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RPC simulations from a current stand point
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1. Introduction

Till recently, detailed Monte Carlo simulations of Resistive Plate Chambers down to charge
distributions, efficiency and time resolution, have been performed by working out the induction
characteristics of the stochastically growing avalanches over -just- one of the surrounding elec-
trodes; the induction process was then modeled through an ideal current generator (obtained for
instance by weighting-field techniques) that was usually sent to a bandwidth-limited amplifier-
chain and finally discriminated, [1]-[5]. Authors model the readout chain in substantially different
ways, however simulations share two significant facts: i) the influence of the detector capacitance
and/or its characteristic impedance is often acknowledged, but never explicitly included in calcula-
tions and ii) irrespective of the bandwidth/peaking time considered, if any, the electronics threshold
is characterized by an universal/shape-independent ‘threshold charge’ Qth, that is either left to the
experimentalist for proper determination ([6], for instance) or adjusted to describe the efficiency
data. As shown later, although this great conceptual simplification (hereafter, the ‘Qth-approach’)
has allowed to obtain useful simulation results, it inherently hides a difficulty with treating signal
induction, transmission and read-out consistently and thus partially undermines the ability of ob-
taining a precise description of some of the detector characteristics, especially those concerning
efficiency and timing performances, crosstalk and transmission losses in electrically-long counters,
phenomena for which the signal shape at threshold is generally of greater relevance than its charge.

The success of the ‘Qth-approach’ can be understood, at least partly, in the context of readout
chains that are slow compared to i) the time evolution of the electron component of the avalanches
created inside the amplification gap and to ii) the typical transient times of the associated electro-
magnetic perturbation (∆T ) inside the whole system. Under these conditions, the observable signal
amplitude is strongly related to the integral of the current induced over the pick-up electrode, with
independency from its original shape, the detector capacitance and other system details. From
the point of view of signal sensitivity, in particular, (i.e., efficiency), the ‘Qth-approach’ requires
therefore:

1. BW ≪ fc,

i.e. small bandwidths of the read-out chain BW , compared to the signal cutoff frequency, fc,
as estimated from its rise-time, [7].

2. BW ∗ ≪ 1/∆T ,

where BW ∗ is the system bandwidth (including both signal and electronics), as estimated
from the signal rise-time. In the context of transmission line theory, this condition can be
written as a function of the system electrical length, Λe, as Λe ≪ 1, meaning the system is
electrically short. Here Λe = BW ∗∆T and ∆T = D/v, where D is a characteristic propagation
scale (hereafter, the length of the read-out strip) and v is the signal propagation velocity along
the read-out structure.

In the context of time resolution there is yet a third condition, but this is not given here since
a short discussion is neither possible nor pertinent. Thus, in other words, under conditions 1,2
the signal formation inside the readout structure can be considered to be of the δ -impulse type.
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Whenever Qth was experimentally determined, it has to be expected that it was also obtained under
these conditions.

Since technological scenarios simultaneously dealing with BW ∼ fc and Λe = 20-40 are nowa-
days either built or foreseen, [7], it is clear that a strong necessity exists to consistently develop a
more general formulation of the problem of signal induction, transmission and read-out in RPCs.
A first step towards avoiding the aforementioned limitations was undertaken in [8], where direct
information from the signal waveforms was included in simulations in order to describe the most
characteristic multi-strip observables like charge sharing and specially cross-talk, as observed in
early implementations of timing RPCs with multi-strip readout.1 The formulation, based on the
‘induction+transmission’ model, was discussed in some detail in [7]. Under this model, the funda-
mental quantities necessary throughout the complete detector simulation are the induced currents
and no critical approximation is needed.

2. The induction+transmission model

Experimental agreement with transmission line theory has been reported for multi-strip Bakelite-
based RPCs up to 0.2GHz and up to 3GHz for glass-based RPCs, under conditions of external
excitation [9], [7]. On the other hand, a general framework for including any arbitrary readout
network was introduced by W. Riegler in [10]. Under this perspective, one might consider the
induction+transmission model proposed in [7, 8] to be an appropriate formalism for estimating
the measured currents in RPCs. The formalism suggests to separate the problem in 4 steps: i)
calculate the avalanche space-time charge density, ii) calculate the induced currents at a cross-
section of the device by using the Schockley-Ramo theorem or its generalized version if needed
[10], iii) introduce them as ideal current generators at the given longitudinal position and solve the
transmission-line equations for an arbitrary load ẑ0, iv) include the readout electronics as a convo-
lution at a later stage by identifying its input impedance with the corresponding elements of matrix
ẑ0.

This procedure is very elegant, however steps ii)-iii) lack internal consistency. The reason is
that derivations for generalized Shockley-Ramo theorems based on the Green’s reciprocity theorem
[10], as proposed for step ii), assume there is no position dependence of the induced currents or
potentials on the electrodes of interest, i.e., the system is electrically short. The latter is, however,
an assumption one wants to avoid when adopting a transmission line description, as in step iii).

Theoretical caveats aside, an early implementation of the rough induction+transmission model
has shown some virtues in capturing essential details of electrically-long glass-based RPCs: very
high cross-talk levels under certain circumstances, lack of strong signal shaping during transmis-
sion and the relevance of the impedance mismatch on the measured efficiencies [8, 11]. Therefore,
to the extent that the ‘induction+transmission’ model also recovers the exact circuital solutions as
expected from [10] when the system becomes electrically-short, another brick of evidence is added
to the phenomenological relevance of such an intuitive and computationally-inexpensive model.

1Unfortunately, the available characterization of the electronics, based on the experimental parameter Qth, enforced
a mixed-simulation: ‘signal shape’-dependent parameters (like the fraction of signal transmitted and cross-talk) were
combined ‘ad hoc’ with a Qth-based parameterization of the electronics.
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We aim at illustrating this for a simple ‘1-conductor + return’ scenario, as of Fig. 1-left, within this
short communication.
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Figure 1: Left: artistic representation of the family of parallel plate geometries studied in this work. Right:
a typical exponential signal at a field of 100kV/cm generated at the RPC cathode and abruptly saturating
after an amplification of around Imax/I0 = 107.

3. Circuit theory vs Transmission Line theory

According to the ‘induction+transmission’ framework, but also to the exact recipe given in
[10] for electrically-short structures, the currents induced on the pickup electrodes I(t), as a result
of the charges moving in the gas gap (q(t), drift velocity vd(t)), have to be calculated in a first step.
We assume that such a calculation can be performed in the same way within both frameworks,
so it is immaterial for the forthcoming discussion. Thus, once a certain initial current I(t) has
been calculated, the current at the readout point (green circle in Fig. 1-left) will be obtained here
under two different formalisms: a) circuit theory (subscript Ci − T ), according to [10], and b)
transmission line theory (subscript TL−T ), according to the model under investigation, i.e., the
‘induction-transmission’ model. The general expression for the currents that are read out in a multi-
conductor system across resistances R, situated just at one of the conductors ends (the other one
being simply open), when the structure is excited along line -n-, are:

I⃗Ci−T (t) =
1√
2π

∫ +∞

−∞
(1+ ẑ−1(ω) ẑ0)

−1 I⃗(ω)eiωtdω (3.1)

I⃗T L−T (t)=
ẑ0

R
(ẑ0+Ẑc)

−1
∞

∑
j=0

((ẑ0−Ẑc)(ẑ0+Ẑc)
−1) jẐcM̂

M̂−1
1n{I(t−y0+2 jD

v1
)+I(t−2( j+1)D−y0

v1
)}

. . .

M̂−1
Nn{I(t−y0+2 jD

vN
)+I(t−2( j+1)D−y0

vN
)}

(3.2)
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where we have assumed at this point that Ca → 0 (infinite bandwidth) and:

I⃗(ω) =
1√
2π

∫ +∞

−∞
I⃗(t)e−iωtdω (3.3)

Following the notation in [7], matrixes are represented by ,̂ while I⃗(t)= {0, ...,0n−1, I(t),0n+1, ...0N}
is the vector of initial currents and I⃗(ω) its Fourier Transform. Besides magnitudes connected to
the numerical solutions of the transmission line equations (matrix of eigenvectors M̂, eigenvalues
v1−N), it is important to note in eqs. 3.1, 3.2 the presence of both the RPC electrical and charac-
teristic impedance matrixes (ẑ, Ẑc, respectively), as well as the impedance matrix of the read-out
network ẑ0. Eq. 3.1 can be simply deduced by applying the terminal conditions and the generalized
Norton theorem ([14], for instance) while eq.3.2 is a particular case of eq. (10) in [7].

Unlike ẑ, the characteristic impedance Ẑc can be regarded as frequency-independent for most
practical purposes, except if losses are important (see [7]). Yet, in the typical case where losses
with respect to the return conductor (dielectric) or along the driven one (resistive) are dominant
over the effect of other conductors, a convenient factorization is possible, resulting in:

I⃗′T L−T (t) =
1√
2π

∫ +∞

−∞
I⃗T L−T (ω)e−D/Λ(ω)eiωtdω (3.4)

where 1/Λ(ω) is the attenuation constant [7]. When aiming at a circuital description, losses, if
present, are included through ẑ(ω).

Finally, the electronics response function h(t), can be included in a last step as:

I⃗′′T L−T (t) =
1√
2π

∫ +∞

−∞
I⃗′T L−T (ω)h(ω)eiωtdω (3.5)

as well as:

I⃗′CT−T (t) =
1√
2π

∫ +∞

−∞
I⃗CT−T (ω)h(ω)eiωtdω (3.6)

that would equal:

h(ω) =
1

1+RCaω j
(3.7)

for the simple case discussed in Fig. 1-left.
For practical RPCs, the general solution to the Transmission Line problem including losses and

electronics might be thus obtained via eqs. 3.2, 3.4, 3.5. If the system has a double-end readout, eq.
3.2 has to be replaced by eq. (10) in [7]. The validity of this approach was verified experimentally
in [7] for the case of external excitation.

It is daring to say that eqs. 3.1 and 3.2 may coincide in some limit, however this is -exactly-
what happens in the limit BW → 0 (that fulfills in practice the two conditions required by the ‘Qth-
approach’). Proving such a limit can be routinely done with any commercial circuit solver. In the
following, we perform equivalent simulations for the structure of Fig. 1 by using custom-developed
OCTAVE/MATLAB routines. Only the ‘1 conductor + return’ scenario will be discussed here so
all vectors and matrixes in eqs. 3.1, 3.2 collapse to scalars.
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Figure 2: Left: calculated capacitances as a function of the width and length of the structure shown in
Fig.1-left, under approximation [12]. Right: the associated characteristic impedance.

4. Results for parallel plate structures with 1 conductor + return

We chose a characteristic avalanche signal as created by a free electron originated at the
cathode, assuming space-charge suddenly stops the growth at a signal multiplication of roughly
Imax/I0 ≃ 107, [8]. Further parameters are vd = 0.02cm/ns and α −η = 100mm−1, as obtained at a
field of 100kV/cm for pure C2H2F4, [13], and extrapolated to P = 1atm, T = 20◦C. The resulting
signal, arbitrarily normalized to 1 at maximum is given in Fig. 1-right (in black):

I(t) = eS(t−tmax)Θ(t)Θ(tmax − t)+Θ(t − tmax)Θ(∆Te − t) (4.1)

where S = (α −η)vd , the time at maximum is tmax =
1
S ln Imax/I0 and the avalanche transient time

is ∆Te = g/vd , with g the gas gap. We include, for realism, a bandwidth-limited electronics imple-
mented as a low-pass circuit, with BW = 2GHz (Fig. 1-right (green)). It is clear that for multiple
avalanches, in first order, the resulting induced signals can be considered to be a superposition of
such type of elementary signals (see 1D-models in [2, 3] as well as [8]).

For this exercise, we purposely avoid usage of any commercial software and take as electro-
static parameters the 1D parameterization given by Xiang, in [12], for the capacitance of a parallel
plate geometry including fringe fields. We extend it to 2D by assuming fringe fields on each plate
side to be independent, so that:

C = ε0
WD

g
+DC f ,w(W/g)+WC f ,D(D/g) (4.2)

Here C f are the fringing capacitances as given in [12]. In this particular case:

Zc =
D
vC

(4.3)

z =
1

jωC
(4.4)

where v equals the speed of light, c. The outcome of this parameterization is shown in Fig. 2.
We let W and D vary logarithmically on intervals [0.03,5]cm, for the former, and [0.1,200]cm,

for the latter. The upper bound of W is chosen such that the system is electrically short across its
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Figure 3: Up: waveforms for several structures under circuit theory (Ci-T) and transmission line theory (TL-
T). Discrepancies appear around Λe = 1, and become more pronounced for higher characteristic impedances.
Down: 2-dimensional representation of the main signal parameters (rise-time and amplitude) under a cir-
cuital description and a transmission-line one.

dimensions. Violating such a condition invalidates both circuit theory and transmission line theory
at once, [14], and lays therefore beyond the scope of this discussion. A selection of waveforms is
given in Fig. 3-up. The electrical length Λe = BW ∗D/c relates to the system bandwidth BW ∗, that
is well approximated by the cutoff frequency of the exponential rise-time component fc = S/2π in
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quadrature with the amplifier bandwidth, hence:

1
BW ∗2 =

1
f 2
c
+

1
BW 2 (4.5)

If a dielectric media different from vacuum is present, the electrical length is reduced in inverse
proportionally to its dielectric constant

√
εr.

By observing Fig. 3-up, it can be seen that deviations from circuit theory become important
around Λe = 1, as expected. The agreement below Λe = 1 is remarkable, however the amount
of reflections necessary for a good description based on eq. 3.2 can reach 100, so that a simple
convolution might be faster in such a case and a circuital solution preferable. Note that the regime
where a transmission line description is favored over a circuital one, broadly speaking, is situated in
the range Λe > [ 1

10 ,1], [14]. However this criteria, as indicated by the upper and lower bounds inside
the brackets is, in detail, pretty much system-dependent. This fact can be observed, for instance,
through a more detailed comparison performed on the basis of 2D representations of the main
parameters of the signal: its rise-time (defined from 10%-90%) and amplitude (Fig. 3-down). The
conclusion is similar, in the regime Λe < 1 circuit theory offers an increasingly good approximation,
however an accurate description requires using transmission line theory from Λe > 1/10 on. It is
interesting to note the region around Λe ∼ 1, where the discrepancies in the signal rise-times are
very high. This is due to the constructive interference between the direct and reflected waves. This
effect is expected, however its practical importance in timing depends critically on the threshold
levels since, whenever shaping is present, the signal rise-time can be easily much larger than the
one obtained from the relative slope (ln9(1/IdI/dt)−1) at fixed threshold. With a double-end
readout the effect is further minimized since reflections are suppressed due to the relatively small
FEE input impedance, while in the present case reflections have the same amplitude than the direct
signal. This particular feature of the single-end readout was very much emphasized by the HARP
collaboration ([15] and references therein).

5. Discussion

We have presented a systematic comparison between transmission line theory and circuit the-
ory for several parallel plate geometries. This (intentionally) simplified study, in connection to
previous results [7, 8] aims at illustrating the power of the ‘induction + transmission’ model, that
includes transmission line theory as one of the intermediate steps. We have verified that the role
of the characteristic impedance Zc in a transmission-line description consistently replaces the role
of the electrical impedance (through its capacitance C) in the limit where the system becomes
electrically-short. Thus, the former scenario simply offers a more general way to perform calcula-
tions.

Further insight can be obtained by studying the rise-time and signal amplitude of the simulated
signals as a function of the RPC length, as done in Fig. 4. The circuit-theory approximation shows a
smooth behavior and, indeed, a very accurate approximation to the signal amplitude can be obtained
analytically as:

Imax = 1− e−
∆Te

RC(D,W ) (5.1)
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A reasonable approximation to the signal rise-time (although not exact) is:

trise =
ln9
2π

√
1
f 2
c
+

1
BW 2 +(2πRC(D,W ))2

trise =
ln9

2πBW ∗

√
1+(2πBW ∗RC(D,W ))2 (5.2)

It is interesting to note that the signal amplitude is connected to the ratio between the signal width
and the RC defined between the readout resistance and the RPC capacitance. The rise-time is,
however, mainly connected to the product of the system bandwidth BW ∗, defined from eq. 4.5, and
the RC.
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Figure 4: Left: comparison of the RPC signal amplitude observed at the readout point as a function of
the length of the parallel plate structure on which it has been induced. Simulations for both circuit-theory
(dashed lines) and transmission line theory (continuous line, label TL-T). Right: similar systematics, but for
the signal rise-time.

An important consequence of the transmission+induction model is that, from the point of
view of the signal rise-time, the larger the transmission, the better, except if losses (through the
attenuation coefficient 1/Λ(ω)) are important (they have been neglected here). Moreover, if the
system is matched (Zc = R) at both ends, there will be absence of shaping with independence from
the detector length. This result is widely known for transmission lines excited from one end, but
how to reconcile this apparently universal absence of shaping with the case of internally excited
systems that are perfectly matched and describable with circuit theory, where shaping is expectedly
governed by RC?. For that, one should recall eq. 4.3 under the condition Zc = R. We then obtain
for a matched strip, in the circuit theory limit (Λe ≪ 1), the condition:

BW ∗RC ≪ 1 (5.3)

implying that the RPC capacitance C and the readout resistance R do not contribute substantially to
the signal shape (characterized by BW ∗). This ensures, therefore, consistency with a transmission-
line formulation also in the case of matched systems.
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6. Conclusion

We have shown consistency between a circuital description and a slightly more general, yet
computationally affordable, ‘induction+transmission’ model in some particular cases of interest
for RPC simulations. Given the fact that such a model has previously shown potential to describe
performances of electrically-long multi-conductor (i.e, multi-strip) RPCs, we believe it has a great
phenomenological power for extending RPC simulations beyond the old single-cell scenario.
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