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The liquid drop volume, surface and curvature terms Luciano G. Moretto

1. Introduction

In its traditional form, the liquid drop model approximates the binding energy of agiven
nucleus of mass numberA and chargeZ as [1]:

EB(A,Z) =−avA+asA
2/3+ac

Z(Z−1)

A1/3
+aa

(A−2Z)2

A
± δ√

A
. (1.1)

The five terms in this equation are associated with the five independent aspects of nuclei expected to
affect the binding energy and are associated with the nuclear volume, surface, Coulomb repulsion,
proton-neutron asymmetry, and pairing. The quantitiesav, as, ac, aa, andδ , are the coefficients of
the respective terms. A fit of this equation to nuclear masses gives the coefficients and reproduces
the experimental values to within 1% or∼10 MeV for heavy nuclei.

This result attests to the profound physical content of the overall equation and to the inter-
pretation of its individual terms. The residual 1% discrepancy is due to shell structure. The shell
corrections, evaluated according to the Strutinsky procedure [2] and grafted onto the liquid drop
model, permit an accurate evaluation of nuclear masses and fission barriers to within 1-2 MeV
[3, 4, 5]. This hybrid approach remains to this day the yet unmatched paragon for more sophisti-
cated models such as Hartree-Fock-Bogoliubov [6, 7].

Many additional terms have been suggested, each with their own physical interpretation. An
example of this is found in Myers and Swiatecki [3] who suggested:

EB(A,Z) =−av

(

1− k
I2

A2

)

A+as

(

1− k
I2

A2

)

A2/3+ac
Z(Z −1)

A1/3
+W

|I|
A

± δ√
A
, (1.2)

whereI = A−2Z. The main difference between equation 1.1 and equation 1.2 is the extension of
the neutron-proton asymmetry to the surface energy term. Also, a term linearin |I| was introduced.

Equation 1.2 implies a connection between volume and surface energies. Theauthors argued
that the change of the volume energy due to the neutron-proton asymmetryI should be reflected
in the surface energy of the system as well, though stating that this was donewithout empirical
evidence [3]. The natural implication is that the surface and volume energies are related to each
other through their common origin.

A term linear in|I| was originally suggested by Wigner in considering the exchange force of
nucleons [8]. An empirical observation of such a dependency in the masses was reported by Myers
and Swiatecki, hence its addition in the above equation [3].

We extend and generalize the insights discussed above by arguing that therelation between
volume energy and the surface energy is strong enough that their coefficients should not be taken
as independent variables. Furthermore, we discuss the need of a third term arising from the same
physics, proportional toA1/3, in order to create a consistent physical picture of the nuclear binding
energy. Finally, a linear term in|I| is naturally introduced when treating the asymmetry term as the
expectation value of the isospin,T 2.

A revised binding energy equation is fit to the experimental binding energiesof the nuclides
to test these considerations. The importance of the revised terms is assessed by comparing the fit
with the original and revised models.
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2. The Liquid Drop Formula: A Truncated Series Expansion

The first term of equation 1.1 called the volume term, and its proportionality toA indicates sat-
urating forces leading to constant density and binding energy per nucleon. The obvious similarity
to molecular fluids led naturally to the introduction of the second term, called, justas aptly, the sur-
face term. Its proportionality toA2/3 speaks to the lack of saturation on the nuclear surface, whose
area, through the constant density of the fluid, should indeed be proportional toA2/3. Progressing
along the the same line, it was widely appreciated that the surface term is a finitesize correction
and that additional terms in the expansion might be needed, such as a curvature term.

More generally, we can think of a generalized liquid drop formula as a rapidly converging
series expansion in powers ofA−1/3, known as the leptodermous expansion [9]:

EB =−avA+asA
2/3+arA

1/3+ ... (2.1)

It is left to be determined how many terms in the expansion are necessary to describe the physics
of the nuclear system. The incorporation of a curvature term, with its coefficient ar, proportional
to A1/3 is almost demanded by the truly small size of nuclei (A ≤ 300) compared to the size of
the drops typically considered in molecular fluids, such as aerosols, where A ≥ 106. Higher order
terms also may be of importance due to the small size of nuclei, but would be intractable without
an understanding of the lower order curvature term.

The role of the curvature term in nuclear systems was considered only recently. The curva-
ture correction was introduced previously by several authors with ambiguous results [3, 4, 5]. The
increased number of parameters and the ability of the traditional liquid drop formula without cur-
vature to fit the data made the problem of identifying the magnitude of this term rather difficult.
We believe that it is possible to shed additional light on this subject by considering globally the
physical origin of the various terms.

Volume and surface terms both arise from the same physical property of nuclear forces: sat-
uration, and the lack thereof. Thus, surface and volume terms should be related to one another,
being themselves different effects of the same cause. Furthermore, the experimental surface and
volume coefficients turn out to be approximately equal in magnitude and opposite in sign. Is this
an accident or could they possibly be equal?

To answer this question, consider a system of small sticky cubes used to build larger, composite
cubes. These cubes interact only when in direct contact. The system is characterized by some bond
strength,ε, when two faces are touching. The energy of a cube ofA constituents is equal to a
volume energy minus a surface energy, just as in the nuclear case. Counting the number of bonds
in a cube of sizeA reveals:

E(cube)
B (A) =−3Aε +3A2/3ε . (2.2)

Thus, in this model the volume and surface energy coefficients areexactly equal withav = as = 3ε.
This insight motivates settingav = as without any loss of information.

One difference between this simple model system and a nucleus is the diffuseness of the nu-
clear surface. What effect does a diffuse surface have on the binding energy of a drop? Since the
volume energy is a property of the bulk system it would remain unchanged. The fact that the sys-
tem naturally becomes diffuse means that it gains a larger binding energy in doing so. The surface

3
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Table 1: Fits of the nuclear masses with equation 3.3 using differentmass ranges and settingar = 0. All the
parameters in units of MeV. The value in the parentheses is the uncertainty in the last digit.

Masses av as k ac δ
50-100 15.39(4) 16.81(10) 1.742(7) 0.686(3) 10.3(5)
100-150 15.39(2) 16.68(7) 1.771(3) 0.6917(14) 12.4(3)
150-200 15.11(2) 15.66(8) 1.748(3) 0.6760(12) 13.5(3)
200-250 15.18(6) 15.7(2) 1.768(5) 0.686(3) 13.3(4)

energy would then belowered in comparison to the sharp surface system. This implies that the sur-
face energy coefficient should be equal to or smaller than the volume energy coefficient, contrary
to what is observed in traditional liquid drop fits to the nuclear masses.

As the system is made smaller, more terms in the leptodermous expansion may be needed
to properly predict binding energies. If one were to fit the expansion withan insufficient number
of terms, what ailments would be observed? The terms included in the equation would have to
change from their nominal values to accommodate the lack of higher order terms. Furthermore, the
deviation from the nominal value would be worse for smaller masses, where the higher order terms
are more important.

Consider fitting the nuclear binding energies to a liquid drop model in various mass ranges.
Using a fitting procedure with equation 3.3, which will be described in the following section, table
1 shows the results of such an exercise. Most terms do not vary systematically as the mass range is
changed, their apparently random variation being of the order of 1%. The exceptions are the surface
energy and the pairing energy. The pairing energy is of unrelated physics and is not discussed here.
The surface energy coefficientdecreases as the mass range is incremented. This trend indicates
that theA2/3 term is not sufficient in describing the lack of saturation in the system. As the masses
used in the fit increase, the surface term tends to the value of the volume coefficient. Hence, both
the need of a curvature term and settingav = as are motivated.

Now that we see the need for a curvature term, another question arises naturally: What is the
origin of the curvature term? In order to answer this question, let us assumea simple liquid with
spherical molecules of radiusrn. As shown on the left side of figure 1, on a flat liquid surface the
molecules should protrude half way on average, thus losing half of their binding energy. If the
liquid surface is curved like that of a sphere, as in the right side of figure1 with a drop radius of
R, the molecules protrude more, thus losing additional binding. This additional loss increases with
increasing curvature. Thus, the curvature and surface terms arise from the same physical effect and
their coefficients should be related to one another in a simple way.

In order to obtain a quantitative estimate of this effect, let us consider a modelthat is essentially
geometric in nature. The surface energy is considered to be proportional to the protruding surface
area of a constituent residing on the surface times the number of particles present on the surface.
As a function of nuclear radiusR, the resulting exposed surface area,S, of a constituent on the
surface is:

S = 2πr2
n

(

1+
rn

2R

)

, (2.3)

with the limiting case of a planar system,S = 2πr2
n. The number of particles on the nuclear surface
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vacuum

liquid R

rn

Figure 1: Schematic representation of the surface energy. The systemon the left represents a flat surface of
an infinite liquid and the system on the right is a finite spherical liquid drop. The surface area of a constituent
particle of radiusrn exposed on the surface of a liquid drop of radiusR is more than that of a surface particle
at the flat surface, as emphasized by the bold curve.

is proportional toA2/3. The overall surface energy is then:

Es = asA
2/3

(

1+
rn

2R

)

. (2.4)

Since nuclei exhibit a saturation density, the nuclear radius is approximatedasR = r0A1/3, with r0

being a constant. Inserting this relation into equation 2.4 yields:

Es = asA
2/3

(

1+
rn

2r0A1/3

)

= asA
2/3+as

rn

2r0
A1/3. (2.5)

In this result we identify the usual surface term proportional toA2/3 and its surface energy coef-
ficient. Furthermore, we notice a curvature term proportional toA1/3 and its curvature coefficient
which is dependent on the surface energy coefficient and the ratio of the “molecule” radius to the
droplet radius which is directly related to the saturation density.

The above equation is reminiscent of the Tolman correction to the surface tension [10]. This
term can be interpreted as the Tolman correction for the nuclear system in its ground state

Naturally, deviations from sphericity of the molecules would involve a (temperature depen-
dent) reorientation on the surface. This would alter the simple relationship between volume, sur-
face and curvature energies. We will limit the discussion to the case of an isotropic force for the
model presented here.

We may check the model further by putting experimental values into equation 2.5. Taking
r0 ≃ 1.2 fm [4] and the radius of a free nucleon to bern ≃ 0.9 fm [11], yields:

ar ≃ as
0.9
2.4

≃ 3
8

as. (2.6)

It would be notable if a proper fit to nuclear masses were to produce a value close to the above
estimate.

To further appreciate the significance of the relation between volume, surface and curvature
energies, consider the following. What information is gained in knowing the leptodermous expan-
sion for an arbitrary leptodermous liquid in its ground state?
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First, consider the volume energy. The volume energy gives no informationof the internal
structure of the system. It is just the scale which sets the size of the rest of the terms in the
leptodermous expansion.

Now a measurement of the system’s surface energy is made. Theparticle density of the system
can be deduced by comparing the surface and volume energies. This is done by anticipating that
the two coefficients will be the same in terms ofA andA2/3, respectively. Avogadro’s number could
thus be inferred.

Finally, the curvature energy is determined and from it thesize of a single particle in the liquid
can be estimated. This is shown in equation 2.5.

Here we see how the hierarchy of terms in the leptodermous expansion can be related to the
internal structure of a fluid. Even though this exercise is pedagogical in nature, it demonstrates the
physical significance of each term. It could have allowed Democritus to prove his atomic theory,
had he been inclined to do so.

3. Nuclear Mass Fit Results

In the fitting process we use a set of 2076 masses, corrected for shell effects according to
Möller et al. [12]. The masses considered in the fits correspond to nuclear masses from reference
[13] with N > 7, Z > 7, and with experimental uncertainties less than 150 keV. The lower limit
of neutron and proton numbers is chosen to insure that the included nucleiare large enough to be
considered as liquid drops. The restriction on the experimental uncertainties is not only due to the
error of the mass, but also to the reliability of the shell correction for massesfar away from stability.
The binding energy,EB, of each nucleus is defined as:

EB(A,Z) = Zmp +(A−Z)mn −M(A,Z)+∆shell(A,Z), (3.1)

with mp andmn being the mass of a proton and neutron, respectively,M is the experimental mass of
the nucleus, and∆shell is the shell correction. The liquid drop formula is fit to this binding energy
with each nucleus given an equal weight. The mean square deviation of thefit is used to evaluate
its goodness:

χ2 =
∑(E(ex)

i −E(th)
i )2

N
. (3.2)

We use the following liquid drop formula:

EB = (−avA+asA
2/3+arA

1/3)

(

1− k

( |I|(|I|+2)
A2

))

+ac
Z(Z−1)

A1/3
± δ√

A
, (3.3)

where we insert the mass asymmetry dependenceI = A−2Z both in the volume and surface terms
according to Myers and Swiatecki [3]. If the mass asymmetry term is interpreted as an “isospin”
dependence, the term linear withI2 should be treated asT 2, with T = |I|/2. This “isospin” presents
itself as the squareT 2, which we rewrite (with a possibly unjustified quantal sensitivity) as〈T 2〉=
T (T +1) = |I|(|I|+2)/4. This has the effect of introducing a linear term in|I| without the addition
of a new parameter, as opposed to a freely varying Wigner term [8].

The following fits are performed:

6
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Table 2: Fits from the four different mass equations as described in the text. All the parameters are in units
of MeV. The value in the parentheses is the uncertainty in thelast digit.
Fit av as ar k ac δ rn (fm) χ2

A 15.597(7) 17.32(2) ar = 0 1.8048(9) 0.7060(4) 11.4(2) — 0.58
B 14.843(3) av = as ar = 0 1.7196(16) 0.6585(4) 10.1(6) — 4.24
C 15.25(3) 15.17(17) 3.8(3) 1.779(2) 0.6932(11) 11.3(2) 0.60(5) 0.54
D 15.264(4) av = as 3.60(3) 1.7805(8) 0.6938(3) 11.3(2) 0.566(5) 0.54

A. av andas vary independently without a curvature term.

B. Same as above, but forcingav = as.

C. av andas vary independently with a curvature term.

D. Same as above, but forcingav = as.

The Coulomb, mass asymmetry and pairing coefficients are left as free parameters in all of the
above fits. The results are shown in Table 2 and are discussed below. Figure 2 shows plots of
the residual masses of the fits, the exact binding energy with shell corrections included minus the
binding energy predicted from the fitted formula.

Comparing fits A and B shows that settingav = as without the presence of the curvature term
does not ameliorate the situation. Quite to the contrary, theχ2 value is 8 times larger and the plot of
the residual masses shows clear deviations. Left without constraint, the surface term incorporates
the curvature effects and as a result it becomes larger.

Comparing fits A and C, we observe that the introduction of the curvature term as a free
parameter improves the resulting fits as expected. But is the value ofar physically meaningful and
how does it compare to the expectations of the geometric model?

Rearranging equation 2.6 gives the radius of the nucleon as

rn = 2.4
ar

as
, (3.4)

in units of fm. Using this equation, the nucleon radius is found to be 0.60(5) fm,smaller than the
experimental value of 0.84 fm [11]. This size of deviation is not unexpected from the crude approx-
imations used, and it remains impressive that both the sign and relative magnitude are predicted.
Furthermore, the surface energy coefficient moves within error of the volume energy coefficient.
The other parameters change within 2% between the two fits, showing consistent results.

By forcing av = as with the presence of the curvature correction, as in fit D, theχ2 changes
by a fraction of a percent. Also, the parameters not associated with the saturating nuclear force are
left unchanged. Thus, no physics is lost with settingav = as.

The above exercise explains the reason why the volume and surface energy coefficients have
previously been treated as independent values. Without taking into account the curvature term, the
volume and surface parameters will tend to be irreconcilably different to beconsidered equal. The
addition of the curvature term corrects this discrepancy, and it is found that the surface and volume
energies are close to being equal, giving no visible difference in the fitting of the experimental data.
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Figure 2: The residual mass from the corresponding fits. The label in the top left corner of each plot
corresponds to the fits listed in the text. The connected lines represent chains of isotopes.

Another fit was performed using〈I2〉 = |I|(|I|+ x), with the added fit parameterx. This ad-
dition is equivalent to introducing an adjustable Wigner term linear in isospin. Table 3 shows the
fit with and without lettingx vary. None of the other fit parameters change substantially. As forx
itself, it is found to be 1.51(3), which slightly lowers theχ2 of the fit. With most of the parameters
changing less than 1%, the same physics is still captured by setting〈I2〉= |I|(|I|+2).

4. Implications of the curvature term

The presence of a curvature energy, especially important in light nuclei,may imply effects
hitherto undiscovered. We give here two examples.

The curvature of the surface in the nuclear deformation landscape, andin particular at the
fission saddle point, exhibits large variations going from positive to negative. Therefore, the pre-
diction of fission saddle point configurations and masses will be affected by the presence of a
curvature term, which will acquire a tensorial form.
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Table 3: Fits of the nuclear masses to the liquid drop model using different isospin dependencies. The first
forces〈I2〉= |I|(|I|+2), where as the second represents a fit to〈I2〉= |I|(|I|+ x). All the parameters are in
units of MeV. The value in the parentheses is the uncertaintyin the last digit.

av ar k x ac δ χ2

15.264(4) 3.60(3) 1.7805(8) 2 0.6938(3) 11.3(2) 0.54
15.247(4) 3.76(3) 1.7944(10) 1.51(3) 0.6913(3) 11.3(2) 0.46

The fragment distribution predicted by the Fisher model [14] is dependenton the surface
energy of the clusters. The theory uses a term proportional toAσ for this purpose. Since the
fragment yields are weighted heavily towards lighter fragments away from the critical temperature,
the introduction of a curvature term would seem imperative. Furthermore, the curvature term could
alter predictions of the critical temperature in a way as yet unknown.

5. Conclusion

Previous efforts have addressed the need of a curvature term in the liquiddrop expansion of
nuclear masses, but no consistent interpretation was made. Some works state that it is unnecessary,
and that it is enough to stop the expansion at the level of a surface term [3]. Other studies give
conflicting results, and even the sign of the curvature correction remains ambiguous [4, 5].

We demonstrate that the surface energy coefficient in the traditional liquid drop formula changes
when different mass ranges are considered. The decreasing trend inthe surface energy coefficient
with increasing mass number is consistent with the presence of a curvature term. We present a con-
sistent description of the curvature term’s nature, determine its sign and demonstrate its presence
in the nuclear masses.

Simple physical arguments predict that the volume and surface energy coefficients should be
equal. Without the introduction of the curvature term, the volume and surfaceenergy coefficients
appear to differ from each other. With the addition of the curvature term, thetwo coefficients agree
within error.

The nature of the “Wigner” term linear with isospin is also considered. A slight change in
the definition of the squared isospin, possibly quantum mechanical in nature, captures its relative
magnitude without introducing an additional parameter.

What is gained through these considerations is a streamlined physical picture of the liquid
drop model. Consider the difference of the original liquid drop model in equation 1.1 to the final
equation presented here in equation 3.3. Even though the latter appears more complicated, there
are the same number of free fit parameters as the former. Instead of adding more and more terms
to produce more and more exact representations of the nuclear masses, we have added a geometric
physical picture and kept the same number of variables to obtain a more accurate result. The lessons
learned with this equation are more telling than letting all the parameters free.
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