedom enter at the same order. Both classes werecomputed
in [21, 22] using a calculation forNN→ dπ up to NLO in ChPT [25]. The combined effect of the
dispersive corrections and the∆(1232) contributions atO(p3/2) does not exceed a few per cent due
to significant cancellations between these corrections.

3. Isospin-violating three-body contributions to aπd

In analogy to Sec. 2, in Table 2 we present the hierarchy of IV three-body operators relative
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Chiral order Three-body operator

LO = O(e2)

N1/2LO = O(e2p1/2)

Table 2: Hierarchy of isospin-violating three-body operators relevant for the study. Isospin violation appears
either due to the inclusion of virtual photons or due to the pion mass difference marked by crossed circles.

to each other, and their relative suppression compared to the IC operators at LO. At leading order
in isospin violation diagrams that involve a virtual photonand one insertion of the ICπN vertex
occur. These are represented by the first row of diagrams in Table 2, which form a gauge-invariant
set of diagrams at orderO(e2). Due to the presence of photon and pion propagators these diagrams
are potentially infrared enhanced. The non-perturbative (singularity) regime of theπNN propa-
gator leads to an enhancement of the individual diagrams from momenta of order

√
Mπε, with ε

the deuteron binding energy. However, these ostensibly enhanced contributions vanish for both
isovector and isoscalarπN scattering [14], where the cancellation can be traced back to the Pauli
principle and the orthogonality of deuteron and continuum wave functions, respectively. The ulti-
mate result for this class of diagrams is 4% of the double scattering term. At the same order effects
due to the pion mass difference in the leading-order IC diagrams enter (the second row of diagrams
in Table 2). Next in importance is the higher-order correction due to the inclusion of the pion mass
difference in theπNN propagator of the double-scattering diagram. This resultsin the appearance
of the non-analytic N1/2LO contribution in Table 2, as soon as the propagator is expanded. The net
effect caused by the pion mass difference is about 2% of the double-scattering term.

The operators at NLO are suppressed byO(e2p) compared to the three-body isospin-
conserving operators at LO, and, given the smallness of the expansion parameter, are irrelevant
for our present purposes. Therefore up to the order we are working isospin violation in three-body
operators is purely of electromagnetic origin.

4. Concluding remarks

We have demonstrated that all isospin-conserving three-body corrections can be reliably cal-
culated up toO(p3/2). This is half an order lower than the contribution of the leading unknown
(N†N)2ππ contact term, which isO(p2). The uncertainty anticipated due to the truncation of
higher-order terms is a few per cent, as follows from naive dimensional analysis. Convolving the
operators of Tables 1 and 2 with different wave functions derived from chiral and phenomenolog-
ical NN potentials we find a variation in the results of about 5%: an independent estimate of the
contact term’s effect. However, to achieve this accuracy one also has to account for two-body and
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three-body isospin-violating corrections. The two-body corrections were derived in Ref. [13] up to
NLO. A complete calculation of the isospin-violating three-body corrections up toO(e2p1/2) was
presented here, see also Refs. [14] for more details. Solving the system of Eqs. (1.3) we find

ã+ = (1.9±0.8) ·10−3M−1
π , a− = (86.1±0.9) ·10−3M−1

π . (4.1)

Usingc1 = (−1.0±0.3)GeV−1 [14], the rough estimate| f1| ≤ 1.4GeV−1 [7], and Eq. (4.1) yields
a non-zeroa+ at better than the 95% confidence level

a+ = (7.6±3.1) ·10−3M−1
π . (4.2)

A reduction of the uncertainty beyond that of the present analysis will be hard to achieve without
additional QCD input that helps pin down the unknown contactterms in theπN andπNN sectors.
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