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temperature range between 125 and 400 MeV. A Symanzik improved gauge and a stout-link im-

proved staggered fermion action is utilized; the light and strange quark masses are set to their

physical values. Lattices withNt = 6, 8, 10, 12, 16 are used. We perform a continuum extrap-

olation of all observables under study. All results are compared to the Hadron Resonance Gas

model predictions: good agreement is found in the temperature region below the phase transition.
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1. Introduction

A transition occurs in strongly interacting matter from a hadronic, confined system at small
temperatures and densities to a phase dominated by colored degrees of freedom at large tempera-
tures or densities. It was shown that the transition is merely an analytic crossover [1]. This field of
physics is particularly appealing because the deconfined phase of QCD can be produced in the lab-
oratory, in the ultrarelativistic heavy ion collision experiments at CERN SPS, RHIC at Brookhaven
National Laboratory, ALICE at the LHC and the future FAIR at the GSI. A lot of effort is invested,
both theoretically and experimentally, in order to find observables which would unambiguously
signal the QCD phase transition. Correlations and fluctuations of conserved charges have been
proposed long ago to this purpose [2, 3]. The idea is that these quantum numbers have a very
different value in a confined and deconfined system, and measuring them in the laboratory would
allow to distinguish between the two phases.

Fluctuations of conserved charges can be obtained as linearcombinations of diagonal and
non-diagonal quark number susceptibilities, which can be calculated on the lattice at zero chemical
potential [4, 5]. These observables can give us an insight onthe nature of the matter under study
[4, 6]. Diagonal susceptibilities measure the response of the quark number density to changes in
the chemical potential, and show a rapid rise in the vicinityof the phase transition. Non-diagonal
susceptibilities give us information about the correlation between different flavors. They are sup-
posed to vanish in a non-interacting quark-gluon plasma (QGP). It was shown in Ref. [7] that
correlations between different flavors are nonzero in perturbative QCD at large temperatures due
to the presence of flavor-mixing diagrams: a quantitative analysis of this observable allows one to
draw conclusions about the presence of bound states in the QGP [11]. Another observable which
was proposed to this purpose, and which can be obtained from acombination of diagonal and
non-diagonal quark number susceptibilities, is the baryon-strangeness correlator [12].

In the present contribution we show the results of our collaboration on some of these observ-
ables, with 2+1 staggered quark flavors, in a temperature regime between 125 and 400 MeV [13].
The light and strange quark masses are set to their physical values. Lattices withNt = 6, 8, 10, 12
are used. Continuum extrapolations are performed for all observables under study. We compare
our results to the predictions of the HRG model with resonances up to 2.5 GeV mass at small tem-
peratures, and of the Hard Thermal Loop (HTL) resummation scheme at large temperatures, when
available. The details of the present analysis can be found in [13].

2. Details of the lattice simulations

The lattice action is the same as we used in [14, 15], namely a tree-level Symanzik improved
gauge, and a stout-improved staggered fermionic action (see Ref. [16] for details). The stout-
smearing [17] yields an improvemed discretization of the fermion-gauge vertex and reduces a
staggered artefact, the so-called taste violation (analogously to ours, an alternative link-smearing
scheme, the HISQ action [18] suppresses the taste breaking in a similar way. The latter is used by
the hotQCD collaboration in its latest studies [19, 20, 21]). Taste symmetry breaking is a discretiza-
tion error which is important mainly at low energies. In the staggered fermion formulation, hadron
masses cannot be uniquely determined at any finite lattice spacing [22]. Each continuum hadron
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state has a corresponding multiplet of states on the lattice: due to the taste symmetry violation the
masses of these states are split. The impact of this effect onthe thermodynamic observables has
been recently discussed in the HRG framework [23, 10].

For details about the simulation algorithm we refer the reader to [15].
In analogy with what we did in [14, 15], we set the scale at the physical point by simulating

at T = 0 with physical quark masses [15] and reproducing the kaon and pion masses and the kaon
decay constant. This gives an uncertainty of about 2% in the scale setting.

We used 2+1 SSavor QCD within the staggered framework, whichneeds taking the root of
the fermion determinant. There is a lively discussion in theliterature whether this is a correct
procedure. Though we have not seen any problem with this fermion formalism (our results and the
predictions of the hadron resonance gas model agree very nicely up to the transition region) it is
still very important to repeat the calculations with actions, which are free of the rooting problem
(e.g. Wilson fermions) [24].

3. Observables under study

The baryon numberB, strangenessS and electric chargeQ fluctuations can be obtained, at
vanishing chemical potentials, from the QCD partition function. The relationships between the
quark chemical potentials and those of the conserved charges are as follows:

µu =
1
3

µB+
2
3

µQ;

µd =
1
3

µB−
1
3

µQ;

µs =
1
3

µB−
1
3

µQ−µS. (3.1)

Starting from the QCD pressure,

p
T4 =

1
VT3 lnZ(V,T,µB,µS,µQ) (3.2)

we can define the moments of charge fluctuations as follows:

χBSQ
lmn =

∂ l+m+np/T4

∂ (µB/T)l ∂ (µS/T)m∂ (µQ/T)n . (3.3)

In the present paper we will concentrate on the quadratic fluctuations

χX
2 =

1
VT3〈N

2
X〉 (3.4)

and on the correlators among different charges or quark flavors:

χXY
11 =

1
VT3〈NXNY〉. (3.5)

Given the relationships between chemical potentials (3.1)the diagonal susceptibilities of the con-
served charges can be obtained from quark number susceptibilities in the following way:

χB
2 =

1
9

[

χu
2 + χd

2 + χs
2+2χus

11+2χds
11+2χud

11

]

,
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χQ
2 =

1
9

[

4χu
2 + χd

2 + χs
2−4χus

11+2χds
11−4χud

11

]

,

χ I
2 =

1
4

[

χu
2 + χd

2 −2χud
11

]

,

χS
2 = χs

2 . (3.6)

If we do not wish to take further derivatives, we can take all three chemical potentials (u,d,s)
to zero. In this case, nothing distinguishes between theu and d derivative: this gives slightly
simplified formulae:

χB
2 =

1
9

[

2χu
2 + χs

2+4χus
11+2χud

11

]

,

χQ
2 =

1
9

[

5χu
2 + χs

2−2χus
11−4χud

11

]

,

χ I
2 =

1
2

[

χu
2 − χud

11

]

. (3.7)

The baryon-strangeness correlator, which was proposed in Ref. [12] as a diagnostic to under-
stand the nature of the degrees of freedom in the QGP, has the following expression in terms of
quark number susceptibilities:

CBS=−3
〈NBNS〉

〈N2
S〉

= 1+
χus

11+ χds
11

χs
2

. (3.8)

4. Results

The first observables we discuss are the diagonal light and strange quark number susceptibil-
ities: their behavior as functions of the temperature is shown in the two panels of Fig. 1. The
different symbols correspond to different values ofNt , from 8 to 16. The red band is the continuum
extrapolation, obtained from the unimproved data, not fromthe improved ones shown in the fig-
ure. The continuum extrapolation is performed through a parabolic fit in the variable(1/Nt)

2, over
five Nt values from 6 to 16. The band shows the spread of the results ofother possible fits. The
comparison between the improved data and the continuum bands in the figure shows the success of
the improvement program throughout the entire temperaturerange. Both observables show a rapid
rise in a certain temperature range, and reach approximately 90% of the ideal gas value at large
temperatures. However, the temperature around which the susceptibilities rise is approximately
15-20 MeV larger for strange quarks than for light quarks. Besides, the light quark susceptibility
shows a steeper rise with temperature, compared to the strange quark one. They approach each
other at high temperatures. The pattern of temperature dependence is strongly related to the actual
quark mass. The difference between the light and strange susceptibilities here with physical masses
is more pronounced than in earlier works with not so light pions Ref. [25]. This is more evident
in Figure 2: in the left panel we show the continuum extrapolation of both susceptibilities on the
same plot. In the right panel we show the ratioχs/χu: it reaches 1 only around 300 MeV, while
for smaller temperatures it is< 1. It is worth noticing that all these observables agree withthe
corresponding HRG model predictions for temperatures below the transition.

4



P
o
S
(
B
o
r
m
i
o
2
0
1
2
)
0
2
9

Recent results on correlations and fluctuations from lattice QCD Claudia Ratti

 0

 0.2

 0.4

 0.6

 0.8

 1

 150  200  250  300  350  400

χ 2
u

T [MeV]

SB limit

Nt=6

Nt=8

Nt=10

Nt=12

Nt=16

cont.

HRG

HTL

 0

 0.2

 0.4

 0.6

 0.8

 1

 150  200  250  300  350  400

χ 2
s

T [MeV]

SB limit

Nt=6

Nt=8

Nt=10

Nt=12

Nt=16

cont.

HRG

Figure 1: Left panel: diagonal light quark susceptibility as a function of the temperature. Right panel:
diagonal strange quark susceptibility as a function of the temperature. In both panels, the different symbols
correspond to differentNt values. The red band is the continuum extrapolation. The black curve is the HRG
model prediction for these observables. The dashed line shows the ideal gas limit. The light blue band in the
left panel is the HTL prediction taken from Ref. [7].
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Figure 2: Left panel: direct comparison between the continuum limit of light and strange quark susceptibil-
ities. Right panel: ratioχs

2/χu
2 as a function of the temperature. The red band is the lattice continuum result.

The black, solid curve is the HRG model prediction. The dashed line indicates the ideal gas limit.

The non-diagonalus susceptibility measures the degree of correlation betweendifferent fla-
vors. This observable vanishes in the limit of an ideal, non-interacting QGP. However, flavor-
mixing diagrams in perturbative QCD yield a finite value for this correlation also at large tempera-
tures [7]. We show our result in Fig. 3.χus

11 is non-zero in the entire temperature range under study.
It has a dip in the vicinity of the transition, where the correlation betweenu ands quarks turns out
to be maximal. It agrees with the HRG model prediction in the hadronic phase. This correlation
stays finite and large for a certain temperature range above the transition temperatureTc [8, 9, 10].
A quantitative comparison between lattice results and predictions for a purely partonic QGP state
can give us information about the probability of bound states survival aboveTc [11].
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Figure 3: Non-diagonal u-s correlator as a function of the temperature. The different symbols correspond to
differentNt values. The red curve is the continuum extrapolated result.The black curve is the HRG model
prediction. The dashed line indicates the ideal gas limit for this observable.

Quadratic baryon number, electric charge and isospin fluctuations can be obtained from the
above partonic susceptibilities through Eqs. (3.7). We show our results for these observables in
Fig. 4 and in the left panel of Fig. 5. In the low-temperature,hadronic phase we have a very
good agreement with the HRG model predictions. In the vicinity of the phase transition, these
quantities all show a rapid rise with temperature, in analogy with what already observed for the
light and strange quark susceptibilities. At large temperature they reach approximately 90% of
their respective ideal gas values. A comparison between alldiagonal susceptibilities, rescaled by
their corresponding Stefan-Boltzmann limits, is shown in the right panel of Fig. 5, from which it is
evident that they all show similar features in their temperature dependence, even if the temperature
at which they rise is larger for the strangeness and baryon number susceptibilities.

The baryon-strangeness correlatorCBS defined in Eq. (3.8) was proposed long ago [12] as a
diagnostic for strongly interacting matter. It is supposedto be equal to one for a non-interacting
QGP, while it is temperature-dependent and generally smaller than one in a hadronic system. We
show our result for this observable in Fig. 6. At the smallesttemperatures it agrees with the HRG
model result, and it shows a rapid rise across the phase transition. It reaches the ideal gas limit
much faster than the other observables under study, yet there is a window of about 100 MeV above
Tc, where its value is still smaller than one. In analogy withχus

11, this observable seems to leave
some room for bound states survival aboveTc.

5. Conclusions

In this paper we have presented the continuum results of our collaboration on diagonal and
non-diagonal quark number susceptibilities, in a system with 2+1 staggered dynamical quark fla-
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Figure 4: Left panel: isospin susceptibility as a function of the temperature. Right panel: electric charge
susceptibility as a function of the temperature. In both panels, the different dots correspond to differentNt

values. The red band is the continuum extrapolation. The black curve is the HRG model prediction for these
observables. The dashed line shows the ideal gas limit.
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Figure 5: Left: quadratic fluctuation of baryon number as a function ofthe temperature. The different sym-
bols correspond to differentNt values, the red band is the continuum extrapolation and the black, solid curve
is the HRG model result. The ideal gas limit is shown by the black, dashed line. Right: comparison between
all diagonal susceptibilities, rescaled by the corresponding ideal gas limit, as functions of the temperature.

vors with physical masses, in a temperature range between 125 and 400 MeV. The continuum
extrapolations were based onNt = 6,8,10,12 and 16 lattices. We calculated the systematic errors
by varying over the ambiguities of the possible extrapolations.

All observables consistently show a very good agreement with the HRG model predictions for
temperatures below the phase transition.

The diagonal fluctuations have some common features: they all show a rapid rise in the vicin-
ity of the phase transition, and reach approximately 90% of the corresponding ideal gas value at
large temperatures. The rise of both strange quark and baryon number susceptibilities is shifted to
temperatures about 20 MeV higher than those for light quark,charge and isospin susceptibilities.
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Figure 6: Baryon-strangeness correlator as a function of the temperature. The different symbols correspond
to differentNt values, the red band is the continuum extrapolation and the black, solid curve is the HRG
model result. The ideal gas limit is shown by the black, dashed line.

Non-diagonal flavor and charge correlators remain different from their ideal gas values for a cer-
tain window of temperatures above the transition, thus not excluding the possibility of bound state
survival aboveTc.
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