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1. Introduction

In its traditional form, the liquid drop model approximates the binding energy given
nucleus of mass numb@rand charg& as [1]:
(z-1) (A-22)2 &

s e iﬁ. (1.1)

Z
Ee(A Z) = —aA+aA”* +a

The five terms in this equation are associated with the five independentsaspeaclei expected to
affect the binding energy and are associated with the nuclear volunf@csu€oulomb repulsion,
proton-neutron asymmetry, and pairing. The quantiigss, ac, a;, andd, are the coefficients of
the respective terms. A fit of this equation to nuclear masses gives tHeierd$ and reproduces
the experimental values to within 1% 110 MeV for heavy nuclei.

This result attests to the profound physical content of the overall equatid to the inter-
pretation of its individual terms. The residual 1% discrepancy is due fbsthecture. The shell
corrections, evaluated according to the Strutinsky procedure [2] eafted onto the liquid drop
model, permit an accurate evaluation of nuclear masses and fission o&origithin 1-2 MeV
[3, 4, 5]. This hybrid approach remains to this day the yet unmatched@arfar more sophisti-
cated models such as Hartree-Fock-Bogoliubov [6, 7].

Many additional terms have been suggested, each with their own physeadratation. An
example of this is found in Myers and Swiatecki [3] who suggested:

h, s
A VA
wherel = A—2Z. The main difference between equation 1.1 and equation 1.2 is the extefsion o
the neutron-proton asymmetry to the surface energy term. Also, a termilinégwas introduced.

Equation 1.2 implies a connection between volume and surface energieaufiloes argued
that the change of the volume energy due to the neutron-proton asyminsdtoyld be reflected
in the surface energy of the system as well, though stating that this wasadibroeit empirical
evidence [3]. The natural implication is that the surface and volume eseaggerelated to each
other through their common origin.

A term linear in|l| was originally suggested by Wigner in considering the exchange force of
nucleons [8]. An empirical observation of such a dependency in theasiasss reported by Myers
and Swiatecki, hence its addition in the above equation [3].

We extend and generalize the insights discussed above by arguing thealatien between
volume energy and the surface energy is strong enough that theircta@#i should not be taken
as independent variables. Furthermore, we discuss the need of a thirdrising from the same
physics, proportional t&1/3, in order to create a consistent physical picture of the nuclear binding
energy. Finally, a linear term in| is naturally introduced when treating the asymmetry term as the
expectation value of the isospifi?.

A revised binding energy equation is fit to the experimental binding eneofit® nuclides
to test these considerations. The importance of the revised terms is ddsgssenparing the fit
with the original and revised models.

Es(AZ) = —a, <1— k|2> A+as (1— klz) A2/3+acz(z “Uw (1.2)

A2 A2 AL/3
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2. TheLiquid Drop Formula: A Truncated Series Expansion

The first term of equation 1.1 called the volume term, and its proportionalfyrdicates sat-
urating forces leading to constant density and binding energy per muclé@ obvious similarity
to molecular fluids led naturally to the introduction of the second term, calledaguegptly, the sur-
face term. Its proportionality t82/3 speaks to the lack of saturation on the nuclear surface, whose
area, through the constant density of the fluid, should indeed be pimprto A%3. Progressing
along the the same line, it was widely appreciated that the surface term is aibeiteorrection
and that additional terms in the expansion might be needed, such as ceiteam.

More generally, we can think of a generalized liquid drop formula as a lsap@hverging
series expansion in powers Af1/3, known as the leptodermous expansion [9]:

Eg = —aA+aA? 3 +a A3 4 . (2.1)

It is left to be determined how many terms in the expansion are necessarsctibeethe physics
of the nuclear system. The incorporation of a curvature term, with its ceeffia, proportional
to Al/3 is almost demanded by the truly small size of nuckei( 300) compared to the size of
the drops typically considered in molecular fluids, such as aerosolsewherl(®. Higher order
terms also may be of importance due to the small size of nuclei, but would betaftiagvithout
an understanding of the lower order curvature term.

The role of the curvature term in nuclear systems was considered origtiecThe curva-
ture correction was introduced previously by several authors with ambgresults [3, 4, 5]. The
increased number of parameters and the ability of the traditional liquid dropufa without cur-
vature to fit the data made the problem of identifying the magnitude of this terrerrdifficult.
We believe that it is possible to shed additional light on this subject by cairgidglobally the
physical origin of the various terms.

Volume and surface terms both arise from the same physical propertyclgfandorces: sat-
uration, and the lack thereof. Thus, surface and volume terms shoukldted to one another,
being themselves different effects of the same cause. Furthermorepieneental surface and
volume coefficients turn out to be approximately equal in magnitude and ibpposign. Is this
an accident or could they possibly be equal?

To answer this question, consider a system of small sticky cubes uséittitiabger, composite
cubes. These cubes interact only when in direct contact. The systlar&cterized by some bond
strength,e, when two faces are touching. The energy of a cub@ cbnstituents is equal to a
volume energy minus a surface energy, just as in the nuclear casetirigoilne number of bonds
in a cube of sizé reveals:

ESM(A) = —3As +3A%/3¢, (2.2)
Thus, in this model the volume and surface energy coefficientxacy equal witha, = as = 3¢.
This insight motivates setting, = as without any loss of information.

One difference between this simple model system and a nucleus is the miféssef the nu-
clear surface. What effect does a diffuse surface have on thangiedergy of a drop? Since the
volume energy is a property of the bulk system it would remain unchandealfatt that the sys-
tem naturally becomes diffuse means that it gains a larger binding energinigmsb. The surface
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Table 1: Fits of the nuclear masses with equation 3.3 using differeads ranges and setting= 0. All the
parameters in units of MeV. The value in the parenthese®isniertainty in the last digit.

Masses ay ag k ac o

50-100 15.39(4) 16.81(10) 1.742(7) 0.686(3) 10.3(5)

100-150 15.39(2) 16.68(7) 1.771(3) 0.6917(14) 12.4(3)

150-200 15.11(2) 15.66(8) 1.748(3) 0.6760(12) 13.5(3)

200-250 15.18(6) 15.7(2) 1.768(5) 0.686(3) 13.3(4)

energy would then bwered in comparison to the sharp surface system. This implies that the sur-
face energy coefficient should be equal to or smaller than the volumgyeoeefficient, contrary
to what is observed in traditional liquid drop fits to the nuclear masses.

As the system is made smaller, more terms in the leptodermous expansion maydbd nee
to properly predict binding energies. If one were to fit the expansion avitmsufficient number
of terms, what ailments would be observed? The terms included in the equatidd khave to
change from their nominal values to accommodate the lack of higher ordes.tEurthermore, the
deviation from the nominal value would be worse for smaller masses, wreehegher order terms
are more important.

Consider fitting the nuclear binding energies to a liquid drop model in varioss maages.
Using a fitting procedure with equation 3.3, which will be described in the fatigwection, table
1 shows the results of such an exercise. Most terms do not vary systeliyagthe mass range is
changed, their apparently random variation being of the order of 1&eXteptions are the surface
energy and the pairing energy. The pairing energy is of unrelatedqgstessd is not discussed here.
The surface energy coefficiedécreases as the mass range is incremented. This trend indicates
that theA%/3 term is not sufficient in describing the lack of saturation in the system. As tssana
used in the fit increase, the surface term tends to the value of the voluiffieieae Hence, both
the need of a curvature term and sett®g= as are motivated.

Now that we see the need for a curvature term, another question artsesllga\What is the
origin of the curvature term? In order to answer this question, let us asswingple liquid with
spherical molecules of radiug. As shown on the left side of figure 1, on a flat liquid surface the
molecules should protrude half way on average, thus losing half of thadingrenergy. If the
liquid surface is curved like that of a sphere, as in the right side of fijwéh a drop radius of
R, the molecules protrude more, thus losing additional binding. This additiosmlncreases with
increasing curvature. Thus, the curvature and surface terms amsettfe same physical effect and
their coefficients should be related to one another in a simple way.

In order to obtain a quantitative estimate of this effect, let us consider a riadéd essentially
geometric in nature. The surface energy is considered to be propdttaha protruding surface
area of a constituent residing on the surface times the number of partiel=npon the surface.
As a function of nuclear radiuR, the resulting exposed surface ar&apf a constituent on the
surface is:

S=2m?(1+ 2%) 2.3)

with the limiting case of a planar syste®s= 2rr2. The number of particles on the nuclear surface
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vacuum

Figure 1: Schematic representation of the surface energy. The systdhre left represents a flat surface of
an infinite liquid and the system on the right is a finite spdediiquid drop. The surface area of a constituent
particle of radius,, exposed on the surface of a liquid drop of radiiis more than that of a surface particle

at the flat surface, as emphasized by the bold curve.

is proportional taA?/23. The overall surface energy is then:

Es =A% (1+ 2%) . (2.4)

Since nuclei exhibit a saturation density, the nuclear radius is approxiaskeg: roAl/3, with ro
being a constant. Inserting this relation into equation 2.4 yields:

r

— aA23 4 a M ALB. (2.5)
2[’0

In this result we identify the usual surface term proportionahte and its surface energy coef-
ficient. Furthermore, we notice a curvature term proportiona{*té and its curvature coefficient
which is dependent on the surface energy coefficient and the ratie ¢frtblecule” radius to the
droplet radius which is directly related to the saturation density.

The above equation is reminiscent of the Tolman correction to the surfesieridi0]. This
term can be interpreted as the Tolman correction for the nuclear system iautsdgstate

Naturally, deviations from sphericity of the molecules would involve a (tentpezalepen-
dent) reorientation on the surface. This would alter the simple relationshigpeetwlume, sur-
face and curvature energies. We will limit the discussion to the case of mopgoforce for the
model presented here.

We may check the model further by putting experimental values into equationTaking
ro ~ 1.2 fm [4] and the radius of a free nucleon tolpe~ 0.9 fm [11], yields:

09 3
% 85 = ods. (2.6)

It would be notable if a proper fit to nuclear masses were to produce a chilge to the above
estimate.

To further appreciate the significance of the relation between volumecsuaind curvature
energies, consider the following. What information is gained in knowing thedrmous expan-
sion for an arbitrary leptodermous liquid in its ground state?
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First, consider the volume energy. The volume energy gives no informatitre internal
structure of the system. It is just the scale which sets the size of the rest ¢ériins in the
leptodermous expansion.

Now a measurement of the system’s surface energy is madepartie e density of the system
can be deduced by comparing the surface and volume energies. Thiseidganticipating that
the two coefficients will be the same in termsfofindA?/3, respectively. Avogadro’s number could
thus be inferred.

Finally, the curvature energy is determined and from itdlaeof a single particle in the liquid
can be estimated. This is shown in equation 2.5.

Here we see how the hierarchy of terms in the leptodermous expansiorm catated to the
internal structure of a fluid. Even though this exercise is pedagogicalturey it demonstrates the
physical significance of each term. It could have allowed Democritus teegnis atomic theory,
had he been inclined to do so.

3. Nuclear Mass Fit Results

In the fitting process we use a set of 2076 masses, corrected for §ketseaccording to
Moller et al. [12]. The masses considered in the fits correspond to nuclear masseseference
[13] with N > 7, Z > 7, and with experimental uncertainties less than 150 keV. The lower limit
of neutron and proton numbers is chosen to insure that the included ateleirge enough to be
considered as liquid drops. The restriction on the experimental uncersamtiet only due to the
error of the mass, but also to the reliability of the shell correction for mdasasvay from stability.
The binding energ\Eg, of each nucleus is defined as:

Es(A,Z) = Zmy+ (A—Z)my — M(A, Z) + Agnail (A, Z), (3.1)

with mp andm, being the mass of a proton and neutron, respectiiig,the experimental mass of
the nucleus, anflgq) is the shell correction. The liquid drop formula is fit to this binding energy
with each nucleus given an equal weight. The mean square deviation fifithesed to evaluate
its goodness:

(&) _ (th)y2
N
We use the following liquid drop formula:
_(_ 2/3 yay (4 (AN +2) Z(Z-1) o
Eg = (—a/A+aA” " +aA )(1 k<A2 +ac AL i\/,&’ (3.3)

where we insert the mass asymmetry dependerec@ — 2Z both in the volume and surface terms
according to Myers and Swiatecki [3]. If the mass asymmetry term is integbiges an “isospin”
dependence, the term linear withshould be treated &, with T = |I|/2. This “isospin” presents
itself as the squar&?, which we rewrite (with a possibly unjustified quantal sensitivity) 5% =
T(T+1) =|l|(]l|+2)/4. This has the effect of introducing a linear termlifwithout the addition
of a new parameter, as opposed to a freely varying Wigner term [8].

The following fits are performed:
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Table 2: Fits from the four different mass equations as describeldrigxt. All the parameters are in units
of MeV. The value in the parentheses is the uncertainty iasiedigit.

Fit av as a k ac ) rm(fm)  x2

A 15597(7) 17.32(2) a =0 1.8048(9) 0.7060(4) 11.4(2) — 058
B 14.843(33) a,—as a —=0 1.7196(16) 0.6585(4) 10.1(6) —  4.24
C 15.25(3) 15.17(17) 3.8(3) 1.779(2) 0.6932(11) 11.3(2) 0.60(5) 4 0.5
D 15264(4) ay—as 3.60(3) 1.7805(8) 0.6938(3) 11.3(2) 0.566(5) 0.54

A. a, andag vary independently without a curvature term.
B. Same as above, but forciag = as.
C. ay andag vary independently with a curvature term.

D. Same as above, but forciag = as.

The Coulomb, mass asymmetry and pairing coefficients are left as fremgi@ra in all of the
above fits. The results are shown in Table 2 and are discussed beloure Rigghows plots of
the residual masses of the fits, the exact binding energy with shell tonmgincluded minus the
binding energy predicted from the fitted formula.

Comparing fits A and B shows that settiag= as without the presence of the curvature term
does not ameliorate the situation. Quite to the contraryythelue is 8 times larger and the plot of
the residual masses shows clear deviations. Left without constraintitiaee term incorporates
the curvature effects and as a result it becomes larger.

Comparing fits A and C, we observe that the introduction of the curvatune a&sra free
parameter improves the resulting fits as expected. But is the vahjepbiysically meaningful and
how does it compare to the expectations of the geometric model?

Rearranging equation 2.6 gives the radius of the nucleon as

rn =242 (3.4)
as
in units of fm. Using this equation, the nucleon radius is found to be 0.60(53rmller than the
experimental value of 0.84 fm [11]. This size of deviation is not unexjgicten the crude approx-
imations used, and it remains impressive that both the sign and relative magaitigredicted.
Furthermore, the surface energy coefficient moves within error of eghene energy coefficient.
The other parameters change within 2% between the two fits, showing cahsistelts.

By forcing a, = as with the presence of the curvature correction, as in fit D, hehanges
by a fraction of a percent. Also, the parameters not associated with thiatsgjuinuclear force are
left unchanged. Thus, no physics is lost with settg- as.

The above exercise explains the reason why the volume and surfagy eoefficients have
previously been treated as independent values. Without taking intoradbeucurvature term, the
volume and surface parameters will tend to be irreconcilably different tmbsidered equal. The
addition of the curvature term corrects this discrepancy, and it is fowidita surface and volume
energies are close to being equal, giving no visible difference in the fittitge@xperimental data.
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Figure 2: The residual mass from the corresponding fits. The label éntdip left corner of each plot
corresponds to the fits listed in the text. The connected liapresent chains of isotopes.

Another fit was performed usind?) = |I|(|I| +x), with the added fit parameter This ad-
dition is equivalent to introducing an adjustable Wigner term linear in isos@bleT3 shows the
fit with and without lettingx vary. None of the other fit parameters change substantially. As for
itself, it is found to be 1.51(3), which slightly lowers tly& of the fit. With most of the parameters
changing less than 1%, the same physics is still captured by sétfing |1|(]1]+2).

4. Implications of the curvatureterm

The presence of a curvature energy, especially important in light nuasj, imply effects
hitherto undiscovered. We give here two examples.

The curvature of the surface in the nuclear deformation landscapenaatticular at the
fission saddle point, exhibits large variations going from positive to negaliherefore, the pre-
diction of fission saddle point configurations and masses will be affegtetieopresence of a
curvature term, which will acquire a tensorial form.
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Table 3: Fits of the nuclear masses to the liquid drop model using@ufit isospin dependencies. The first

forces(12) = |I|(|I| +2), where as the second represents a fitto = |I|(]I| +x). All the parameters are in
units of MeV. The value in the parentheses is the uncertamitye last digit.
ay a k X ac o x?

15.264(4) 3.60(3) 1.7805(8) 2 0.6938(3) 11.3(2) 0.54
15.247(4) 3.76(3) 1.7944(10) 1.51(3) 0.6913(3) 11.3(2) 0.46

The fragment distribution predicted by the Fisher model [14] is depenalerbe surface
energy of the clusters. The theory uses a term proportionAPtéor this purpose. Since the
fragment yields are weighted heavily towards lighter fragments away freroritical temperature,
the introduction of a curvature term would seem imperative. Furthermaeptivature term could
alter predictions of the critical temperature in a way as yet unknown.

5. Conclusion

Previous efforts have addressed the need of a curvature term in thediguicexpansion of
nuclear masses, but no consistent interpretation was made. Some wtwkkatd is unnecessary,
and that it is enough to stop the expansion at the level of a surface térmd{Ber studies give
conflicting results, and even the sign of the curvature correction remaibigaous [4, 5].

We demonstrate that the surface energy coefficient in the traditional liquiidfairmula changes
when different mass ranges are considered. The decreasing tréredsuarface energy coefficient
with increasing mass number is consistent with the presence of a curvaturée present a con-
sistent description of the curvature term’s nature, determine its sign andhdaate its presence
in the nuclear masses.

Simple physical arguments predict that the volume and surface enerffigieoés should be
equal. Without the introduction of the curvature term, the volume and suefaegy coefficients
appear to differ from each other. With the addition of the curvature termwibeoefficients agree
within error.

The nature of the “Wigner” term linear with isospin is also considered. A slipange in
the definition of the squared isospin, possibly quantum mechanical in naaptires its relative
magnitude without introducing an additional parameter.

What is gained through these considerations is a streamlined physicakepadtthre liquid
drop model. Consider the difference of the original liquid drop model iragqn 1.1 to the final
equation presented here in equation 3.3. Even though the latter appearsamyplicated, there
are the same number of free fit parameters as the former. Instead ofj awldie and more terms
to produce more and more exact representations of the nuclear massesjenadded a geometric
physical picture and kept the same number of variables to obtain a moragc@sult. The lessons
learned with this equation are more telling than letting all the parameters free.

6. Acknowledgements

This work was performed by by Lawrence Berkeley National Laboyaaod was supported



Theliquid drop volume, surface and curvature terms Luciano G. Moretto

by the Director, Office of Energy Research, Office of High Energy inclear Physics, Division
of Nuclear Physics, of the U.S. Department of Energy under ContracDE-AC02-05CH11231.
This work also performed under the auspices of the U.S. Departmeneofjhy Lawrence Liv-
ermore National Laboratory under Contract DE-AC52-07NA27344.

References

[1] C. F. von Weizsacker, Z. Phys. 6, 431 (1935).
[2] V. M. Strutinsky, Nucl. PhysA95, 420 (1967).
[3] W. D. Myers and W. J. Swiatecki, Nucl. Phy&l, 1 (1966).
[4] G. Royer, Nucl. PhysA807, 105 (2008).
[5] M. W. Kirson, Nucl. PhysA798, 29 (2008).
[6] S. Goriely, N. Chamel and J. M. Pearson, Phys. Rev. 116f, 152503 (2009).
[7] P. Ring and P. Schucihe Nuclear Many-Body Problem (Springer, New York, 2004).
[8] E. Wigner, Phys. Rewl, 947 (1937).
[9] W. D. Myers and W. J. Swiatecki, Ann. Phys.-New Ydik, 395 (1969).
[10] R. C. Tolman, J. Chem. Phy&7, 333 (1949).
[11] R. Pohl.etal., Nature466, 213 (2010).
[12] P. Mdller, J. R. Nix, W. D. Myers and W. J. Swiatecki, Ataia Nucl. Data Table59, 185 (1995).
[13] G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra, Nuehys.A729, 3 (2003).
[14] M. E. Fisher, Physics (Long Island City, NY3,255 (1967).

10



