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We discuss the heavy-quark effective theory (HQET) parameters,λE andλH , which correspond

to matrix elements representing quark-gluon three-body components in theB-meson wavefunc-

tion. We derive the QCD sum rules forλE,H calculating the new higher-order contributions to

the operator product expansion for the relevant correlator in the HQET, i.e., the orderαs radiative

corrections to the Wilson coefficients associated with the dimension-5 quark-gluon mixed opera-

tor, and the power corrections due to the dimension-6 four-quark operators. We find that the new

radiative corrections significantly improve the stability of the corresponding Borel sum rules and

lead to the reduction of the values ofλE,H . We also discuss the improvement for the sum rules

with the resummation of the relevant logarithms of theb-quark mass based on the renormalization

group and present update on the values ofλE,H .
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1. Introduction

The decays of theB mesons play distinguished roles in exploring CP violation and the flavor
sector of the Standard Model [1]. In the heavy-quark limit based onΛQCD/mb ¿ 1 with mb be-
ing theb-quark mass, theB-meson matrix elements relevant for those decays obey heavy-quark
symmetry, and are described by the heavy-quark effective theory (HQET) [2]. Here, fundamental
quantities are the HQET parameters that are defined as matrix elements of the relevant local oper-
ators, like the decay constant [2]: 〈0|qγργ5hv|B̄(v)〉 = iF (µ)vρ , where|B̄(v)〉 is theB̄-meson state
with the 4-velocityv in the HQET,q is the light-antiquark field,hv is the effective heavy-quark field
asb(x) = e−imbv·xhv(x)+ O(1/mb), with /vhv(x) = hv(x), and the heavy-light local operator in the
LHS is renormalized at the scaleµ. The decay constantF(µ) represents the magnitude of the va-
lence Fock content in theB-meson wavefunction in the heavy-quark limit, and thus determines the
normalization of the amplitude for exclusiveB-meson decays. The heavy-quark expansion gives,
fB
√

mB = F(µ)[1+(CFαs/4π)(3ln(mb/µ)−2)+ . . .]+O(1/mb), and relatesF(µ) to the physical
decay constantfB [2], whose value is now obtained rather precisely from lattice QCD calculations.

We can also define the analogues ofF(µ), which are associated with the higher Fock compo-
nents inside theB meson. For the non-minimal parton configurations with additional gluons, the
corresponding HQET parameters are defined as [3]

〈0|qααα ·gEEEγ5hv|B̄(v)〉= F(µ)λ 2
E(µ), 〈0|qσσσ ·gHHHγ5hv|B̄(v)〉= iF (µ)λ 2

H(µ), (1.1)

in terms of the matrix elements in theB-meson rest frame withv = (1,000). Here, the three-body
quark-gluon operators are associated with the chromoelectric and chromomagnetic fields,Ei = G0i

andH i = (−1/2)ε i jkG jk, with Gµν being the gluon field strength tensor. The values ofλ 2
E,H were

estimated in [3] using QCD sum rules, as

λ 2
E(µ) = 0.11±0.06 GeV2, λ 2

H(µ) = 0.18±0.07 GeV2, (1.2)

at µ = 1 GeV; besides this rather rough estimate, there has been no other estimate. Recently, it has
been demonstrated that theB-meson valence Fock light-cone distribution amplitudeφ+(ω,µ) [3, 4]

1
iF (µ)

〈0|q̄(tn)P exp

[
ig

∫ t

0
dλ n·A(λn)

]
/nγ5hv(0)|B̄(v)〉=

∫
dωe−iωtφ+(ω,µ), (1.3)

with nµ as the light-like vector (n2 = 0, n·v= 1), is significantly contaminated by the multiparticle
Fock states [5], so that the contributions represented by the novel HQET parametersλ 2

E,H of (1.1)
could strongly affect the amplitudes for the exclusiveB-meson decays [6]. Therefore, an improved
estimate ofλ 2

E,H is expected to give a better control of the hadronic uncertainty which is a major
source of theoretical uncertainty in the calculations of theB-meson decay rates [1]. In this report,
we update the QCD sum rule calculation ofλ 2

E,H with the higher-order contributions in the HQET.

2. QCD sum rules in the HQET

We consider the correlator between the two- and three-body currents in the HQET,

i
∫

d4xe−iωv·x〈0|T [
q(0)Γ1gGµν(0)hv(0) hv(x)Γ2q(x)

] |0〉

=−1
2

Tr
[
σµνΓ1P+Γ2

]
Π3H(ω)− 1

2
Tr

[
(ivµγν − ivνγµ)Γ1P+Γ2

]
Π3S(ω), (2.1)
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(a) (b) (d)(c) (e)

Figure 1: Nonvanishing diagrams for the OPE of the correlator (2.1) in the Fock-Schwinger gauge. The
double line denotes the propagator of the heavy quark, and the circle and box represent the relevant currents.

whereP+ = (1+ /v)/2 is the projector on the upper components of heavy-quark spinor,Γ1 is an
arbitrary gamma matrix, and we chooseΓ2 = γ5 to construct sum rules for pseudoscalarB meson.
Π3H(ω) andΠ3S(ω) provide sum rules to evaluateλ 2

H and the “splitting”λ 2
H −λ 2

E, respectively,
based on the corresponding dispersion relations,

Π3H(ω) =
F2(µ)λ 2

H(µ)
6
(
Λ̄−ω− i0

) + · · · , Π3S(ω) =
F2(µ)

[
λ 2

H(µ)−λ 2
E(µ)

]

6
(
Λ̄−ω− i0

) + · · · , (2.2)

with a pole at the “effective mass”̄Λ (= mB−mb) of the B-meson in the HQET and the ellipses
standing for the pole contributions of higher resonances and the continuum contributions. We
note that, with the formal substitutiongGµν(0) → 1 in the LHS in (2.1), the RHS reduces to
(−1/2)Tr [Γ1P+Γ2]ΠF(ω), where the corresponding correlation function obeys the dispersion rela-
tion, ΠF(ω) = F2(µ)/[2(Λ̄−ω− i0)]+ · · ·, and thus provides a sum rule to evaluateF(µ) [2, 7, 8].

The matching of the dispersion relations of (2.2) with (X = 3H,3S)

ΠX(ω)
∣∣
−ωÀΛQCD

= CX
I (ω)+CX

q (ω)〈qq〉+CX
G(ω)〈G2〉+CX

σ (ω)〈qgG·σq〉+ · · · , (2.3)

which are obtained by the operator product expansion (OPE) of the correlator (2.1) in the re-
gion −ω À ΛQCD, yields the corresponding sum rules. Here, the usual vacuum condensates,
〈qq〉 ≡ 〈0|qq|0〉, 〈G2〉 ≡ 〈0|(Ga

µν)2|0〉, 〈gG·σq〉 ≡ 〈0|qgGµνσµνq|0〉, . . ., arise with increasing
dimension, which implies extra powers of1/ω for the corresponding Wilson coefficientsCX

k (ω).
The OPE (2.3) at the leading accuracy inαs is represented by the diagrams in Fig.1; here,
we use the Fock-Schwinger gauge,xµAµ(x) = 0, for the background gluon field, so that the
heavy quark does not interact with the nonperturbative gluons in the calculation for power cor-
rections. The diagrams (a)-(d) generate, respectively, the first four terms of (2.3), as obtained in
[3]. The matching between (2.3) and (2.2) is performed for their Borel transforms,BM[ΠX(ω)] =∫ ∞

0 (dω/πM)e−ω/MImΠX(ω), to suppress the power-correction terms in (2.3) and the contributions
of higher resonances and continuum in (2.2). This allows us to obtain the usual Borel sum rules as
functions of the Borel parameterM, as well as the “continuum threshold”ωth above which the the
spectral functions relevant to (2.2) are approximated by those based on the OPE (2.3). Using the
standard values of the condensates and eliminatingF2(µ) in favor of the similar Borel sum rules
derived fromΠF(ω), we obtain the sum rules forλ 2

E,H , which depend sizeably on the parameterM
and thus yield the above-mentioned estimate (1.2) with rather large errors (see Fig.3 below).

3. Higher order corrections in the OPE: power corrections and radiative corrections

Now, we consider the QCD corrections beyond the above results. We first calculate the leading
correction term arising in the ellipses of (2.3), i.e., the power correction due to the diagram (e) in

3
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(a) (b) (d)

(g) (j)(h) (k)(i) (l)

(e)(c) (f)

Figure 2: Diagrams of the correlator (2.1) in the Fock-Schwinger gauge, relevant for the one-loop matching
of the Wilson coefficients associated with the dimension-5 quark-gluon-mixed condensate in (2.3).

Fig. 1, induced by the dimension-6 four-quark condensates∼ 〈(qγµTaq)2〉 [11]. We find that the
corresponding corrections to the Borel sum rules forλ 2

E,H are smaller than the dominant effects
from the lower-dimensional condensates, such that the convergence of the OPE (2.3) is suggested
at this level of power corrections.

Next, we calculate the new orderαs corrections to the sum rules forλ 2
E,H . Fig. 1 shows that,

among the Wilson coefficients of (2.3) used in the above-mentioned estimate (1.2) in [3], only
CX

σ (ω), associated with the dimension-5 quark-gluon-mixed condensate〈qgG· σq〉, was calcu-
lated at the level ofO(α0

s ), while all the others were ofO(αs). The one-loop diagrams in Fig.2
for the correlator (2.1) are relevant to the matching atO(αs) for CX

σ (ω). We calculate those dia-
grams inD = 4+2ε dimensions and derive theO(αs) correction toCX

σ (ω) in theMS scheme: the
diagrams (a)-(c) and (e) are all UV-divergent, while the diagrams (g), (j) and (l) are IR-divergent.
Each of the diagrams (f), (h), (i) and (k) vanishes as a result of the “canceling” UV and IR poles,
1/εUV −1/εIR, arising from the scaleless loop integral. On the other hand, the diagram (d) is of
O(ε). All those UV poles are subtracted according to theMS renormalization of the fields and
currents relevant to the correlator (2.1), in particular, taking into account the renormalization mix-
ing of the (many) quark-gluon three-body currents, while the sum of the IR poles is absorbed into
the matrix element〈qgG·σq〉 with the renormalized dimension-5 operator. The remaining finite
contribution determinesCX

σ (ω) atO(αs); the corresponding NLO Wilson coefficients read [11]

C3H
σ (ω) =

1
24ω

[
1− αs

4π

{(
Nc− 6

Nc

)
ln
−2ω

µ
− 5

2
Nc +

1
Nc

}]
, (3.1)

C3S
σ (ω) =

αs

96πω

[
Nc ln

−2ω
µ

+
1

2Nc

]
, (3.2)

in theMS scheme. Combined with the above results, (3.1) and (3.2) allow us to obtain the Borel
sum rules forλ 2

E,H(µ), with the perturbative corrections up toO(αs) accuracy, as well as with the
power corrections up to those due to the dimension-6 condensates.

4. Renormalization-group improvement and Borel analysis

The newO(αs) contributions due to Fig.2 bring an explicit dependence on the scaleµ through
the logarithmic term in (3.1) and (3.2), which produces the term proportional toln(M/µ) in the cor-
responding Borel sum rules; a remarkable point is that this newµ dependence, combined with that

4
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Figure 3: The Borel sum rules forλ 2
E,H at µ = 1 GeV with the continuum thresholdωth = 1.3 GeV.

of the relevant condensates, makes our sum-rule formulae forλ 2
E,H(µ) obey the renormalization

group (RG) equations with the correct one-loop mixing matrix [9, 6] betweenλ 2
E(µ) andλ 2

H(µ).
This fact allows us to perform further the RG improvement of our sum-rule formulae forλ 2

E,H(µ),
such that the effects associated withαs ln(M/µ) are resummed to all orders by taking into account
the anomalous dimensions of the relevant condensates. We eventually obtainλ 2

E,H(µ = 1 GeV)
based on the RG evolutions forλ 2

E,H(µ).
In Fig.3 we show the results forλ 2

E,H(µ = 1 GeV) as functions of the Borel parameterM using
our Borel-transformed sum-rule formulae [11] with the continuum thresholdωth = 1.3 GeV: the
OPE represented by Fig.1 yields the dashed curve, whose behaviors are close to the results of [3],
and the OPE represented by Figs.1 and2 yields the dot-dashed curve. The RG improvement of the
latter case yields the solid curve as our full result. The newO(αs) contributions due to Fig.2, and
also the associated RG effects, significantly improve the stability of the sum rules. Furthermore,
those contributions significantly reduce the magnitude ofλ 2

H as well asλ 2
E. We find the similar

stability of the RG-improved results in the “window”0.4 GeV. M . 0.6 GeV, for the cases with
ωth = 1.2-1.4 GeV. These results lead to an update on the values ofλ 2

E,H as [11]

λ 2
E(1 GeV) = 0.03±0.02 GeV2, λ 2

H(1 GeV) = 0.06±0.03 GeV2, (4.1)

where the errors take into account the uncertainties due to the choice of the continuum threshold
ωth and the dependence on the Borel parameterM, and also the other sources of uncertainties, i.e.,
uncertainties in the empirical input parameters, the vacuum condensates andΛQCD, and uncertain-
ties due to the lack of information of the higher-loop effects in the OPE. Compared with (1.2), the
central values of our result (4.1) are smaller by1/3 and the errors are also reduced considerably.
We note that, in the sum rules for the decay constantF(µ), the large effect from the order-αs radia-
tive corrections, mainly due to Coulomb interaction between heavy and light quarks, was observed
to enhanceF(1 GeV) significantly [7, 2]. This effect actually plays important roles, through (2.2),
in the reduction of (4.1) compared with (1.2). We mention that the sum rules forF(µ) are quite
stable with respect to inclusion of the order-α2

s radiative corrections [8].

5. Conclusions

We have updated the sum rules for the HQET parametersλ 2
E,H calculating the new higher-order

5
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contributions to the OPE for the corresponding HQET correlator. We have found that the new
order-αs radiative corrections to the Wilson coefficients associated with the dimension-5 quark-
gluon mixed condensate significantly reduce the values ofλ 2

E,H , and also make the corresponding
sum rule formulas forλ 2

E,H obey the correct RG equations. Our final result is obtained as (4.1),
where the perturbative as well as nonperturbative corrections are under control and the various
sources of errors are taken into account.

One might anticipate that the higher Fock components (1.1) in the B-meson wavefunction
would be associated with the “higher-twist” power corrections to the exclusiveB-decay ampli-
tudes, as in the wavefunctions for the light mesonsπ, ρ , etc. However, the presence of a heavy
quark inside theB meson causes nonperturbative quark-gluon interactions which induce the mix-
ing of (1.1) to the leading-twist distribution amplitude (1.3) [3, 5, 6], and the integral,λ−1

B (µ) ≡∫ ∞
0 dωφ+(ω,µ)/ω, determines the normalization of the so-called hard spectator interaction ampli-

tude [1] that contributes to the exclusiveB-decay amplitudes at theleadingpower [6]: using the
previous estimate (1.2), λ−1

B (1 GeV) ' 2.7 GeV−1 was obtained as a result of the most sophisti-
cated QCD calculation [6] and was larger than various theoretical estimates ofλ−1

B [1, 4, 10]. Now,
using our new result (4.1), we find thatλ−1

B becomes close to the other estimates asλ−1
B (1 GeV) =

2.0±0.2 GeV−1, with the error being due to the uncertainty in (4.1) only. Investigations of exclu-
siveB-meson decays using the present results will be reported elsewhere [12].
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