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We study dynamically generated resonances that arise as a result of low energy meson-baryon

interaction in a chirally motivated coupled channel model.Our approach is based on a solution of

the Lippman–Schwinger equation for the coupled meson-baryon channelsπΛ, πΣ, K̄N, ηΛ, ηΣ,

andKΞ with an interaction kernel taken in a separable form. The resonances are searched for as

poles of the T-matrix on unphysical Riemann sheets in the complex energy plane. We examine

s-wave resonances with strangenessS = −1 with accent on isoscalar resonancesΛ(1405) and

Λ(1670). Additional insights are obtained by investigating movement of the poles to the zero

coupling limit and to theSU(3) symmetry restoraton limit.
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1. Introduction

Baryon resonances play an important role in examining non-perturbative physics at low ener-
gies. In our work, we are interested in s-wave resonances with S = −1 strangeness andI = 0, 1
isospins that appear in kaon-nucleon interactions. The resonances are generated dynamically due
to interaction of meson-baryon components and the T-matrixis obtained as a solution of coupled
channel Lippman–Schwinger equation. In such approach, theΛ(1405) resonance that governs the
low energyK̄N physics is typically represented by two poles. The aim of thepresent work is to
explore the pole content of our chirally motivated model up to energies around 1800 MeV and get
some insights on the origin of the poles. The latter is achieved by by following the pole movements
on the complex energy manifold into the zero coupling limit and to theSU(3) symmetry limit.

We employ chirally motivated meson-baryon potentialsVi j taken in a separable form

Vi j(k,k
′,
√

s) =

√

1
2Ei

Mi

ωi
gi(k)

Ci j(
√

s)
f 2 g j(k

′)

√

1
2E j

M j

ω j
, gi(k) =

1

1+( k
αi
)2
, (1.1)

wheregi are the off-shell form factors withαi standing for the inverse range of the interaction.
The parameterf denotes the pseudoscalar meson decay constant andMi, Ei andωi represent the
baryon mass, meson and baryon energies in the c.m. frame in the i-th channel. The underlying
chiral SU(3) symmetry is reflected by the structure of theCi j coefficients (specified in Refs. [1],
[3]) that include terms up to the second order in the meson c.m. kinetic energies. The indecesi and
j run over the set of coupled meson–baryon channels composed from theπΛ, πΣ, K̄N, ηΛ, ηΣ,
andKΞ states (and considered either as the relevant charged states, 10 channels in total, or states
with the appropriate isospin, 4 channels forI = 0 and 5 channels forI = 1).

The resonances manifest themselves as poles of the transition matrix. The pole positions are
identified as solutionszR of the equation that sets to zero the determinant of the inverse of the
T-matrix,

det|T−1(z)| = 0 , (1.2)

wherez stands for a complex energy at a specific Riemann sheet. The masses and widths of the
resonances assigned to the poles can then be approximated bythe relation

zR ≈ MR − i(ΓR/2). (1.3)

2. Model comparison

In the present report, we show a pole analysis performed for three alternate models: TW1 [2],
NLO30 [2] and CS30 [1]. The simplest TW1 model incorporates only the leading Tomozawa–
Weinberg term of the chiral Lagrangian whereas the NLO30 andCS30 models include the leading
(LO) plus the next-to-leading (NLO) orders of the underlying Lagrangian. The free parameters of
the models were fitted to the available experimental data on the low energyK̄N interaction, namely:
theK−p cross sections (see references collected in [3]),K−p threshold branching ratios [4] and the
kaonic hydrogen characteristics reported by the DEAR [5] and SIDDHARTA [6] collaborations.
While the fresh SIDDHARTA data were used for the TW1 and NLO30models, the CS30 model
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Figure 1: The positions of the isoscalar poles assigned to theΛ(1405) andΛ(1670) resonances in the TW1,
NLO30 and CS30 models are shown in comparison with two other LO models JOORM [7] and IHW [8].
Each model generates two poles assigned to theΛ(1405) resonance.

employed the older DEAR data. More details on the models and on the fitting procedure can be
found in Refs. [1], [2].

In figure 1 we present in comparison the positions of the isoscalar poles as provided by various
models. TheΛ(1405) resonance is represented by two polesz1 andz2 found on the second Riemann
sheet (RS)[−+++], where the signs are those of the imaginary parts of the c.m. momenta in
the πΣ, K̄N, ηΛ andKΞ channels, respectively. Surprisingly, the the experimental value of the
Λ(1405) mass and the resonance width are well reproduced by thez2 position in the LO models
and the NLO terms introduced in our NLO30 and CS30 models increase the imaginary part of the
pole energy. The position of thez1 pole at lower energies seems to be more model dependent.
Though, due to a significantly larger imaginary part of thez1 pole, it should not substantially affect
the physical observables.

The pole assigned to theΛ(1670) is located at rather varied positions for the considered mod-
els. All our models (TW1, NLO30 and CS30) generate the pole atenergies about 50-100 MeV
higher than the JOORM model that agrees much better with the experimental value of theΛ(1670)
mass. Nevertheless, it is important to emphasise that our models are fitted solely to thēKN data at
threshold and for very low kaon momenta. Thus we do not expectthe models to work so well at
higher energies.

3. Zero coupling limit and SU(3) restoration limit

The origin of the observed poles can be traced to their positions in a hypothetical situation
when the interchannel couplings are switched off. In figure 2we show the trajectories of the poles
as they move on the complex energy manifold as the interchannel couplings are gradually reduced
by a factorx, i.e. usingx ·Ci j for i 6= j and going from physical couplings (x = 1) to the zero
coupling limit (x = 0). Forx = 0 only the diagonal chiral couplingsCi jδi j remain nonzero and each
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pole may be assigned to a pertinent uncoupled channel in which it persist. It can be shown that
only channels with nonzero diagonal couplingsCii can have a pole forx = 0 and the pole evolves
to its position in the physical limit (x = 1) due to interaction with other channels.
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Figure 2: Pole movements upon scaling the nondiagonal interchannel couplings. Left panel: isoscalar states
(I = 0), right panel: isovector states (I = 1). The large solid and empty circles show the pole positionsin
the physical and zero coupling limits, respectively. The triangles mark thēKN andKΞ thresholds and the
Riemann sheets the poles move on are specified in the legend.

The figure 2 visualizes the movement of the poles for the NLO30model. The picture is very
similar for the other models, though the exact pole positions do vary to some extend forx > 0. In
the left panel, the trajectories of poles assigned toΛ(1405) andΛ(1670) resonances are shown. In
the zero couplig limit, theΛ(1405) poles are represented by a resonance in theπΣ channel and a
bound state in thēKN channel. The pole assigned toΛ(1670) ends its movement forx = 0 under
the KΞ threshold on the unphysical Riemann sheet and can be identified with aKΞ quasi-bound
state. Similar conclusions can be reached for the threeI = 1 poles shown in the right panel of figure
2.

Drawing an inspiration from Ref. [7], we also studied the movement of the poles when going
to the limit of a restoredSU(3) symmetry. Following Ref. [7] we vary the hadron masses from
their physical values to theirSU(3) chiral limits represented bym0 = 370 MeV for the mesons and
M0 = 1150 MeV for the baryons. This is achieved by an introductionof a scaling factorxSU3 and
by expressing the meson and baryon masses as

Mi(xSU3) = M0+ xSU3(Mi −M0) , m2
i (xSU3) = m2

0+ xSU3(m
2
i −m2

0) . (3.1)

Then,xSU3 = 1 represents the physical limit andxSU3 = 0 the limit of the restoredSU(3) symmetry.
In figure 3 we show the pole trajectories for the TW1 model whenvarying the value ofxSU3 from
1 to 0. We confirm the results of Ref. [7] concerning the restoration of theSU(3) singlet and octet
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states in thexSU3 = 0 limit. However, unlike the authors of Ref. [7] we observe anadditionalI = 1
state (related to an isovectorπΣ resonance in the zero coupling limit) that goes to theSU(3) octet
for xSU3 = 0. We also note that the otherI = 1 state that evolves from theSU(3) octet (and relates
to K̄N channel in the zero coupling limit) does not get lost on its way to the physical limit while in
Ref. [7] the state disappeared forxSU3 ≈ 0.6 due to a different treatment of the Riemann sheets.
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Figure 3: Trajectories of isoscalar (continuous lines) and isovector (dashed lines) poles obtained by varying
theSU(3) scaling parameter fromxSU(3) = 1 to xSU(3) = 0. Full circles (I = 0) and triangles (I = 1) corre-
spond to physical values of meson and baryon masses, the fullsquares represent the positions of theSU(3)
singlet and octet states in theSU(3) restoration limit.
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