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For many years a combined analysis of pionic hydrogen antedam atoms has been known
as a good tool to extract information on the isovector an@@sjly on the isoscalaswave niN
scattering length. However, given the smallness of thecalas scattering length, the analysis
becomes useful only if the pion—deuteron scattering leigyttontrolled theoretically to a high
accuracy comparable to the experimental precision. Teegelthe required few-percent accuracy
one needs theoretical control over all isospin-conserthinge-bodyrNN — 1NN operators up
to one order before the contribution of the dominant unkn@N )27t contact term. This term
appears at next-to-next-to-leading order in Weinberg tingnIn addition, one needs to include
isospin-violating effects in both two-bodyil) and three-bodyrfNN) operators. In this talk we
discuss the results of the recent analysis where theseinsospserving and -violating effects
have been carefully taken into account. Based on this aisalye present the up-to-date values
of theswavernN scattering lengths.
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1. Introduction

The niN scattering lengths are fundamental quantities of pion iphy#\s low-energy param-
eters they are subjects for an investigation in Chiral Peation Theory (ChPT), the low-energy
effective field theory of QCD, see e.g. Ref. [1] for a receniaw. In fact, the leading effect of
chiral symmetry on theN scattering lengths, derived by Weinberg [2], shows a steupgression
of the isoscalar scattering lengti'() with respect to its isovector counterpaat |
— M"
 87(1+ My/mp)F2
whereM (my) is the mass of the charged pion (protoRy, is the pion decay constant, and the
scattering lengths are defined in the isospin symmetricdvatigher-order corrections ®" and
a~ involve low-energy constants (LECs) [3]. Unfortunatehg tack of information about the LECs
and large cancellations between individual contributistiengly restrict the predictive power of
the chiral expansion foa™. Meanwhile, a precise determination @l scattering lengths is of
high importance. The smallness of the isoscalar scattégimgth leavesa™ as a measure of the
explicit breaking of chiral symmetry. The scattering ldrgyappear as input to a determination of
the pion—nucleon coupling constant (via the Goldbergeyalshwa—Oehme sum rule [4]) and to a
dispersive analysis of theN o-term [5].

The most promising way to get access to tti scattering lengths is the experimental inves-
tigation of pionic atoms, the simplest of which are pionidiggen and pionic deuterium. Pionic
atoms are loosely bound states of pions and light nucleichviare formed mainly by a static
Coulomb potential. However, the energy spectrum measuwieerienentally to a very high preci-
sion exhibits a small deviation from the Coulombic spectrurhis shift is predominantly due to
strong7iN interactions. Desegt al. derived the expression which connects the shift of the gioun
(1s) state level of a hadronic atom due to strong interasttorthe scattering length in the elastic
channel (Ren) [6]. Further, if there are open channels below threshdid, dcattering length is
complex and the ground state level of a hadronic atom has -ae&mmnwidth. The energy shits
and the line widtH ;5 of the ground state are given by [6, 7, 8]

a

~80-103M, 1, at =0, (1.1)

€15 — 5

M= —2a3uﬁa<1—2auH(lna—1)a>, (1.2)

wherea = €?/4m, uy is the reduced mass of the hadronic system and the feriia#) stands
for the corrections at higher order n[7, 8]. In principle, the measurement of the shift and the
width of the mH atom [9] is already sufficient to extract bo#i anda~. Indeed, the level shift
of i+ in the isospin limit is sensitive ta” +a~, whereas the width is solely determined dby.
However, due to the chiral suppressioradfand a relatively large experimental uncertainty ig

[9] additional experimental information stemming from #teft of the D atom [10] is extremely
useful. Schematically, the system of three equations ®raetea™ anda can be written as

arp=4a +a +A0&;p,
A p—mon = _\/éai +Aarrpﬂn0n7
Mg

Reay = 271%— E (&" +0&") +aS_poay TS body: (1.3)
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where the first two equations stem from the data®h! whereas the last line corresponds to the
rd scattering length from the shift of theD atom [10]. Herea™ includes isospin-violating (1V)
corrections ta" at leading order (LO) [11, 12]

< 1 4(M2 — M2,)
a*:a++4n(1+%) ( an ¢ — 262 |, (1.4)
Mp

s

with ¢; and f; being low-energy constants],» the mass of the neutral pion, afd", Aa,- 70
A&, stand for IV corrections to the scattering lengths at nexeading (NLO) order [13]. In ad-
dition to isospin violation in the two-body sector, a predietermination of™ anda, that means
with an accuracy better than 10~3M* [14], requires a careful analysis of three-body (nuclear)
contributions in the isospin-conserving (IC) and isosygimlating case. The tern‘d(g_bodw and

a'(‘éfbody) in Eqg. (1.3) take these corrections into account. We disthess in Secs. 2 and 3.

2. I'sospin-conserving three-body contributionsto a,gy

As usual in EFT, in order to provide an estimate of the thémaktincertainty one needs to
classify the diagrams according to some counting schemgarticular, it was shown in Ref. [15]
that an application of the Weinberg scheme allows one teesyatically account for IC three-
body contributions t@;,;—4 to very high accuracy. The hierarchy of the isospin-corisgrthree-
body diagrams in the Weinberg counting scheme is illuairateTable 1 with the order quoted
as the predicted size in the counting relative to the leadiogble-scattering term. The goal is to
include all three-body operators up to one order lower tharcontribution of the leading unknown
(NTN)277T contact term, which appears at next-to-next-to-leadiragio(N?LO). Its contribution
cannot easily be determined from data, and is a key sourceceftainty in our result. Given that
0(p) ~ X = Mz/m,, we anticipate an accuracy of a few per cent for threstold scattering.

A detailed discussion of the power counting, relevant scaled the role of the individual
diagrams can be found in Ref. [14]. Here we briefly sketch tlanmesults. By far the largest
contribution to therd scattering length stems from the double scattering diagrtehO. At this
order the nucleons in the deuteron are treated as being. Stais contribution is comparable with
the experimental value of the scattering length. The domtion of the other diagrams at LO (with
3NN and 4t vertices) is numerically negligible, see [16, 17, 15] fornmdetails.

The operators at NLO (the first line of NLO diagrams in Tabléniplve sub-leading vertices
and were shown to cancel amongst themselves in [18]. Iniaeddiat NLO there is a triple-
scattering term. The actual size of this diagram is enhaasecompared to the estimate based
on dimensional analysis, which predicts that this diagramtributes only at RLO. The origin of
this enhancement was associated in [15] with the specialdgp of the diagram consisting of two
consecutive pion exchanges with Coulombic-type pion pyaps. Numerically the contribution
of the triple-scattering diagram is around 10% of the dowolattering term. The other (higher-
order) contributions of multiple-scattering topology appto be negligible [23, 14].

In addition, starting from NLO, nucleon recoil effects tetleading double-scattering oper-
ator have to be taken into account. This means the nucleatikianergies enter and the static

Lthe shift (width) is proportional to the elastic” p (charge-exchange™ p — 1°n) scattering length
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Chiral order Three-body operator Reference

L0= o) O | O OO O* O [16, 17]

NLO = &(p) (\)\\J\ ) <LA ) [18]

s 15

Effect of nucleon recoil in LO diagrams [19, 20]

N3/2Lozﬁ(p3/2) O O O O [21]

N
N
N

Co =000 22

Effect of nucleon recoil in LO diagrams [19, 20]

NPLO = 0 (p) (S

Table 1. Hierarchy of isospin-conserving three-body operatordiwitVeinberg power counting. Solid
(open) circles correspond to leading (sub-leading) vestigrey blobs indicate the deuteron wave functions,
and the black ellipse corresponds\dl interactions in the intermediate state. Solid single gsttiuble, and
dashed lines correspond to nuclech&l 232)-isobars, and pions, respectively.

pion propagator needs to be replaced by the full propagatoesponding to the three-bodiNN
intermediate state. Due to a non-perturbative regime irclwttie three-body propagator goes to
zero the expansion of the double-scattering diagram amtalf-integer powers dfl;/m,. Note
that the largest isovector recoil correction at ord&p®?) fully determined by the small scales
vanishes exactly as a consequence of the Pauli principl@{ll9see also [24]. Furthermore, it was
demonstrated in [20] that the recoil effect far d scattering is relevant only at ordefg p) and
0(p*?), which partially cancel each other.

At order ¢(p%?) there are two additional contributions to thed scattering length. First,
diagrams with puredNN or NNy intermediate states yield so-called dispersive corresticAlso
diagrams with expliciA degrees of freedom enter at the same order. Both classesorepited
in [21, 22] using a calculation fdIN — drrup to NLO in ChPT [25]. The combined effect of the
dispersive corrections and tA¢1232 contributions at(p%?) does not exceed a few per cent due
to significant cancellations between these corrections.

3. Isospin-violating three-body contributions to a;y

In analogy to Sec. 2, in Table 2 we present the hierarchy ohPéd-body operators relative
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Chiral order Three-body operator

s [ =
=000

NV2LO = o(&p) =

Table 2: Hierarchy of isospin-violating three-body operatorsvat# for the study. Isospin violation appears
either due to the inclusion of virtual photons or due to trenphass difference marked by crossed circles.

to each other, and their relative suppression comparecettCtioperators at LO. At leading order
in isospin violation diagrams that involve a virtual photamd one insertion of the I@N vertex
occur. These are represented by the first row of diagramshile a which form a gauge-invariant
set of diagrams at orde(e?). Due to the presence of photon and pion propagators thegeadia
are potentially infrared enhanced. The non-perturbatieg(larity) regime of thetNN propa-
gator leads to an enhancement of the individual diagranm frmmenta of ordex/My€, with &
the deuteron binding energy. However, these ostensiblarer@d contributions vanish for both
isovector and isoscalaiN scattering [14], where the cancellation can be traced bathe Pauli
principle and the orthogonality of deuteron and continuuavevfunctions, respectively. The ulti-
mate result for this class of diagrams is 4% of the doubleesgag term. At the same order effects
due to the pion mass difference in the leading-order IC diagrenter (the second row of diagrams
in Table 2). Next in importance is the higher-order cor@ttilue to the inclusion of the pion mass
difference in thertN N propagator of the double-scattering diagram. This regultise appearance
of the non-analytic ¥2LO contribution in Table 2, as soon as the propagator is edg@nThe net
effect caused by the pion mass difference is about 2% of tbbldescattering term.

The operators at NLO are suppressed @ye?p) compared to the three-body isospin-
conserving operators at LO, and, given the smallness oftparnsion parameter, are irrelevant
for our present purposes. Therefore up to the order we arkingpisospin violation in three-body
operators is purely of electromagnetic origin.

4. Concluding remarks

We have demonstrated that all isospin-conserving threlg-borrections can be reliably cal-
culated up tag’(p%?). This is half an order lower than the contribution of the Iagdunknown
(NTN)27tr contact term, which ig7(p?). The uncertainty anticipated due to the truncation of
higher-order terms is a few per cent, as follows from naivaatisional analysis. Convolving the
operators of Tables 1 and 2 with different wave functionsveerfrom chiral and phenomenolog-
ical NN potentials we find a variation in the results of about 5%: aependent estimate of the
contact term’s effect. However, to achieve this accuraey @so has to account for two-body and
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three-body isospin-violating corrections. The two-bodyrections were derived in Ref. [13] up to
NLO. A complete calculation of the isospin-violating theedy corrections up t&’(e?p/?) was
presented here, see also Refs. [14] for more details. Sptiim system of Eqgs. (1.3) we find
" =(19+08)-103M;%, a =(861+0.9)-10 M, (4.1)
Usingc; = (—1.0£0.3) GeV 1 [14], the rough estimatgf;| < 1.4GeV 1 [7], and Eq. (4.1) yields
a non-zera" at better than the 95% confidence level
a" =(7.6+3.1)-10 M, (4.2)

A reduction of the uncertainty beyond that of the presentyaigwill be hard to achieve without
additional QCD input that helps pin down the unknown contawhs in theriN and 7NN sectors.
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