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The effective field theory formulation of nuclear forces grants the possibility of making systematic

calculations in few-nucleon systems, that is, we can know inadvance the uncertainty of theoretical

predictions. However, until recently, this promise has remained unfulfilled. A precondition for

systematicity is the existence of a power counting at the level of observables, a goal that has not

been easy to achieve. Here we will review the ideas opening the path to the formulation of power

counting for two-nucleon scattering. We will concentrate on the conceptual aspects rather than on

the technical ones. While one pion exchange is non-perturbative in the lower partial waves and we

iterate it at all orders, the chiral two pion exchange diagrams can be treated as a perturbation. The

additional requirement of renormalizability (cut-off independence) guarantees the consistency,

sistematicity and model independence of the theory and determines the power counting (i.e. the

relative size) of the contact range operators. The number ofcounterterms is larger than what is

expected from naive dimensional analysis. Finally the quality of the phase shifts is as good (if not

better) than in the Weinberg counting at the same order.
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1. Introduction

The nature and derivation of nuclear forces is a central problem of nuclear physics that still
remains open after six decades of research. While there are many phenomenological descriptions
of the nuclear force that are able to reproduce two-nucleon scattering data and the properties of
light nuclei with great accuracy, what theorists ultimately want is to derive nuclear forces from
quantum chromodynamics (QCD), the fundamental theory of strong interactions. The direct strat-
egy – to compute nuclear physics in lattice QCD – is full of promise and is starting toexplore the
two [1, 2] and three [3] nucleon sector, but currently only for large pion masses as they require
less computational power. Even though lattice QCD will eventually reach the physical pion mass,
in the meantime there is a more indirect way to do the job: to formulate an effective field theory
(EFT) description of few nucleon systems that incorporates the low energy symmetries of QCD, in
particular chiral symmetry. In this contribution we will follow the EFT approach, which also has
the advantage of complementing lattice QCD calculations via chiral extrapolations.

The standard EFT for hadronic processes is chiral perturbation theory (ChPT). However,
its application to the two-nucleon sector is not straightforward owing to the appearance of non-
perturbative phenomena (e.g. the existence of the deuteron). To solve this problem Weinberg
proposed to expand the potential (instead of the scattering amplitude) within theChPT frame-
work [4, 5]. The resulting potential is then iterated at all orders by plugging it into the Schrödinger
equation for obtaining theoretical predictions. This simple and powerful idea has been followed
with enthusiasm (see Refs.[6, 7] for reviews), leading to the developmentof potentials that are able
to reproduce the two-nucleon scattering data with aχ2/d.o. f . ∼ 1 for laboratory energies below
300MeV [8, 9]. However, rather than a definitive solution, the Weinbergprescription is a smart
workaround for avoiding the (formerly unsolved) issue of the non-perturbative renormalizability
of the EFT potential, which is in turn instrumental for the formulation of nuclear EFT. We now
know that the Weinberg counting is inconsistent [10, 11], but we also know the ingredients that are
necessary for averting the theoretical limitations of the Weinberg approach(in particular, a solid
understanding of the renormalization of singular interactions [12, 13, 14,15]).

In this contribution we will explain how to construct a consistent power counting for nuclear
EFT. The advantage of power counting is that it makes the calculations systematic: at each order
in the EFT expansion we know thea priori error of the theoretical predictions in advance. The
discussion will be qualitative and we will present the conditions for having power counting at the
level of observables as a recipe. Then we will show the specific application of this recipe to the
two-nucleon sector and discuss a bit the nuclear EFT we obtain and its results for the phase shifts.

2. How Do We Build a Power Counting?

The EFT formulation of nuclear forces is based on symmetries and power counting. Chiral
symmetry provides the connection with QCD, while power counting is the ordering principle that
grants predictive power to EFT (it sorts out the infinite number of interactions compatible with the
low energy symmetries). Thanks to power counting the EFT amplitudes are organized as a power
series in terms of a small expansion parameterx0 = Q/Λ0, which can be identified with the ratio
of the characteristic low energy scaleQ over the high energy scaleΛ0. Weinberg realized that the
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two-nucleon potential is amenable to a power counting expansion. However, the potential is not an
observable. Therefore the problem in nuclear EFT is to ensure that the power counting expansion
of the potentialV translates into an expansion of the scattering amplitudeT

VEFT =
νmax

∑
ν≥ν0

V(ν)+O(xνmax+1
0 ) =⇒ TEFT =

νmax

∑
ν≥ν0

T(ν)+O(xνmax+1
0 ) , (2.1)

with x0 the expansion parameter. In this regard, the iteration of the potential in the Lippmann-
Schwinger equation (T =V +VG0T), which is the way to obtain the scattering amplitudeT from
the potential in the Weinberg counting, does not guarantee a good expansion for T. The problem
lies in the loops: they may probe the high-energy structure of the EFT potential, which is not
meaningful (the expansion of the potential only makes sense at low energies) but can dominate
the calculations. Even after counterterms have been added, the loop contributions from subleading
pieces of the potential can spoil the power counting properties of observables [16, 17].

There is a fail-safe way to avoid the breakdown of power counting, whichis (a) to iterate
only a minimal subset of the EFT potential (usually the lowest order diagrams), and (b) to treat
the subleading pieces as perturbations. The first point takes into account the non-perturbative
nature of the nuclear force and the second guarantees that a subleading contribution in the potential
remains subleading in the scattering amplitude. A third condition that is still required to obtain a
renormalizable theory is the following: (c) at each step in the construction ofthe EFT, check for
cut-off independence of the results and, if not, include additional counterterms. Renormalizability
is necessary if we want power counting to hold for any value of the cut-off, so the calculations are
actually model-independent. This last step is simple at the conceptual level, but complex at the
technical one: its realization depends on a good understanding of the renormalization of singular
interactions [12, 13, 14, 15]. In the next section we will show the result of applying this recipe.

3. The Power Counting in Nuclear EFT

We begin by choosing a minimal set of diagrams to iterate: the obvious candidates are the
one pion exchange potential and the two S-wave contact interactions that conform the leading
order (LO) potential in the Weinberg counting. Now, if we check the cut-off independence of the
LO observables we will find that the two counterterms that we have included are not enough to
renormalize the amplitudes. As shown numerically by Nogga el al. [11] (see also Refs. [12, 13, 14]
for a formal derivation), there is still a strong cut-off dependence in the3P0 partial wave and a
moderate one in the in the3P2 and3D2 waves. Therefore we include one counterterm in each of
these lower partial waves to restore cut-off independence at LO1

The next step is to explore the next-to-leading and next-to-next-to-leadingorders (NLO and
NNLO). We include the subleading contribution (chiral two pion exchange)to the EFT potential
as a perturbation and study the divergences appearing as a consequence of the singular character
of the potential. We will not enter into the specific details on how to analyze the divergences
and how to determine the number of counterterms curing them. The interested reader can consult

1Notice that for higher partial waves OPE becomes perturbative [18]. Alternatively, they can be non-perturbative
renormalized from the lower partial waves without counterterm proliferation by using the adequate techniques [15].
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Partial wave LO NLO N2LO N3LO
1S0 1 3 3 4

3S1−
3D1 1 6 6 6

1P1 0 1 1 2
3P0 1 2 2 2
3P1 0 1 1 2

3P2−
3F2 1 6 6 6

1D2 0 0 0 1
3D2 1 2 2 2

3D3−
3G3 0 0 0 1

All 5 21 21 27
Weinberg 2 9 9 24

Table 1: Power counting (i.e. number of counterterms) in two-nucleon scattering for different partial waves.
We notice that the exact number of counterterms depends on the representation of the contact range interac-
tion (the difference being redundant counterterms) – in thetable above we have employed energy-dependent
contact interactions in coordinate space [19, 20] – and thatthe counting is still disputed in repulsive triplet
channels [22]. We also compare to the standard Weinberg approach and notice that at high orders the number
of counterterms converge.

Refs. [18, 19, 20, 21, 22, 23] for a detailed account from different perspectives (renormalization
group analysis, coordinate space and momentum space). Instead we merely present a compact
summary of the results in Table 1. In general we obtain a larger number of counterterms than the
Weinberg approach at lower orders.

Once we have determined the power counting, it is time to see how well we compare with
experiment. We present the LO, NLO and NNLO predictions of Refs. [19,20] for the phase
shifts of the lower partial waves in Figure 1. We regularize the EFT potentialwith a sharp cut-off
in coordinate space (i.e. a boundary condition), for which we take the values rc = 0.6− 0.9fm.
The counterterms are determined by fitting the data in the center-of-mass momentum rangek =

40− 160MeV (k = 100− 200MeV) for S-waves (P- and D-waves). As can be seen, they do in
general compare well with the phase shifts obtained with the Nijmegen II potential [24] (which are
equivalent to the partial wave analysis of Ref. [25]) and show a clear convergence pattern, meaning
that the EFT expansion works. For completeness, we also compare with the NNLO results of
Refs. [26, 27] in the Weinberg counting and see that we do better.

To summarize, we have shown how to construct a consistent power counting for two-nucleon
scattering that is successful at the phenomenological level. The power counting is similar to Wein-
berg’s, but contact range physics definitively play a more important roleat lower orders. In the
future we expect to extend the ideas presented in this contribution to the thee-nucleon sector and
the study of electroweak reactions on the deuteron. Even though the technical details are more
challenging than for two-nucleon scattering, at the conceptual level the discussion is straightfor-
ward and we can anticipate the enhancement of contact operators with respect to the expectations
derived from naive dimensional analysis.
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Figure 1: The S-, P- and D-wave phase shifts in two-nucleon scatteringwithin nuclear EFT (δ is the
phase shift andkc.m. the center-of-mass momentum). We are using the power counting described in this
contribution, in which one-pion exchange is non-perturbative and chiral two-pion exchange is added as
a perturbation [19, 20]. The bands reflect the cut-off uncertainty of the results in the rangerc = 0.6−
0.9fm (boundary radius). The dashed line (not always visible)represents the the 0.3fm NNLO results. The
phase shifts are compared with the corresponding ones in theWeinberg counting, which are taken from
Refs. [26, 27].
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