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The effective field theory formulation of nuclear forcesrgssthe possibility of making systematic
calculations in few-nucleon systems, that is, we can knaadirance the uncertainty of theoretical
predictions. However, until recently, this promise hasaamad unfulfilled. A precondition for
systematicity is the existence of a power counting at thellef/observables, a goal that has not
been easy to achieve. Here we will review the ideas openimgaith to the formulation of power
counting for two-nucleon scattering. We will concentratetlee conceptual aspects rather than on
the technical ones. While one pion exchange is non-periugdatthe lower partial waves and we
iterate it at all orders, the chiral two pion exchange diaggaan be treated as a perturbation. The
additional requirement of renormalizability (cut-off iplendence) guarantees the consistency,
sistematicity and model independence of the theory andrdetes the power counting (i.e. the
relative size) of the contact range operators. The numbeowfterterms is larger than what is
expected from naive dimensional analysis. Finally theityaf the phase shifts is as good (if not
better) than in the Weinberg counting at the same order.
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1. Introduction

The nature and derivation of nuclear forces is a central problem @déauphysics that still
remains open after six decades of research. While there are manynpéreological descriptions
of the nuclear force that are able to reproduce two-nucleon scattesibagadd the properties of
light nuclei with great accuracy, what theorists ultimately want is to derivdear forces from
guantum chromodynamics (QCD), the fundamental theory of strong ititemac The direct strat-
egy — to compute nuclear physics in lattice QCD — is full of promise and is startiexpiore the
two [1, 2] and three [3] nucleon sector, but currently only for largenpitasses as they require
less computational power. Even though lattice QCD will eventually reach tysqath pion mass,
in the meantime there is a more indirect way to do the job: to formulate an effeidelieory
(EFT) description of few nucleon systems that incorporates the low gsgrgmetries of QCD, in
particular chiral symmetry. In this contribution we will follow the EFT approaehich also has
the advantage of complementing lattice QCD calculations via chiral extrapolations

The standard EFT for hadronic processes is chiral perturbationyt{€nPT). However,
its application to the two-nucleon sector is not straightforward owing to theaappce of non-
perturbative phenomena (e.g. the existence of the deuteron). To s@verdblem Weinberg
proposed to expand the potential (instead of the scattering amplitude) withi@hA& frame-
work [4, 5]. The resulting potential is then iterated at all orders by pluggimto the Schrodinger
equation for obtaining theoretical predictions. This simple and powerfal iges been followed
with enthusiasm (see Refs.[6, 7] for reviews), leading to the developoh@otentials that are able
to reproduce the two-nucleon scattering data wit¢?ad.o.f. ~ 1 for laboratory energies below
300MeV [8, 9]. However, rather than a definitive solution, the Weinlpggascription is a smart
workaround for avoiding the (formerly unsolved) issue of the nornupeative renormalizability
of the EFT potential, which is in turn instrumental for the formulation of nuclegaf.BAMe now
know that the Weinberg counting is inconsistent [10, 11], but we alswkhe ingredients that are
necessary for averting the theoretical limitations of the Weinberg appi@agrticular, a solid
understanding of the renormalization of singular interactions [12, 135},

In this contribution we will explain how to construct a consistent power tingrfor nuclear
EFT. The advantage of power counting is that it makes the calculationsratste at each order
in the EFT expansion we know theepriori error of the theoretical predictions in advance. The
discussion will be qualitative and we will present the conditions for havowep counting at the
level of observables as a recipe. Then we will show the specific applicafithis recipe to the
two-nucleon sector and discuss a bit the nuclear EFT we obtain and iis fesihe phase shifts.

2. How Do We Build a Power Counting?

The EFT formulation of nuclear forces is based on symmetries and powaticg. Chiral
symmetry provides the connection with QCD, while power counting is the o@lerinciple that
grants predictive power to EFT (it sorts out the infinite number of interasttompatible with the
low energy symmetries). Thanks to power counting the EFT amplitudes aaripegl as a power
series in terms of a small expansion paramgger Q//\o, which can be identified with the ratio
of the characteristic low energy sca&eover the high energy scally. Weinberg realized that the
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two-nucleon potential is amenable to a power counting expansion. Howleggrotential is not an
observable. Therefore the problem in nuclear EFT is to ensure thabther gounting expansion
of the potentiaV translates into an expansion of the scattering amplifude

Vmax Vmax
VEFT = Z V<v) + ﬁ(x\émaﬂ_l) - TEFT = z T(v> + ﬁ(x\émaﬂ_l) 9 (21)

vV>Vo vV>Vo

with xg the expansion parameter. In this regard, the iteration of the potential in tipenhim-
Schwinger equationT(=V +V GoT), which is the way to obtain the scattering amplitiidéom
the potential in the Weinberg counting, does not guarantee a good expémsT. The problem
lies in the loops: they may probe the high-energy structure of the EFT pdtemtiech is not
meaningful (the expansion of the potential only makes sense at low eslebgiecan dominate
the calculations. Even after counterterms have been added, the looiputioris from subleading
pieces of the potential can spoil the power counting properties of cdges/[16, 17].

There is a fail-safe way to avoid the breakdown of power counting, wisidh) to iterate
only a minimal subset of the EFT potential (usually the lowest order diagrand)(b) to treat
the subleading pieces as perturbations. The first point takes into adt@inon-perturbative
nature of the nuclear force and the second guarantees that a supleawliribution in the potential
remains subleading in the scattering amplitude. A third condition that is still rejtdrebtain a
renormalizable theory is the following: (c) at each step in the constructiomeoEFT, check for
cut-off independence of the results and, if not, include additional caentes. Renormalizability
is necessary if we want power counting to hold for any value of the dusothe calculations are
actually model-independent. This last step is simple at the conceptual levelpriplex at the
technical one: its realization depends on a good understanding of thien@lization of singular
interactions [12, 13, 14, 15]. In the next section we will show the regwapplying this recipe.

3. The Power Countingin Nuclear EFT

We begin by choosing a minimal set of diagrams to iterate: the obvious carslala&e¢he
one pion exchange potential and the two S-wave contact interactionsathi@rm the leading
order (LO) potential in the Weinberg counting. Now, if we check the ctitrafependence of the
LO observables we will find that the two counterterms that we have includedarenough to
renormalize the amplitudes. As shown numerically by Nogga el al. [11] (sedrefs. [12, 13, 14]
for a formal derivation), there is still a strong cut-off dependence inPByepartial wave and a
moderate one in the in th# and3D, waves. Therefore we include one counterterm in each of
these lower partial waves to restore cut-off independence &t LO

The next step is to explore the next-to-leading and next-to-next-to-leadieys (NLO and
NNLO). We include the subleading contribution (chiral two pion exchangehe EFT potential
as a perturbation and study the divergences appearing as a camsegfi¢he singular character
of the potential. We will not enter into the specific details on how to analyze trergdinces
and how to determine the number of counterterms curing them. The intereatisat ocan consult

INotice that for higher partial waves OPE becomes perturbative [1Bgrrfatively, they can be non-perturbative
renormalized from the lower partial waves without counterterm prolifemaby using the adequate techniques [15].
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Partial wave| LO | NLO | N2LO | N3LO
sy 1 3 3 4
35, — 3Dy 1 6 6 6
o= 0 1 1 2
3P 1 2 2 2
3P, 0 1 1 2
3P, — 3R, 1 6 6 6
D, 0 0 0 1
3D, 1 2 2 2
3D3—3G3 0 0 0 1
All 5 21 21 27
Weinberg | 2 9 9 24

Table 1: Power counting (i.e. number of counterterms) in two-nuclscattering for different partial waves.
We notice that the exact number of counterterms dependsarpiesentation of the contact range interac-
tion (the difference being redundant counterterms) — iridhée above we have employed energy-dependent
contact interactions in coordinate space [19, 20] — andthieatounting is still disputed in repulsive triplet
channels [22]. We also compare to the standard Weinbergagppand notice that at high orders the number
of counterterms converge.

Refs. [18, 19, 20, 21, 22, 23] for a detailed account from diffeparspectives (renormalization
group analysis, coordinate space and momentum space). Instead we pnesent a compact
summary of the results in Table 1. In general we obtain a larger numbeuaoterterms than the
Weinberg approach at lower orders.

Once we have determined the power counting, it is time to see how well we cemjitar
experiment. We present the LO, NLO and NNLO predictions of Refs. 209,for the phase
shifts of the lower partial waves in Figure 1. We regularize the EFT potesiihla sharp cut-off
in coordinate space (i.e. a boundary condition), for which we take thesaju= 0.6 — 0.9fm.

The counterterms are determined by fitting the data in the center-of-mass momamnigek =

40— 160MeV k = 100— 200MeV) for S-waves (P- and D-waves). As can be seen, they do in
general compare well with the phase shifts obtained with the Nijmegen Il pdtg#jdwhich are
equivalent to the partial wave analysis of Ref. [25]) and show a clearazgence pattern, meaning
that the EFT expansion works. For completeness, we also compare with\th® Kesults of
Refs. [26, 27] in the Weinberg counting and see that we do better.

To summarize, we have shown how to construct a consistent power ogfmtitwo-nucleon
scattering that is successful at the phenomenological level. The powetig is similar to Wein-
berg’s, but contact range physics definitively play a more importantablewer orders. In the
future we expect to extend the ideas presented in this contribution to theulekssn sector and
the study of electroweak reactions on the deuteron. Even though thecactietails are more
challenging than for two-nucleon scattering, at the conceptual leveliscassion is straightfor-
ward and we can anticipate the enhancement of contact operators vpi#itrés the expectations
derived from naive dimensional analysis.
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Figure 1. The S-, P- and D-wave phase shifts in two-nucleon scattesiitigin nuclear EFT § is the
phase shift and;m the center-of-mass momentum). We are using the power caudgscribed in this
contribution, in which one-pion exchange is non-pertuveagnd chiral two-pion exchange is added as
a perturbation [19, 20]. The bands reflect the cut-off uraiety of the results in the rangg = 0.6 —
0.9fm (boundary radius). The dashed line (not always visit@pyesents the the®fm NNLO results. The
phase shifts are compared with the corresponding ones ikVdieberg counting, which are taken from
Refs. [26, 27].
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