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1. Introduction

There has been a big improvement in interpreting the RHIC data within the Color Glass
Condensate (CGC) formalism in the last decade. A strong suppression of particle production in
deuteron - gold collisions at forward rapidities is observed at RHIC which can be interpreted as
an evidence for the importance of saturation effects at RHIC. This effect appears also in [1]. Al-
though the data is described very well, there are some peculiarities of the results of [1] that make
one wonder. First a very largeK-factor is required to fit the overall magnitude of the production
of pions. Secondly and perhaps more worryingly, the suppression in the theoretical curves of [1]
persists to extremely high transverse momenta, where one expects perturbation theory to be long
applicable andRdA to be equal to one. The calculations of [1] are based on the "hybrid formalism"
of [2]. The question we would like to address is that if the formula derived in [2] takes into account
all contributions at leading twist.

2. Gluon Production

In this section we derive the expression for the gluon contribution to hadron production in the
hybrid formalism. The quark and antiquark contributions will be included in the following section.

We consider a process where an energetic projectile scatters off a static target. The wave
function of the incoming projectile can be represented as

|Ψ〉in = Ω|v〉 (2.1)

where|v〉 is the zeroth order wave function andΩ is a unitary operator that diagonalizes the QCD
Hamiltonian. The outgoing state after scattering is

|Ψ〉out = S|Ψ〉in (2.2)

whereSis the eikonal scattering matrix for the projectile partonswhich propagate through the static
target fields. The number of produced gluons is then given by

dN
d2kdk+

= 〈v|Ω†S†Ωa†(k,k+)a(k,k+)Ω†SΩ|v〉 (2.3)

In order to find the operatorΩ, we start with the light-cone QCD Hamiltonian

H =

∫

k+>0

dk+

2π
d2x

(

1
2

Π−
a (k

+,x)Π−
a (−k+,x)+

1
4

Gi j
a (k

+,x)Gi j
a (−k+,x)

)

(2.4)

where the electric and magnetic pieces are

Π−
a (x

−,x) = − 1
∂+

(Di∂+Ai)
a(x−,x)

Gi j
a (x

−,x) = ∂iA
a
j (x

−,x)−∂ jA
a
i (x

−,x)−g fabcAb
i (x

−,x)Ac
j(x

−,x) (2.5)

We are working in the light cone gauge,A+ = 0. The other light cone component of the vector
potentialA− can be expressed via the solution of Maxwell’s equations asA− = − 1

∂+ ∂iAi. The
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transverse components of the vector potentialAi are expanded in terms of the gluon creation and
annihilation operators

Aa
i (x

−,x) =
∫ ∞

0

dk+

2π
1√
2k+

{

aa
i (k

+,x)e−ik+x− +aa†
i (k+,x)eik+x−

}

(2.6)

where the creation and annihilation operators satisfy the standard canonical commutation relations.
Ω is a unitary operator and it can be defined in terms of a Hermitian operatorG asΩ = e−iG. Since
the eigenvalues of the Hamiltonian are the eigenvalues of the free Hamiltonian to first order in
coupling constant, to this order the Hermitian operatorG satisfies the following equation

i[H0,G] = H1 (2.7)

whereH0 andH1 are the zeroth order and first order Hamiltonians in the perturbative expansion of
HQCD. After some algebra one gets

G=−g fabc
∫

k,p,k+ ,p+>0

1
√

2k+p+(k++ p+)

1
ωp+k−ωp−ωk

{[

pi −
p+

k+
ki

]

ab
i (k

+,k) (2.8)

×ac
j(p

+, p)aa†
j (k

++ p+,k+ p)+
p+

p++k+
k ja

b
i (k

+,k)ac
i (p

+, p)aa†
j (k

++ p+,k+ p)

}

+h.c.

with ω(k) = k2/2k+. The number of produced gluons to leading order in the coupling constant is
given by

dN
d2kdk+

=
1

(2π)3 〈v|
[[

Ŝ†G−GŜ†]aa†
k (k+,k)aa

k(k
+,k)

[

GŜ− ŜG
]

|v〉 (2.9)

Using the fact that theSmatrix operator acts as a color rotation on all gluon creation and annihi-
lation operators in coordinate space, i.e.Ŝ†aa

i (q
+,v)Ŝ= Sab(v)ab

i (q
+,v), and Eq. (2.8) one can see

that

dN
d2kdk+

∝ δ (p+−q+)〈v|a†(p++k+)a(p++k+)|v〉+ 〈v|a†(p++k+)a†(q+)a(p+)a(q++k+)|v〉
(2.10)

The second term involves a two particle density in the state|v〉 which is suppressed in the lead-
ing twist "partonic" approximation. This term is neglectedsince it is beyond our approximation.
Thus, keeping only the first term of Eq. (2.10) and assuming that the projectile state is color and
rotationally invariant, after some algebra the single inclusive gluon spectrum reads

dN
d2kdk+

=
αs

2π2

1
(2π)2

1
N2

c −1

∫ 1

x

dξ
ξ

1
k+

eik(z−z̄) 2
1−ξ

[

(1−ξ )2+ξ 2+(1−ξ )2ξ 2
]

(v− z̄)i

(v− z̄)2

(v−z)i

(v−z)2

×tr

{[

S†
(1−ξ )v+ξ z̄T

aS(1−ξ )v+ξ z̄−S†
vTaS̄z

][

S†
(1−ξ )v+ξzT

aS(1−ξ )v+ξz−S†
zTaSv

]}

× k+

2πξ
〈a†b

j

(

k+

ξ
,(1−ξ )v+ z̄

)

ab
j

(

k+

ξ
,(1−ξ )v+z

)

〉 (2.11)

whereξ is the longitudinal momentum fraction. Let us now consider the soft limit of this expres-
sion which corresponds to the situation when the longitudinal momentum of the observed gluon is
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much smaller than the momentum of the gluons in the valance state. Thus, taking the limitξ → 0
of Eq. (2.11) we get

dN
d2kdk+

=
αs

π2

1
(2π)2

Nc

N2
c −1

∫

1
k+

eik(z−z̄) (v− z̄)i

(v− z̄)2

(z−v)i

(z−v)2

tr

{

1−S†
vSz−S†

z̄Sv+S†
z̄Sz

}

〈a†a
j

(

k+

ξ
,v

)

aa
j

(

k+

ξ
,v

)

〉 (2.12)

Assuming color neutrality of the hadronic state, thekT factorized form reads ([4], [5] and [6] )

dN
d2kdk+

=
αs

π2

1
(2π)2

1
N2

c −1

∫

1
k+

eik(z−z̄) (v− z̄)i

(v− z̄)2

(z−v)i

(z−v)2 tr

{

S†
v̄Sv−S†

v̄Sz−S†
z̄Sv+S†

z̄Sz

}

〈ρa
v ρa

v̄ 〉
(2.13)

In partonic approximation there is only a small number of gluons in the hadron and there are no
correlations between different gluons. Therefore, for a color singlet hadronic state, color charge
correlator can be written as

〈ρa
v ρa

v̄ 〉= δ 2(v− v̄)Nc〈
∫

dp+

2π
a†a

i (p+,v)aa
i (p

+,v)〉 (2.14)

Hence, in the leading twist approximation the soft limit of the "hybrid formula" is as the partonic
limit of the kT factorized formula. In the soft limit the color charge correlation function and scatter-
ing amplitude can be expressed in terms of the projectile andtarget gluon momentum distributions
as

〈ρa
v ρa

v̄ 〉=
1

8παs

∫

p
eip·(v−v̄)p2φP(p,b) , tr[1−S†

vSv̄] = 2παsNc

∫

p
eip·(v−v̄) 1

p2 φT(p,b) (2.15)

Then, the single inclusive gluon spectrum can be written as

dN
d2kdηd2b

=
αsNc

N2
c −1

∫

l

[

1
(l +k)2 +

1
(l +k)2

l2

k2 +2
1

(l +k)2

l .k
k2

]

φT(l +k)φP(l) (2.16)

In the limit of large momentum of the produced gluonk ≫ Qs,ΛQCD the momentum integral in
Eq. (2.16) is dominated by two regions. In the first regionl ≪ k. In this kinematics the incoming
projectile gluon has a small transverse momentum and scatters with a large transverse momentum
transfer from the target. We refer to this contribution as elastic :

[

dN
d2kdη

]

elastic
=

αsNc

N2
c −1

1
k2φT(k)

∫

l<Q∼k
φP(l) (2.17)

The second contribution comes from the momentum rangel = k+q with q≪ k. This contribution
corresponds to a projectile gluon coming in with a large transverse momentum and scattering with
a small momentum transfer. We refer to this contribution as inelastic:

[

dN
d2kdη

]

inelastic
=

αsNc

N2
c −1

1
k2φP(k)

∫

q<Q∼k
φT(q) (2.18)

At high pT , both contributions are of the same order of magnitude. The probability of finding a low
pT gluon in the projectile is of order unity, but the probability of scattering this lowpT gluon with
a large momentum transfer is of orderαs. Whereas for the inelastic contribution, the probability of
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finding a highpT parton in the incoming wave function is of orderαs, but scattering of this high
pT parton with a small momentum exchange is of order unity. Assuming a perturbative behavior,
φ = µ2/p2 for both the projectile and the target, one can write

[

dN
d2kdη

]

elastic
= αsµ2

Pµ2
T ln

p2

Λ2
QCD

,

[

dN
d2kdη

]

inelastic
= αsµ2

Pµ2
T ln

p2

Q2
s

(2.19)

where we have assumed perturbative behavior for the target above the saturation momentum,Qs.
It is clear that at parametrically large transverse momentum the two contributions are comparable
and both must be kept.

If we now go back from soft limit to "hybrid formalism", it is easy to identify the same process.
Elastic contribution is related to the case when all the transverse momentum of the produced gluon
originates from the momentum transfer from the target. In the case of inelastic scattering, the
large transverse momentum of the gluon in the final state can only arise from a large relative
momentum between the two splitted gluons in the incoming projectile wave function.Taking into
account both elastic and inelastic contributions, also including the gluon splitting functions and
gluon fragmentation functions, one arrives to the final formula for the gluon production

dN
d2kdη

=
∫ 1

xF

dz
z2 Dh/g(z,Q)

[

x1 fg(x1,Q
2)NA(x2,

k
z
,b= 0) (2.20)

+
αs

π2

N2
c

N2
c −1

z4

k4

∫ 1

x1

dξ
ξ

[

1−ξ +ξ 2
]

Pg/g(ξ )x1 fg

(

x1

ξ
,Q2

)

∫

p2<Q2

d2p
(2π)2 p2NF(x2, p,b= 0)

]

where

NA

(

k,b=
z̄+z

2

)

=
1

N2
c −1

∫

d2(z− z̄)eik·(z−z̄)tr

[

S†
A(z̄)SA(z)

]

(2.21)

NF

(

k,b=
z̄+z

2

)

=
1
Nc

∫

d2(z− z̄)eik·(z−z̄)tr

[

S†
F(z̄)SF(z)

]

(2.22)

with the longitudinal momentum fractions are

xF =
k√
sNN

eη , x1 =
xF

z
, x2 = x1e−2η (2.23)

3. Including Quarks

We derive Eq. (2.20) for hadron production that includes both elastic and inelastic contribution
in a theory that does not contain quarks. This is obviously not a good approximation to reality
especially at forward rapidities, where the quark contribution must be the leading one. Thus, one
has to include the quark contributions. After some cumbersome calculation in the same spirit as
gluon production one arrives to the final formula

dNi

d2kdη
=

1
(2π)2

∫ 1

xF

dz
z2

[

x1 fg(x1,Q
2)NA(x2,

k
z
Dh/g(z,Q)+Σqx1 fq(x1,Q

2)NF(x2,
k
z
)Dh/q(z,Q)

]

+

∫ 1

xF

dz
z2

αs

2π2

z4

k4

∫

d2p
(2π)2 p2NF(p,x2)x1

∫ 1

x1

dξ
ξ

Σ jωi/ j(ξ )Pi/ j(ξ ) f j

(

x1

ξ
,Q

)

Dh/q(z,Q) (3.1)

where the inelastic weightsωi are defined in [7].
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4. Discussion

We presented the complete leading twist expression for inclusive hadron production in the
hybrid formalism that was derived in [7]. It was shown that inaddition to elastic scattering terms
first derived in [2], there are also terms that correspond to inelastic scattering of the projectile
partons on low momentum components of the target field.

The final states that correspond to the inelastic process aredihadron pairs where both hadrons
are emitted at forward rapidity and have strong back to back correlation. Since both produced
hadrons have large rapidity, such pairs with large transverse momentum are kinematically allowed
only at large collision energy. Thus one might expect this contribution not be of great importance
in RHIC kinematics, but it may be sizeable at LHC.

However the effect of inelastic contributions to single inclusive hadron production in proton-
proton and proton-nucleus collisions at RHIC and LHC are investigated in [3]. It is shown that
including the effects of inelastic contributions not only gives a good description of RHIC data but
it also leads to a sharper increase of the nuclear modification factorRpA with increasingpT .
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