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The density dependence of the nuclear symmetry energy is important from very low densities

in supernova explosions, to the structure of neutron rich nuclei around saturation density, and

to several times saturation density in neutron stars. Heavyion collisions are the only means to

study this density dependence in the laboratory. We discussthe knowledge and uncertainty of

the symmetry energy and the parameterizations used in heavyion collisions. Transport theories

are necessary to extract the symmetry energy from heavy ion collisions and we discuss their

uncertainties and challenges. We finally study in detail twoexamples, which relate particularly

to the high density symmetry energy, which is of particular interest today. These are the pre-

equilibrium emission of nucleons and light clusters, and theπ−/π+ yield ratios. For the last case

we point out the inconsistencies in the theoretical analyses of different groups and we discuss the

open problems.
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1. Introduction

The nuclear symmetry energy together with the Coulomb energy governs the composition of
nuclear systems from stable and exotic nuclei to astrophysical objects. Thus the symmetry energy
(SE) is not only of interest around saturation density as in nuclei but also for very dilute matter
as in supernovae to several times saturation density in the interior of neutron stars. Therefore the
density dependence of the SE is a topic of great interest today and considerable experimental as
well as theoretical efforts are devoted to put constraints on it[1].

From the study of nuclei one may gain information on the valueof the SE at saturation and also
on the slope at saturation, which is proportional to a symmetry pressure. It is strongly correlated to
many nuclear properties, like the shift of isobaric analog states (IAS), the pygmy dipole resonance
(PDR), and, in particular, to the difference of neutron and proton radii, the so-called neutron skin, of
heavier nuclei, and substantial efforts are being undertaken to determine it as model-independently
as possible[2, 3].

To investigate a wider range of densities heavy ion collisions (HIC’s) are the prime opportunity
in the laboratory. One may choose the density regime by variation of incident energy and impact
parameter, and vary within limits the asymmetry of the system. The advent of intense secondary ra-
dioactive beams will substantially widen the opportunities. On the other hand HIC’s are a strongly
non-equilibrium processes and require a thorough and reliable modeling of the collision dynamics
via transport theories.

Increasingly stringent constraints on the density dependence of the SE come from ever more
refined observations of neutron stars[4]. The recent observation of a two solar-mass neutron star
with a very small error sets a stringent limit on many models,together with increasingly tight
limits on neutron star radii[5]. For the determination of the density dependence of the SE a close
cooperative effort from heavy ion collisions and astrophysics is desirable.

This contribution aims to give a brief overview of the conditions and challenges in the determi-
nation of the SE in HIC’s. We will first discuss the knowledge and parameterizations of the density
dependence of the SE, to clarify the relation between them. We will then discuss the challenges
to transport descriptions of HIC’s. Finally we will give twoexamples to illustrate these, the pre-
equilibrium emission of nuclei and light clusters, and the production of pions. This work results
from a longtime collaboration with the Catania group, referenced in more detail in the Acknowl-
edgement.

2. The Nuclear Symmetry Energy

The nuclear SE is best known from the Bethe-Weizsäcker mass formula via the symmetry term
as(N−Z)2/A2, which parametrizes the global asymmetry dependence of thebinding energy (BE)
of nuclei. The density dependent SE is defined via the expansion of the BE per nucleon in infinite
nuclear matter (without Coulomb interactions)E(ρ ,β ) = Enm(ρ)+Esym(ρ)β 2+O(β 4) in terms
of the asymmetryβ = (ρn − ρp)/ρ . ThenEnm(ρ) is the equation-of-state (EOS) of (symmetric)
nuclear matter, andEsym(ρ) is the density dependent SE due to the strong interaction, which is the
quantity of interest here. The observation that in empirical parameterizations of the SE one usually
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hasas ≈ Esym(0.6ρ0), whereρ0 ≈ 0.16f m−3 is the saturation density, i.e. the minimum ofEnm(ρ),
is due to the fact that finite nuclei are not uniform in density.

From the above definition the SE is given asEsym= 1
2

∂ 2E(ρ ,β)
∂β2 . In the approximation that the

higher order terms inβ 2 are small, it can also be defined as the difference between theenergy of
pure neutron matter (β = 1) and that of symmetric nuclear matterEsym(ρ) = E(ρ ,1)−E(ρ ,0). In
this definition the SE is different if for largerβ there are deviations from the quadratic behavior.
This, e.g. has been observed in very dilute matter, where clustering effects become important.
Usually the last form of the SE is accepted as the more generaldefinition.

Two parametrization have been widely used to characterize the SE near saturation density in a
simple way:

Esym(ρ) = S+
L
3

(

ρ −ρ0

ρ0

)

+
Ksym

18

(

ρ −ρ0

ρ0

)2

+ ..., (2.1)

Esym(ρ) = Ekin
sym(ρ)+Epot

sym(ρ) =
1
3

εF(ρ −ρ0)
2
3 +C

(

ρ
ρ0

)γ
. (2.2)

The first is to expand the SE around the saturation density, with S, the SE,L the symmetry slope (or
symmetry pressure) andKsymthe symmetry incompressibility. The second representation writes the
SE with a kinetic and a potential contribution, where the kinetic term resulting from the difference
in the Fermi energies of neutrons and protons is given in the Fermi gas model. The parametrization
of the potential term as a powerγ in the density is purely phenomenological. Both forms are
two-parameter representations of the SE in the neighborhood of ρ0, and, of course, there is a
correspondence(C,γ)↔ (S,L).

The values ofL, resp.γ , determine, how rapidly the SE rises with density. Accordingly the SE
is termed as stiff (asy-stiff) for larger values ofL or γ > 1, and soft (asy-soft) in the opposite case.
One should note that for the sameSa stiff SE has smaller values than a soft one forρ < ρ0, and
opposite forρ > ρ0. Thus the qualitative effects of a stiff/soft SE change atρ0. Many effects in
nuclear structure depend on bothSandL, and constraints from observations have been expressed as
correlations betweenSandL. In particular, from fits to nuclear masses, a strong correlation between
SandL appears[6]. Often in such correlation diagrams also constraints from observables that probe
very different density regimes away fromρ0 are included. Obviously, such extrapolations toρ0 are
only valid within a given model ofEsym(ρ) and are therefore of limited general validity.

More realistic parameterizations of the SE have been developed in the framework of Skyrme
functionals[7]. Such versions are used by the Texas group[1] and are characterized by a parameter
x, which changes the symmetry energy without changing the isoscalar EOS, and by the Catania
group in the generalization by Bombaci[8]. A common featureof these functionals is that they
include a momentum dependence not only of the symmetric EOS but also of the SE, and thus
also of the Lane potential, the difference between neutron and proton potentials, even though the
experimental data are rather limited here. The momentum dependence can also be expressed in

terms of the effective masses, which are given as
m∗

q

m =
[

1+ m
h̄2k

∂Uq

∂k

]

−1
, where the indexq stands for

neutrons and protons. A momentum dependent symmetry potential thus leads to different neutron
and proton effective masses. The effective masses effect will become more important for the higher
energies, i.e. at those energies where one explores the higher densities. Thus for the investigation
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Figure 1: (left) The energy density for symmetric nuclear matter (lower curves) and for pure neutron matter
(upper curves) for different theoretical approaches givenin the legend. On the right the corresponding
symmetry energy densities.

of the high density SE the momentum dependence or the effective mass effect has to be taken into
account, as will be seen below.

There have been and continue to be intense discussions aboutthe density dependence of the
SE from the viewpoint of microscopic many body calculations. A compilation of several of such
results[9] is given in Fig. 1, in the left panel separately for neutron and nuclear matter, and in the
right panel for the SE as the difference between the two. The approaches represented range from
variational calculations, Brueckner-HF theories, Chiralperturbation theory and phenomenological
RMF or Skyrme forces. It is evident that for nuclear matter the theories agree fairly well for
ρ < ρ0, where they are constrained by nucleon-nucleon and nucleardata. There are more deviations
aboveρ0, but from the study of HIC’s over many years the EOS of symmetric nuclear matter has
been fairly well constrained as soft-momentum dependent. However, for the SE the microscopic
approaches deviate from each other much more strongly. Theycross at a density somewhat below
ρ0 due to the constraints of finite nuclei as mentioned above. Thus the deviations are less severe
but still important belowρ0. However, there are drastic differences in the predictionsfor the high
density SE, which is the area of prime concern today. Generally one could say that the microscopic
SE’s fall into the range of stiff to medium soft(0.5< γ < 1.). Note also, that these results do not
necessarily show the behavior of simple power law, as seen e.g. for the DBHF result. The question,
why microscopic calculations of the SE are so uncertain is being extensively discussed. It seems to
be linked to the asymmetry dependence of the short range correlations[10], i.e. to the tensor forces,
or, expressed differently, by the medium mass dependence oftheρ-meson[11]. Another approach
has been made in the framework of chiral effective field theory[12].

3. The Symmetry Energy in Heavy Ion Collisions

The prime method to investigate the density dependence of the SE in the laboratory are HIC’s.
However, the EOS and thus also the SE are equilibrium concepts, while HIC’s are strongly dy-
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namical processes, which need to be interpreted within a non-equilibrium description. The main
method to do so have been transport theories. They describe the temporal evolution of the one-
body phase-space distribution functionf (r,p, t) under the action of a mean field potentialU(r,p),
possibly momentum dependent, and 2-body collisions with the in-medium cross sectionσ(Ω)[13]

d fi
dt

=
∂ fi
∂ t

+
pi

m
∇(r) fi −∇(r)Ui(r,p)∇(p) fi −∇(p)Ui(r,p)∇(r) fi

= ∑
j,i′, j ′

∫

dpjdpi′dpj′vi j σi, j→i′ , j ′(Ω)δ (pi +pj−pi′ −pj′)

×[(1− fi)(1− f j) fi′ f j ′ − fi f j(1− fi′)(1− f j ′)]. (3.1)

Here the indices(i, j, i′, j ′) run over neutrons and protons, such that these are coupled equations via
the collision term and indirectly via the potentials. If theproduction of other particles is consid-
ered, like∆’s, nucleon resonances orπ andK mesons, these have their own dynamical equations
coupled through the corresponding inelastic cross sections. The EOS enters through the mean field
potentialsUi and the isospin effects enter via the differences in neutronand proton potentials and
the isospin dependent cross sections. One should keep in mind, that the isospin effects are always
small relative to the dominant isoscaler potentials and cross sections. Thus in order to obtain infor-
mation on the SE one often resorts to difference observablesbetween isospin partners, in order to
become independent as much as possible from uncertainties in the isoscalar part.

The lhs of the above equation can be derived in a semi-classical approximation to the Wigner
transform of the non-local quantum-mechanical density matrix, with the collision term added "by
hand". A more rigorous derivation starts from a non-equilibrium quantum transport theory such
as the Kadanoff-Baym equation[14]. This derivation also clarifies the relation between the mean
fields and the in-medium cross sections. These are, in fact, not independent but are derived from
the same generalized self-energies. A common approximation is to specify these in the T-matrix
approximation, by which the cross section and the mean field are derived from the same in-medium
T-matrix. However, in many practical implementations the two inputs are chosen independently and
empirically.The above derivation also involves the so-called quasi-particle approximation, which
puts the momenta of all particles on-shell. However, in a non-equilibrium situation all particles
have finite widths due to collisions and possibly decay. Thismay be of importance in the production
of particles near thresholds, as e.g.∆’s or mesons, but has not been widely investigated[14].

The solution of these non-linear integro-differential equations is usually performed with the
so-called test-particle method, which amounts to a simulation of the reaction in terms of (many)
particles with Hamiltonian dynamics and stochastic 2-bodycollisions, subject only to the Pauli
principle. The densities reached in a HIC depend on the incident energy and the impact parameter.
Thus different density regimes can be investigated, albeitonly for short times. Observables have to
be identified, which, ideally, are sensitive to this particular phase in the evolution.

Let us briefly discuss the influence of the SE in the different density regimes and some of the
informations obtained. In central reactions at Fermi energies moderate densities are reached. Of
particular interest has recently been the study of the expansion phase of such reactions, where very
low densities of about 1/10 to 1/100 ofρ0 prevail. By studying isotope ratios (so called ISO-scaling)
in these situations the SE at very low densities has been determined[15], which is important for the
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Figure 2: Schematic representation of an intermediate energy semi-central heavy ion collision with the
processes important for the determination of the symmetry energy.

simulation for supernova explosions. In this density regime few-body clustering effects become
important. A theoretical investigation has shown that the SE in fact is finite a very low densities,
and this has been shown to be in agreement with the experiments[16].

At Fermi energy collisions one observes the phenomenon of multi-fragmentation. The distri-
bution of the isospin to the different fragments ("isospin fractionation"), has been used to obtain
information on the SE forρ < ρ0[17]. In more peripheral collisions one observes isospin transport
through the low-density neck ("isospin diffusion"), whichhas been very important to fix the SE be-
low ρ0[18]. As discussed above in studies of nuclear structure andlow energy nuclear excitations
the density region aroundρ0, in particular the slope of the SE at saturation, is explored, see also
the contribution of W. Trautmann to this conference.

In collisions at energies between about 100 MeV and a few GeV per nucleon densities up to
a few times saturation density can be reached. This is the primary interest in the following. Let
us briefly note that also at higher energies the influence of the SE has been discussed. There are
suggestions that the deconfinement transition may be substantia lly influenced by the difference
in the SE between the hadronic and partonic phase, and may in fact, occur at lower density in
asymmetric systems[19].

The situation at intermediate energies is qualitatively sketched in Fig. 2. In the initial phase of
the collision (b) pre-equilibrium emission of high energy particles and light fragments occurs. The
yield ratios of isotopic partners, liken/p or 3He/t, contain information on the relative strengths of
the neutron and proton potentials. In the compression phase(c) originate several complementary
observables, which finally become manifest in the decomposition of the system (d). The repulsion
and pressure generate flow, more precisely in-plane (directed) and out-of-plane (elliptic) flow (c1).
Neutron-proton difference or differential flow observables have up to now been the most reliable
means to extract information on the high density SE. This is discussed in detail in the contribution
by W. Trautmann. On the other hand, inelastic NN collisions lead to the production of∆ resonances,
which may decay into pions or lead to the production of strangeness (c2). The observables in (c1)
and (c2) are complementary in the sense, that e.g. a stiffer SE has forρ < ρ0 a more repulsive
potential for neutrons and thus favors pre-equilibrium emission of neutrons. This leaves the residue
less n-rich, such that the production of the more negative resonances∆0,− is reduced, lowering also
theπ−/π+ ratio.
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Figure 3: (left) The neutron-proton ratio calculated136Xe+124Sncollisions at 100 AMeV for different
choices of the symmetry energy and the effective masses, as indicated in the legend. On the right the
corresponding tritium over3He ratio. Error bars represent statistical uncertainties of the calculation.

4. Pre-equilibrium emission

As mentioned above the neutron to proton ratio of emitted particles should be sensitive to
the SE. It has been measured at MSU forSn+Snsystems at 50 and 35 AMeV, and a systematic
analysis of these data and other observables has yielded rather good limits on theγ exponent around
γ ≈ 0.6[18]. Other analyses of then/p ratio agree with the trend of the data (highern/p ratio for
the softer SE), but do not agree on the magnitude of the effect[8, 20]. For this observable at higher
energies the momentum dependence of the SE, i.e. the proton-neutron effective mass splitting,
becomes important as first pointed out by Giordano et al.[21]A systematic study of this effect for
nucleons and light clusters has been undertaken by our groupfor INDRA data of different Xe+Sn
reactions at energies between 32 and 150 AMeV. A preliminaryresult from these calculations is
shown in Fig. 3 for136Xe+124Sn in central collisions at 100 AMeV. On the left panel is shown
the n/p ratio as a function of transverse energy of the particles, onthe right the corresponding
result fort/3He. The calculations are performed for all combinations of a stiff/soft SE (γ ≈ 0.6,
resp. 1.0) and ordering of the effective mass (m∗

n > m∗

p, resp. m∗

n < m∗

p). One observes a clear
pattern in Fig. 3, namely that the stiffness of the SE governsthe lower part of the transverse energy
spectrum, such that the softer SE yields a largern/p ratio (densities in this case still lower thanρ0).
On the other hand, the higher part of the spectrum is dominated by the effective mass ordering,
such that a smaller neutron effective mass favors the emission of neutrons and increases the ratio.
Thus this observable should serve as a promising probe to disentangle the density and momentum
dependences of the SE at higher density. Since it is more difficult to measure neutrons, we also
checked the ratio fort/3He, shown on the right panel, and we observe a very similar pattern. A
qualitative comparison with the data (not shown) favors a stiff SE with m∗

n > m∗

p, qualitatively in
agreement with the flow data. Collision systems with otherN/Z ratios and also double ratios of
yields are under study.
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5. Particle Production

As discussed above then/p content of the compressed system will also influence the ratio of
newly produced particles, which can thus also serve as indicators of the SE in the high density
phase. In particular, pions are produced predominantly viathe∆ resonances asNN→ N∆ inelastic
processes and the subsequent decay∆ → Nπ. The ratio of the isospin partnersπ−/π+ can thus
serve as a probe of the isospin content of the compressed source and thus of the high density SE.
There are simple estimates of how this ratio depends on the asymmetry of the source[22]: In chem-
ical equilibrium the ratio is given asπ−/π+

≃ exp(2(µn − µp)/T) = exp(8βEsym(ρ)/T), and is
thus directly connected to the SE. For typical conditions ofdensity and temperatureT in HIC’s one
could expect values of order 10 for this ratio. However, in non-equilibrium the ratios are expected
and found too be much lower. Another limit is the isobar model, which links the pion yields to
the isospin Clebsch-Gordan coefficients in the∆ → Nπ decay and givesπ−/π+

≃ (N
Z )

2, which is
closer to observed values[23]. Altogether theπ−/π+ ratio should be a good probe; moreover, ex-
tensive data are available from the FOPI collaboration at intermediate energies, includingπ−/π+

ratios[24].

Qualitatively two effects depending on the SE govern the pion ratio in real HIC’s: One is the
effect of the different neutron and proton mean fields already discussed above. For a stiffer SE
and forρ > ρ0 pre-equilibrium neutron are preferentially emitted, leaving the residue less n-rich,
which decreases theπ−/π+. The other is the threshold effect for∆ production via the energy-
momentum conservation for inelasticNN → N∆ collisions, which is modified in the medium by
theN and∆ self energies. A careful analysis of these threshold conditions in Ferini et al.[22] using
a simple model for the∆ self energies, shows that for a stiffer SE theπ−/π+ ratio increases. Thus
the two effects compete with each other and the net result maybe sensitive to assumptions on the
two mechanisms. Note that the threshold effect is absent in equilibrium and therefore the ratio can
attain much bigger values.

In Fig. 5 we have collected in the right panel results from different recent theoretical analyses
(for short called "models" in the following) of this ratio using different program codes and different
parameterizations for the SE. They are compared to the FOPI data. In the left panel we show the
corresponding SE’s. For each model the results for two SE’s of different stiffness are shown (stiffer
- blue, softer - red). As is seen, the results of the differentmodels are very different and not
consistent with each other as briefly summarized now.

The first model of the group of B.A. Li (solid lines) with the IBUU04 code[23] uses a GBD
momentum dependent force with a moderately soft (x = 0) and a very soft (x = 1) SE. Thex =

0 SE under-predicts the experimental data for the ratio and only the very softx = 1 SE comes
close. This evidence for a super-soft SE at high density has raised many discussions and disagrees
strongly with the analyses of the FOPI flow data mentioned above. The second model of the Catania
group (dotted lines) uses a relativistic transport model (RBUU) with a non-linear Relativistic Mean
Field (RMF) parametrization, where the SE is controlled by including two isovector mesons, aρ
(vector) and aδ (scalar)[25]. This SE is relatively stiff at high densities(also the one with only aρ
meson). It is compared to calculation without any potentialpart of the SE, which is thus effectively
soft. While the stiff SE (and similarly one with only aρ) strongly over-predict the data, only the
unrealistic case withEpot

sym= 0 comes close. Thus the stiffer SE gives a larger ratio, opposite to

8
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Figure 4: Theπ−/π+ ratio in Au+Aucollisions as a function of incident energy as measured by the FOPI
collaboration, and as calculated by different groups. (left) Models for the symmetry energy used in the
calculations as indicated in the legend. Blue curves are forthe stiffer and red ones for the softer behavior in
each case. (right) Corresponding results for theπ−/π+ ratio.

model 1. A third model of Feng et al.[26] (dashed lines) with avariant of the IQMD code uses
a very stiff (γ = 2) and a very soft SE Here again the very soft SE is closer to thedata, but quite
different in shape to model 1, even though the SE’s are similar. As a trend in all models the softer
SE’s (red curves) are closer to the data (but differ substantially in shape), but the ratio for a stiffer
SE is sometimes higher, sometimes lower. Thus, unfortunately, theoretical simulations are not
consistent in their predictions of the pion ratio. This is anissue that needs urgent clarification
in view of the potential utility of the pion observables and the excellent data situation. A reason
may lie in the treatment of the∆ dynamics, which may be modeled differently in the different
approaches. We also remarked above, that in the pion ratio two competing effects, the mean field
and the threshold effects, are at work and slightly different treatments of these might lead to large
differences.

It has also been suggested, that the ratio of the anti-strange kaon isospin partners,K0/K+

could be a useful observable for the SE[27]. Indeed, kaon production has been one of the most
useful observables to determine the EOS of symmetric nuclear matter. The anti-strange kaons also
have the advantage that they weakly interact with nuclear matter and are thus a direct probe of the
dense matter where they are produced. Theoretical analysesshow similar if not larger sensitivity to
the SE compared to pion ratios[27]. Experimentally only double kaon ratios, i.e. ratios ofK0/K+

ratios for different collision systems, could determined,because of the very different phase space
coverages of the two kaon species. However, double ratios seem to reduce the sensitivity to the
SE. More experimental and theoretical work is needed, but kaon observables remain an interesting
observable for the SE.

6. Conclusions and Outlook

In this brief overview of the determination of the nuclear SEin HIC’s we have first discussed
the relation of various representations of the symmetry energy. HIC’s are interpreted with transport
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theories and we have discussed some of the challenges in suchdescriptions with respect to the SE.
Generally today a picture emerges where the information on the SE from HIC’s, nuclear structure,
and neutron stars increasingly converges. In contrast, here we have emphasized current problems
in the determination of the SE in heavy ion collisions, wherea more thorough understanding of the
mechanism is needed. In the end it is desirable to obtain a consistent picture of many observables
in heavy ion collisions.
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