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The relation between the low energy constants appearing in the effective field theory (EFT) de-
scription of the ΛN → NN transition potential and the parameters of the one-meson-exchange
model previously developed is obtained. We extract the relative importance of the different ex-
change mechanisms included in the meson picture by means of a comparison to the corresponding
operational structures appearing in the EFT approach. Constraints on weak baryon-baryon-meson
couplings for a possible scalar exchange are also discussed. This work is based on the lowest order
EFT approach of Ref. [1]. Higher order contributions are sketched.
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1. The ΛN interaction and the One Meson Exchange model

The Λ hyperon decays in free space through the nonleptonic weak decay modes Λ→ nπ0

and Λ→ pπ−, with an approximate ratio of 36:64. This mechanism is highly suppressed in the
nuclear medium, since the momentum of the nucleon in the final state is not large enough to access
unoccupied states above the Fermi energy level. However, hypernuclear systems decay, precisely
due to the presence of surrounding nucleons, by means of single-, Γ1N = ΛN → NN, and multi-
nucleon induced decay mechanisms. The contribution to the decay rate from these mechanisms
becomes more important for heavier hypernuclei (which have larger Fermi energy levels). It is
through hypernuclear decay observables that we study the ΛN→ NN interaction.

Traditionally, and in analogy with the strong NN interaction, the one-nucleon induced decay
mode, ΛN→ NN, has been described by a one-boson-exchange model, in which ground states of
the pseudoscalar and vector meson octets are exchanged [2]. Heavier mesons account for shorter
distances, and yet higher energy physics is parametrized through explicit cut-offs of ≈ 1 GeV.
The momentum space transition potential is given by the nonrelativistic limit of the appropriate
Feynman amplitude depicted in Figs. 1(a) and 1(b). The six potentials, as well as the necessary
baryon-baryon-meson Hamiltonians, are explicitely given in [1].

Λ N

N N

π, η, ρ, ω

p1

p2

p3

p4

(a)

Λ N

N N

K,K∗
p1

p2

p3

p4

(a)

Figure 1: Non-strange (a) and strange (b) meson-exchange contributions to the ΛN→NN weak transition
potential. A weak insertion is indicated by a solid circle.

2. Effective Field Theory

In order to study the ΛN → NN interaction in a less model dependent way, we build an ef-
fective field theory (EFT). In contrast to the one meson exchange (OME) model, this approach
provides a systematic way of handling nonperturbative strong interaction physics. With this tech-
nique, the baryon-baryon interaction is separated into long- and short-distance components. Below
a certain cut-off energy, an EFT describes the interaction involving the degrees of freedom appear-
ing explicitly in this energy domain. In the nucleon-nucleon sector, these degrees of freedom are
usually the nucleons and the pions, but when higher energies are involved, as in our case, heavier
mesons and baryons must be included. The short distance dynamics are not accounted for by heav-
ier mesons, as in the OME models, but by a series of contact terms that respect chiral symmetry,
Lorentz invariance and the applicable discrete symmetries. These local interactions are organized
as an increasing number of derivatives, so that each term corresponds to a given power of a small
parameter in the theory, which in a baryon-baryon interaction is usually the ratio between a typical
momentum and a baryon mass. In our case, the parameter is ~q

MN
, where ~q is the transferred mo-
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mentum and MN the nucleon mass. The local operators are accompanied by a series of low energy
constants (LECs) that must be fitted to reproduce the experimental data (on hypernuclear decay).

The EFT for the non-leptonic weak |∆S|= 1 ΛN interaction was first formulated in Refs. [3, 4].
The authors in [3] constructed the effective theory by adding to the long-ranged one-pion-exchange
mechanism (OPE) a four-fermion contact interaction, coming from Lorentz four-vector currents.
Later, in Ref. [4], the K- exchange mechanism (OKE) was added to the intermediate range of
the interaction, as well as additional operational structures to the short range part of the transition
potential, as depicted in Fig. 2. The present work represents an update of the one performed in
Ref. [4].

Figure 2: LO contributions to the potential: the OPE and OKE and a local term with no derivatives.

Figure 3: NLO contributions to the potential: 2π exchanges as well as local terms containing one derivative.

At next to leading order (NLO) one has to consider the contribution coming from the dia-
grams in Fig. 3 [5]. In particular, the calculation of diagrams containing an intermediate sigma
baryon requires the knowledge of the strong ΛΣπ vertex, obtained from the SU(3) strong chiral
Lagrangian,

L S
ΛΣπ = − Ds√

3
ΨΛγ

µ
γ5ΨΣ ·∂µ~π , (2.1)

as well as the weak ΣNπ vertex, for which we take the following phenomenological Lagrangian

L W
ΣNπ = −iGFm2

πΨN

[
(A

Σ
1
2
+B

Σ
1
2
γ

5)~τ ·~πΨ
Σ

1
2
+(A

Σ
3
2
+B

Σ
3
2
γ

5)~T ·~πΨ
Σ

3
2

]
, (2.2)

where the parameters A
Σ

1
2
, A

Σ
3
2
, B

Σ
1
2

and B
Σ

3
2

are obtained from a fit to the non-leptonic decay of
the Σ [6]. The weak ΛNππ vertex, which is also needed at this order, can be obtained by expanding
the weak SU(3) chiral Lagrangian,

L = GFm2
π

hΛN

f 2
π

ΨNΨΛ~π2. (2.3)
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Notice that, in contrast to the ΛNπ vertex, the coupling appearing in the ΛNππ Lagrangian is not
fitted to experimental data and introduces more uncertainty to the theory through the parameter
hΛN .

partial wave operator size I
1S0→ 1S0 1̂, ~σ1~σ2 1 1
1S0→ 3P0 (~σ1−~σ2)~q, (~σ1×~σ2)~q q/MN 1
3S1→ 3S1 1̂,~σ1~σ2 1 0
3S1→ 1P1 (~σ1−~σ2)~q, (~σ1×~σ2)~q q/MN 0
3S1→ 3P1 (~σ1 +~σ2)~q q/MN 1
3S1→ 3D1 (~σ1×~q)(~σ2×~q) q2/MN

2 0

Table 1: ΛN→ NN transitions for an initial ΛN relative S−wave state.

For the contact interactions we rely directly on the terms which enter at each order given
the symmetries fulfilled by the weak |∆S| = 1 transition. All possible transitions are shown in
Table 1 for an initial S−wave Λ−N state, where, the model independent leading order operators
in momentum space are listed. Organizing all these contributions in increasing size operators,
we obtain the most general Lorentz invariant potential, for the four-fermion (4P) interaction in
momentum space up to O(q2/M2) order (in units of GF = 1.166×10−11 MeV−2):

V4P(~q) = C0
0 +C1

0 ~σ1~σ2 (2.4)

+ C0
1

~σ1~q
2M

+ C1
1

~σ2~q
2M

+ iC2
1

(~σ1×~σ2)~q
2M̃

+ C0
2

~σ1~q ~σ2~q
4MM

+C1
2

~σ1~σ2 ~q 2

4MM
+C2

2
~q2

4MM̃
.

In order to distinguish which contributions enter at a certain order in the perturbative potential
we make use of Weinberg power counting [7]. In Figs. 2 and 3 we show which topologies enter
at leading and next to leading order in our EFT. All these diagrams are calculated in the heavy
baryon formalism [8]. The calculations are analogous to the ones done in the strong NN interac-
tion except for a couple of difficulties characteristic to the ΛN → NN transition. First, the term
ψN(Bπγ5)~τ ~φ πψΛ appearing in the weak ΛNπ Hamiltonian enters at second order in the heavy
baryon expansion, and a priori one should neglect it in front of ψNAπ~τ ~φ πψΛ. Nevertheless, the
constants Aπ and Bπ , adjusted to reproduce the free-space Λ decay, fulfill the relation |Bπ | ' 7|Aπ |,
compensating thus the difference in heavy baryon orders. Second, in the loop integrals appearing
at NLO, specifically in the denominators coming from the baryon propagators, appear quantities of
the type MΛ−MN and MΣ−MN . When the initial and final particles are the same, these transferred
energies don’t appear and the integrals become more simple.

Notice that the 1π corrections to the LO contact interactions, as for example the ones in Fig. 4,
also enter at NLO. These diagrams only shift the coefficients of the LO contact terms with mπ ,
MΛ−MN and MΣ−MN dependent functions.

3. LO fit and comparison to the OME

The potential at LO is written as the sum of the OPE and OKE potentials and the LO part of
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Figure 4: Two corrections to LO contact interactions

the 4-point interaction potential.

VLO(~q) = Vπ(~q)+VK(~q)+V4p(~q;C0
0 ,C

1
0) (3.1)

There are two free parameters, C0
0 and C1

0 , that need to be fitted to the hypernuclear decay data. We
have three independent observables: the total nonmesonic decay rate, Γ(ΛN → NN); the partial
decay rate, Γ(Λn→nn)

Γ(Λp→np) ; and the asymmetry, A = N+(p)−N−(p)
N+(p)+N−(p) , with N+(p) (N−(p)) the number of

protons going up (down) with respect to the hypernuclear polarization axis, and which is related
to the interference between parity violating (PV) and parity conserving (PC) amplitudes of the
weak transition. A LO fit to these observables for three different hypernuclei, Λ

5 He, Λ
11B and

Λ
12C, has been performed. The results are shown in Fig. 5 together with the experimental values.
Our calculation receives the input of strong interaction models through the baryon-baryon-kaon
coupling constants, form factors and the derivation of the baryon-baryon wave functions within the
T-matrix formalism [2]. In Fig. 5 we show our results for two different strong interaction models,
Jülich [9] and Nijmegen [10]. It can be seen that the available experimental database for the
hypernuclear decay is described with good accuracy by this LO EFT potential.

Figure 5: Hypernuclear decay observables (total and partial decay rates and asymmetry for Λ
5 He, Λ

11B and
Λ
12C), and their fitted values. The total decay rates are in units of the Λ decay rate in free space (ΓΛ =
3.8×109s−1). All the quantities are adimensional.

In order to understand the dynamical origin of higher energy physics encapsulated in the con-
tact interactions, we have related the LECs appearing in the LO EFT potential with the heavy
meson parameters appearing in the OME potentials. This procedure is called resonance saturation
and has been previously applied to the NN interaction by other authors [11].

Since the OPE and OKE appear explicitly in both potentials we only need to compare the
operator structures appearing in the EFT local terms with the ones appearing in the heavy meson
potentials (η , ω , ρ and K∗). In the EFT these are naturally organized in increasing powers of
momentum. In contrast, the OME potentials must be expanded in powers of ~q, so each operator
structure comes accompanied by a definite power of transferred momentum ~q.
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Nijmegen Jülich
OME expansion LO PC calculation OME expansion LO PC calculation

C0
0 1.07±0.88 (4.01±0.23) −1.7±2.6 (4.03±0.50)

C1
0 0.02±0.36 (0.02±0.33) 0.12±0.37 (−0.30±0.28)

Table 2: Values for the LECs obtained from the two sources: OME expansion and LO (PC) EFT calculation,
using the Nijmegen and Jülich strong interaction models. All the quantities are in units of GF = 1.166×
10−11 MeV−2.

In Table 2 we compare the numerical values for the LO LECs obtained with the EFT fit and
with the expansion of the OME potentials. The largest discrepancy appears in the C0

0 LEC. This
finding partly motivated us to consider explicitly a scalar isoscalar operator in the OME picture, in
the form of a sigma meson. This inclusion produces an additional contribution to the C0

0 OME LEC,

−m2
σ

m2
π

Aσ gNNσ , where gNNσ is the sigma coupling, mσ and mπ the sigma and pion masses and Aσ

parametrizes the PC part of the weak ΛNσ vertex. This procedure can be used to set bounds on the
(unknown) values for Aσ . For example, taking the values of mσ = 550 MeV and gNNσ = 8.8 from
Ref. [12], and working within the Nijmegen strong potential model, 3.3≤ Aσ ≤ 7.3, as derived in
Ref. [1].
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