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1. Introduction

With modern experimental facilities [1] nuclei with proton or neutron excess are now becom-
ing accessible in an attempt to map the limits of stability and determine the nuclear properties away
from the stability valley. The extraordinary development of trapping techniques, the use of storage
rings and new detection procedures, have provided high precision measurements of masses, and de-
cay observables which form a basic testing ground for the nuclear structure models and underlying
fundamental theories. Whereas on the neutron rich side, exotic nuclei with neutron skins and halos
[2] were found, on the proton rich side, nuclei that could spontaneously decay by emitting one[3]
or two protons[4, 5], were found beyond the drip line. Proton radioactivity was then the process
that signalized the proton drip line in the region of nuclear charges between Z=50 and Z=83, and
at lower charges where emission of two protons occurs.

Quite a few proton radioactive nuclei were found until now, decaying from the ground or from
an excited state to the ground or excited states of the daughter nucleus. Thus, data gathered from
fine structure, complemented by the decay widths and spectra built on the decaying states, obtained
from decay tagging, constitute a valuable set of information on the structure of the nuclei involved
in the process. In fact, the decay properties are highly sensitive [6 – 9] to details of the nuclear
wave function. If the theory is able to account for the data, it will be able to assign the spin and
parity of the decaying state, and the nuclear shape. Proton emitters can display spherical symmetry
but some present axial or even non- axial deformation, results hinted by the experimental data and
confirmed theoretically[10, 11]. Proton emission has been thoroughly studied in non relativistic
models based on phenomenological mean field descriptions of the nucleus, obtained by fitting the
single particle properties of stable nuclei. For details, see Ref.[12] and references therein.

Recent microscopic models, based on covariant density functional theory (CDFT) have been
quite successful in the description of nuclear structure properties of stable nuclei, and at the lim-
its of stability[13]. Time-dependent versions of this theory have been successfully used for the
description of excited states such as rotational bands or giant resonances. When compared with
non-relativistic density functionals, covariant density functional theory has some advantages, since
it accounts in a natural way for the spin-orbit interaction, without the need of any extra adjustable
parameters, and to a natural saturation mechanism of the force, due to the subtle compensation
between the large attractive scalar and the large repulsive vector fields. Chiral symmetry and pseu-
dospin symmetry are also incorporated in the theory. Therefore, it needs only a relatively small
number of parameters that are adjusted to reproduce a set of bulk properties of finite nuclei, and
nuclear matter, and it is valid over the entire periodic table. The proton drip-line was mapped
with high precision [14 – 16], within the relativistic Hartree-Bogoliubov (RHB) theory[17, 18] for
spherical and deformed nuclei, and the single particle configurations and spectroscopic factors,
successfully derived. However, all these applications of RHB theory have been carried out by
expanding the single particle Dirac spinors in a basis of harmonic oscillator wave functions. A
drawback of this method is the poor treatment of the tails of the single particle wave functions, and
consequently it is not applicable to study decay processes, where a correct description of the de-
caying state is crucial. In order to overcome this difficulty, and study nuclear decay by one proton
emission, we performed a fully self-consistent relativistic calculation, where the differential Dirac
equation was solved with outgoing wave boundary conditions. The interaction used was based on
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relativistic density functionals derived from meson exchange and point coupling models, which we
will discuss below.

2. Covariant density functional theory for nuclei

Relativistic versions of nuclear density functional theory [13, 19 – 21] start from a covariant
Lagrangian, where the nucleus is described as a system of interacting Dirac particles. In order to
keep relativistic invariance and causality the interaction has to be mediated either by the exchange
of mesons or it has to be of zero range. In this investigations we compare results obtained with two
of these models, the non-linear meson exchange model NL3 [22] and the density dependent point
coupling model DD-PC1 [23].

2.1 Non-linear meson exchange models

The standard representation of covariant density functional theory uses the Walecka model of
Quantum Hadrodynamics as a vehicle to introduce Lorentz invariance. The nucleons are described
by the Dirac spinors. They interact in an effective Lagrangian through the exchange of mesons and
the electromagnetic field.

According to their quantum numbers of spin and isospin, the isoscalar scalar σ -meson, the
isoscalar vector ω-meson, and the isovector vector ρ-meson build a minimal set of meson fields
that together with the electromagnetic field is necessary for a quantitative description of bulk and
single-particle properties in nuclei [19, 20, 24]. This Lagrangian has the form

L = LN +Lm +Lint , (2.1)

where LN denotes the Lagrangian of free nucleons with the mass m

LN = ψ̄
(
iγµ∂µ −m

)
ψ. (2.2)

Lm is the Lagrangian of free meson fields and the electromagnetic field

Lm =
1
2

∂µσ∂ µσ − 1
2

m2
σ σ 2 − 1

4
ΩµνΩµν +

1
2

m2
ωωµωµ

− 1
4
−→
R µν

−→
R µν +

1
2

m2
ρ
−→ρ µ

−→ρ µ − 1
4

FµνFµν , (2.3)

with the corresponding masses mσ , mω , mρ , and the field tensors

Ωµν = ∂µων −∂νωµ , (2.4)
−→
R µν = ∂µ

−→ρ ν −∂ν
−→ρ µ , (2.5)

Fµν = ∂µAν −∂νAµ . (2.6)

Here arrows denote isovectors. Lint contains the minimal set of covariant interactions

Lint =−gσ ψ̄σψ −gω ψ̄γµωµψ
−gρ ψ̄γµ

−→τ −→ρ µψ − eψ̄γµAµψ. (2.7)
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m = 939

mσ = 508.194 gσ = 10.217 g2 = -10.431 g3 = -28.885

mω = 782.501 gω = 12.868

mρ = 763.000 gρ = 4.474

Table 1: Parameters of the effective interaction NL3. The masses are given in units of MeV, g2 is in units of
fm−1 and the remaining parameters are dimensionless

with the coupling constants gσ , gω , gρ and the electromagnetic charge e which vanishes for neu-
trons.

This simple model, with interaction terms linear in the meson fields, does, however, not pro-
vide a quantitative description of the nuclear surface properties. An effective density dependence

was introduced [25] by replacing the quadratic σ -potential
1
2

m2
σ σ 2 with a quartic potential

U(σ) =
1
2

m2
σ σ 2 +

g2

3
σ 3 +

g3

4
σ 4 . (2.8)

This potential includes non-linear σ self-interactions and introduces two additional parameters g2

and g3. This particular form of the potential has become standard in applications of RMF models.
Here we use the successful parameter set NL3. Its parameters are given in Table 1.

From the Lagrangian density the classical variation principle leads to the equations of motion.
In the static case considered in this investigation we obtain for the nucleons the Dirac equation
which is equivalent to the Kohn-Sham equations [26] in non-relativistic density functional theory

[α p+V +β (m+S)]ψ = 0. (2.9)

It contains a scalar and a vector potential

S(r) = gσ σ(r) ,

V (r) = gωω(r)+gρτ3ρ3(r)+ eA0(r) , (2.10)

where ω(r) and ρ3(r) are the time-like components of the vector meson fields. The meson fields
obey the Klein-Gordon equations(

−∆+m2
σ
)

σ =−gσ ρs −g2σ 2 −g3σ3, (2.11)(
−∆+m2

ω
)

ω = gω(ρp +ρn), (2.12)(
−∆+m2

ρ

)
ρ3 = gρ(ρn −ρn) (2.13)

−∆A0 = eρp. (2.14)

The sources are formed by the scalar and vector densities

ρs = ∑
k

ψ̄kψkv2
k , and ρτ = ∑

k,τk=τ
ψ†

k ψkv2
k , (2.15)
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where the index τ = p,n represents protons and neutrons and v2
k are occupation numbers for the

various orbits. Pairing correlations are taken into account in the constant gap approximation

v2
k =

1
2

[
1− (εk −λ )√

(εk −λ )2 +∆2

]
(2.16)

with the empirical value for the gap parameter [27]

∆ = 12/A1/2 (2.17)

Starting with an initial guess for the potentials of Woods-Saxon form this non-linear set of equations
is solved by iteration and the results are the potentials S(r) and V (r), which are used in a second
step in the calculation of proton emitters and their decay probabilities.

RMF models can be also formulated without explicitly including meson-exchange interactions
but replacing them by local four-point interactions between the nucleons [28]. A density depen-
dence is introduced either by additional local six- and eight-point interactions [29] or by density
dependent coupling constants [23], which are equivalent procedures at the Hartree mean field level.

In the present work, we will also use the recent parameter set DD-PC1 [23], derived from a
high precision fit to nuclear matter data and to the binding energies of 64 deformed nuclei in the
rare earth and actinide region. The potential has been quite successful in the description of exotic
nuclei, and it has a density dependence given by

αi(ρ) = ai +(bi + cix)e−dix (2.18)

The quantity x = ρ/ρsat is the density in units of the saturation density of nuclear matter ρsat =

0.152 fm−3 and the parameters ai, bi, ci, and di are given in Table 2.
Variations on the Lagrangean obtained in this formulation lead to the scalar and vector poten-

tials

S = αSρs −δS∆ρs (2.19)

V = αV ρ +αTV ρ3 + eA0 (2.20)

and a rearrangement term in the isoscalar vector channel

R =
1
2
{

α ′
Sρ2

s +α ′
V ρ2 +α ′

TV ρ2
3
}

(2.21)

arising from the variation of the vertex functionals αS(ρ), αV (ρ), and αTV (ρ) with respect to
the nucleon fields in the density operator: α ′

i = dαi/dρ . It is essential for energy-momentum
conservation and the thermodynamical consistency of the model. For details, see Ref. [12].

2.2 Self-consistent description of spherical proton emitters

The main characteristic of proton emitters relies upon their existence beyond the drip line,
therefore the proton is a resonance in the nuclear mean field. Since the proton escapes with an en-
ergy of 1-2 MeV, these resonances lie very low in the continuum, and are essentially single particle
resonances. The non-linear meson exchange model NL3 and the density dependent point coupling
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i ai bi ci di δS

S -10.0462 -9.1504 -6.4273 -1.3724 -0.8149

V 5.9195 8.8637 0 0.6584

TV 0 1.8360 0 0.6403

Table 2: The coupling constants of the parameter set DD-PC1. The parameters ai, bi, and ci are given in
units of fm−2, the parameter di is dimensionless and the parameter δS is given in units of fm−4

model DD-PC1 were then applied to the calculation of single particle resonances in spherical nuclei
drip-line nuclei. According to scattering theory, the half-life for decay by one particle emission is
given by T1/2 = h̄ ln2/Γ, where the decay width can be found [6] from the relation:

Γ = S
h̄2kα2

m
(2.22)

with m and k standing for the mass and wave number of the proton. S is a spectroscopic factor, and
the quantity α the asymptotic normalization of the proton wave function. The latter is a solution
of the Dirac equation with outgoing wave boundary conditions in the spherical NL3 and DD-PC1
fields. In order to obtain the resonance at the experimental energy, the depth of the nuclear potential
was slightly changed, whereas the Coulomb potential was kept unchanged. The spectroscopic
factor in the case of nuclei where the residual interaction is mainly due to pairing, is simply the
probability u2

k that the single particle level k is empty in the daughter nucleus, and can be calculated
in the BCS approach assuming the pairing gap of Eq. (2.17).

Following this procedure, all spherical proton emitters that have been observed, were calcu-
lated, and a comparison with the experimental results shows a very good qualitative agreement.
See for example table II of Ref.[12]. However, since the half-lives ranges from 3 µs up to 10 s, it
is interesting to analyze the deviation from the experimental results.

In Fig. 1, we present the results for the half-life for decay from the h11/2 single particle
state. The ratio between the theoretical and experimental half-lives as a function of the atomic
number shows that close to the magic number 82, for protons or neutrons, that is, in the vicinity
of 155Ta the agreement is very good for both NL3 and DD-PC1 interactions. Going away from
this half-magicity, the ratio slowly decreases. The reason for this behavior can be attributed to
the correlations in the nuclear medium, when nuclei are far from a closed shell. In such cases
there will be a strong mixing of wave functions and a coupling to phonon states. In addition,
for open proton and neutron shells, deformations will set in. The spectroscopic factor will become
smaller than the one derived from the BCS model, since pairing is not the only dominating effective
interaction in this case. Therefore, the discrepancy between theory and experiment must increase
as one is moving away from magic numbers. In fact, recent observation of the spectra of some
of these emitters has confirmed the role of triaxial deformation in 161Re [10, 30] and 145Tm [31].
Theoretical studies [11] have confirmed that, with a quite large triaxial γ deformation in 145Tm, the
experimental energy spectra of parent and daughter nuclei, the half-life and the fine structure could
be simultaneously interpreted.
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Figure 1: Ratio between the theoretical and experimental half-lives as a function of the mass number for
decay from the h11/2 single particle level, using the NL3 (dot) and DD-PC1 fields (triangles). The error bars
take into account the experimental error on the half-life, and the theoretical error induced by the experimental
error on the energy.

Similar conclusion can be drawn when decay occurs from other single particle states, as dis-
cussed in Ref.[12].

In conclusion, using interactions derived from relativistic density functional theory, we have
presented the first fully self-consistent model without free parameters, that accounts for the experi-
mental data of proton radioactivity from spherical nuclei. The calculation has shown clear evidence
of configuration mixing away from half magicity for proton or neutrons, and provided a new tests
of the non-linear meson exchange NL3 [22] and density dependent point coupling DD-PC1 [23]
models, at the extremes of nuclear stability.
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