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Mueller Navelet jets were proposed 25 years ago as a decisivetest of BFKL dynamics at hadron

colliders. We here present the first next-to-leading BFKL study of the cross section and azimuthal

decorrelation of these jets. This includes both next-to-leading corrections to the Green’s function

and next-to-leading corrections to the Mueller Navelet vertices. The obtained results for standard

observables proposed for studies of Mueller Navelet jets show that both sources of corrections

are of equal and big importance for final magnitude and behavior of observables, in particular for

the LHC kinematics investigated here in detail. Our analysis reveals that the observables obtained

within the complete next-to-leading order BFKL framework of the present work are quite similar

to the same observables obtained within next-to-leading logarithm DGLAP type treatment. There

is still a noticeable difference in both treatments for the ratio of the azimuthal angular moments

〈cos2φ〉/〈cosφ〉.
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1. Introduction

The understanding of the high energy regime of QCD is one of the key questions of particle
physics. In the semi-hard regime of a scattering process in which s≫−t, logarithms of the type
[αs ln(s/|t|)]n have to be resummed, giving the leading logarithmic (LL) Balitsky-Fadin-Kuraev-
Lipatov (BFKL) Pomeron [1] contribution to the gluon Green’s function. The question of testing
such effects experimentally then appeared, and various tests have been proposed in inclusive [2],
semi-inclusive [3] and exclusive processes [4]. The basic idea is to select specific observables
which reduce the importance of usual collinear logarithmiceffects à la DGLAP [5] with respect to
the BFKL one: the involved transverse scales should thus be of similar order of magnitude. We here
consider the Mueller Navelet (MN) jets [6] in hadron-hadroncolliders, defined as being separated
by a large relative rapidity, while having two similar transverse energies. In a DGLAP scenario, an
almost back-to-back emission is expected, while the allowed BFKL emission of partons between
these two jets leads in principle to a larger cross-section,with a reduced azimuthal correlation
between them. We report on recent results where both the NLL Green’s function [7] and the NLL
result for the jet vertices [8] are taken into account1. These new results have been obtained based
on a fast Fortran code, which allowed us to go beyond the studies of Ref. [10] where we developped
an exploratory Mathematica code. Detailed results will be presented elsewhere [11].

2. NLL calculation

The two hadrons collide at a center of mass energy
√

sproducing two very forward jets, whose
transverse momenta are labeled by Euclidean two dimensional vectorskJ,1 andkJ,2, and by their
azimuthal anglesφJ,1 andφJ,2. The jet rapiditiesyJ,1 andyJ,2 are related to the longitudinal mo-
mentum fractions of the jets viaxJ = |kJ|√

s eyJ . For largexJ,1 andxJ,2, collinear factorization leads to

dσ
d|kJ,1|d|kJ,2|dyJ,1 dyJ,2

= ∑
a,b

∫ 1

0
dx1

∫ 1

0
dx2 fa(x1) fb(x2)

dσ̂ab

d|kJ,1|d|kJ,2|dyJ,1 dyJ,2
, (2.1)

where fa,b are the parton distribution functions (PDFs) of a parton a (b) in the according proton.
The resummation of logarithmically enhanced contributions are included throughkT -factorization:

dσ̂ab

d|kJ,1|d|kJ,2|dyJ,1 dyJ,2
=

∫

dφJ,1 dφJ,2

∫

d2k1d2k2Va(−k1,x1)G(k1,k2, ŝ)Vb(k2,x2), (2.2)

where the BFKL Green’s functionG depends on ˆs= x1x2s. The jet verticesVa,b were calculated at
NLL order in Ref. [8]. Combining the PDFs with the jet vertices one writes

dσ
d|kJ,1|d|kJ,2|dyJ,1 dyJ,2

=

∫

dφJ,1 dφJ,2

∫

d2k1d2k2Φ(kJ,1,xJ,1,−k1)G(k1,k2, ŝ)Φ(kJ,2,xJ,2,k2) ,

where Φ(kJ,i ,xJ,i ,ki) =
∫

dxi f (xi)V(ki,xi). (2.3)

In view of the azimuthal decorrelation we want to investigate, we define the coefficients

Cm ≡
∫

dφJ,1 dφJ,2 cos
(

m(φJ,1−φJ,2−π)
)

∫

d2k1d2k2Φ(kJ,1,xJ,1,−k1)G(k1,k2, ŝ)Φ(kJ,2,xJ,2,k2),

1These vertices have been recently recomputed in Ref. [9], ina full BFKL approach.
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from which one can easily obtain the differential cross section and the azimuthal decorrelation as

dσ
d|kJ,1|d|kJ,2|dyJ,1 dyJ,2

= C0 and 〈cos(mϕ)〉 ≡ 〈cos
(

m(φJ,1−φJ,2−π)
)

〉 =
Cm

C0
. (2.4)

The important step is then to use the LL-BFKL eigenfunctions

En,ν(k1) =
1

π
√

2

(

k2
1

)iν− 1
2 einφ1 , (2.5)

although they strictly speaking do not diagonalize the NLL BFKL kernel. In the LL approximation,

Cm = (4−3δm,0)

∫

dν Cm,ν(|kJ,1|,xJ,1)C
∗
m,ν(|kJ,2|,xJ,2)

(

ŝ
s0

)ω(m,ν)

, (2.6)

where Cm,ν(|kJ|,xJ) =

∫

dφJ d2kdx f(x)V(k,x)Em,ν(k)cos(mφJ) , (2.7)

and ω(n,ν) = Ncαs/πχ0
(

|n|, 1
2 + iν

)

, with χ0(n,γ) = 2Ψ(1)−Ψ
(

γ + n
2

)

−Ψ
(

1− γ + n
2

)

. The
master formulae of the LL calculation (2.6, 2.7) will also beused for the NLL calculation, the
eigenvalue now turning to an operator containing aν derivative [12, 13], which acts on the impact
factors and effectively leads to a contribution to the eigenvalue which depends on the impact factors.

At NLL, the jet vertices are intimately dependent on the jet algorithm [8]. We here use the
cone algorithm, with the cone parameterR= 0.52. At NLL, one should also pay attention to the

choice of scales0. We find the choice of scales0 =
√

s0,1 s0,2 with s0,i =
x2

i
x2

J,i
k2

J,i rather natural,

since it does not depend on the momentak1,2 to be integrated out. Besides, the dependence with
respect tos0 of the whole amplitude can be studied, when taking into account the fact that both
the NLL BFKL Green’s function and the vertex functions ares0 dependent. In order to study the
effect of possible collinear improvement [15], we have, additionally, implemented forn = 0 the
scheme 3 of the first paper of Ref. [15]. This is only required by the Green’s function since we
could show by a numerical study that the jet vertices are freeof γ poles and thus do not call for any
collinear improvement. In practice, the use of Eqs. (2.6, 2.7) leads to the possibility to calculate
for a limited number ofm the coefficientsCm,ν as universal grids inν , instead of using a two-
dimensional grid ink space. We use MSTW 2008 PDFs [16] and a two-loop strong coupling with
a scaleµR =

√

|kJ,1| · |kJ,2| .

3. Results

Fig. 1 (left) displays the cross-section as a function of therelative jet rapidityY, for the LHC
center of mass energy

√
s= 7TeV, for which most of LHC data are taken at the moment, while

Fig. 1 (right) shows the relative variation of the cross-section with respect to MSTW 2008 when
changing the PDFs according to Ref. [17]. This explicitely shows the dramatic effect of the NLL
vertex corrections, of the same order as the one for the Green’s function [13, 18].

2A detailed study [11], based on the work of Ref. [14] where thejet vertices were computed in an approximated
smallR treatment, shows that the difference between an exact treatment and this approximation is small.
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Figure 1: Left: Differential cross section in dependence onY for |kJ,1| = |kJ,2| = 35GeV, at
√

s= 7 TeV.
Blue: pure LL result; Brown: pure NLL result; Green: combination of LL vertices with the collinear
improved NLL Green’s function; Red: full NLL vertices with the collinear improved NLL Green’s function.
Right: Relative variation of the cross-section in the full NLL approach, for various choices of PDFs with
respect to MSTW 2008 ones.
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Figure 2: Left: Azimuthal correlation in dependence onY for |kJ,1|= |kJ,2|= 35GeV, at
√

s= 7 TeV. Blue:
pure LL result; Brown: pure NLL result; Green: combination of LL vertices with the collinear improved
NLL Green’s function; Red: full NLL vertices with the collinear improved NLL Green’s function. Right:
Relative variation of the azimuthal correlation in the fullNLL approach, for various choices of PDFs with
respect to MSTW 2008 ones.

Fig. 2 (left) displays the azimuthal correlation as a function of the relative jet rapidityY, for
the LHC center of mass energy

√
s = 7TeV, while Fig. 2 (right) shows the relative variation of

the cross-section with respect to MSTW 2008 when changing the PDFs using the sets of Ref. [17].
The decorrelation based on our full NLL analysis is very small, similar to the one based on NLO
DGLAP. Fig. 2 (right) shows that〈cosφ〉 is much less sensitive to the PDFs than the cross section.

Detailed studies [10] have shown that the main source of uncertainties is due to the renor-
malization scaleµR and to the energy scale

√
s0. This is particularly important for the azimuthal

correlation, which, when including a collinear improved Green’s function, may exceed 1 for small
µR = µF . A noticeable difference can be expected between BFKL and DGLAP type of treatment
for the ratio〈cos2ϕ〉/〈cosϕ〉 . The BFKL results are shown in Fig. 3. We refer to Ref. [10] for a
comparison with the DGLAP approach at

√
s= 14 TeV.

In order to get more insight into the azimuthal correlation between jets, we have studied the
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Figure 3: Left: Ratio of azimuthal correlations〈cos2φ〉/〈cosφ〉 in dependence onY for |kJ,1| = |kJ,2| =

35GeV, at
√

s= 7 TeV. Blue: pure LL result; Brown: pure NLL result; Green: combination of LL vertices
with the collinear improved NLL Green’s function. Right: Relative variation of 〈cos2φ〉

〈cosφ〉 in the full NLL
approach when using other PDF sets than MSTW 2008.

∆φ distribution, a quantity which is accessible at experiments like ATLAS and CMS. Computing
〈cos(nφ)〉 up to large values ofn gives access to the angular distribution, since

1
σ

dσ
dφ

=
1

2π

{

1+2
∞

∑
n=1

cos(nφ) 〈cos(nφ)〉
}

. (3.1)

The results, for various values ofY, are shown in Fig. 4. Our full NLL treatment, when com-
pared with a mixed NLL+LL approach, predicts less decorrelation for the sameY, and a slower
decorrelation with increasingY.
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Figure 4: Azimuthal correlation. Left: NLL Green’s function combined with LL vertices. Right: NLL
Green’s function combined with NLL vertices.
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