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1. Introduction

General Relativity(GR) works very well at the macroscopialss[1]. Its quantization has
proved to be difficult, though. It is non renormalizable, @hiprevents its unification with the
other forces of Nature. Trying to make sense of Quantum GReisrtain physical motivation of
String Theories [2]. Moreover, recent discoveries in Cdegyw[6, 7] has revealed that most part
of matter is in the form of unknown matter(dark matter,DM@lahat the dynamics of the expan-
sion of the Universe is governed by a mysterious componatiitcelerates the later stages of the
expansion(dark energy,DE). Although GR is able to acconat®mboth DM and DE, the interpre-
tation of the dark sector in terms of fundamental theoriesl@ihentary particles is problematic[8].
Although some candidates exists that could play the roledf Bone have been detected yet. Also,
an alternative explanation based on the modification of yimauchics for small accelerations cannot
be ruled out[9].

In GR, DE can be explained if a small cosmological constgnf present. At the later stages
of the evolution of the UniversA will dominate the expansion, explaining the accelerati®ach
smallA is very difficult to generate in Quantum Field Theory (QFT)dals, because in this models
N\ is the vacuum energy, which is usually very large.

In recent years there has been various proposals to explaiokiserved acceleration of the
universe. They involve the inclusion of some additionaldfiiéke in quintessence, chameleon,
vector dark energy or massive gravity; Addition of highedarterms in the Einsten-Hilbert action,
like f(R) theories and Gauss-Bonnet terms; Modificationraiv@y on large scales by introduction
of extra dimensions. For a review, see [10].

Less widely explored, but interesting possibilities, dre search for non-trivial ultraviolet
fixed points in gravity (asymptotic safety[12]) and the patbf induced gravity[13]. The first pos-
sibility uses exact renormalization-group techniquekfitl lattice and numerical techniques such
as Lorentzian triangulation analysis[15]. Induced gsayitoposed that gravitation is a residual
force produced by other interactions.

In recent papers, [16, 17] a field theory model explore thergamee of geometry by the
spontaneous symmetry breaking of a larger symmetry wherengtric is absent. Previous work
in this direction can be found in [18], [19] and [20].

In this paper, we will review the results of [32, 24]. The malvservation is that GR is finite
on shell at one loop[21]. In [23, 22] we presented a type ofjgabeoriesd gauge theories(DGT):
The main properties of DGT are: 1) The classical equationsation are satisfied in the full
Quantum theory 2) They live at one loop. 3) They are obtaihealigh the extension of the former
symmetry of the model introducing an extra symmetry that ale@symmetry, since it is formally
obtained as the variation of the original symmetry. When ywehathis prescription to GR we
obtaind gravity. Quantization od gravity is discussed in [24].

The impact of dark energy on cosmological observations eaexpressed in terms of a fluid
equation of statep = w(R)p, which is to be determined studying its influence on the lscpde
structure and dynamics of the Universe.

In this paper we follow the same approach. So we will not idelthe matter dynamics, except
by demanding that the energy-momentum tensor of the matidri§l covariantly conserved. This
is required in order to respect the symmetries of the model.
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The main properties of this model at the classical level aj#:agrees with GR, outside the
sources and with adequate boundary conditions. In paatictile causal structure of delta gravity
in vacuum is the same as in General Relativity. So all stahtiest are satisfied automatically. b)
When we study the evolution of the Universe, it predicts lra¢gion without a cosmological con-
stant or additional scalar fields. The Universe ends in a Big $&milar to the scenario considered
in [25]. ¢) The scale factor agrees with the standard cosgyadearly times and show acceleration
only at late times. Therefore we expect that density peatishs should not have large corrections.

In section 2, we write the action defining the model and theesponding symmetries. Section
3 discusses the motion of particles in the model. In sectiosm 4lefine proper time and distances.
In section 5 we solve the equations of the model for FriedRahertson- Walker metric. In section
6, we find the red shift. In section 7, we define luminosityatise. In section 8, we fit the equations
of section 6 to the Supernova la data. Section 9 containslianprary discussion of Dark Matter.
Section 10 contains the conclusions and brief discussibopen problems. In Appendix A, we
review o-symmetries.

2. Definition of Delta gravity

In this section we define the action as well as the symmetffiegkeomodel and derive the
equations of motion.
We use the metric convention of [11]. The actiondafravity is:

. 1
S(0.6.1) = [ dxV/=G(~5 R+ L)+
1
K2/ KRW— EguvR) —i—KTuV} v=gd"vdix + (2.1)

o [ o A1

Herek = % , K2 is an arbitrary constant anfj,, := —%% is the energy-momentum
tensor of matteR,, is the Ricci’s tensor an® is the curvature scalar ajf,,. §"' is a two-
contravariant tensor under general coordinate transtionsa

The action (2.1) is obtained by applying the prescriptiontamed in [23, 22]. That is, we
add to the action of general relativity, the variation ofitlaconsider the variatioag,, = §,v as
a new field. Similarly, the symmetries we write below are otatd as variation of the infinitesimal
general coordinate transformations where the variatiothefinfinitesimal parameteyéy = &
is the infinitesimal parameter of the new transformatdn The last term in (2.1) is needed to
implement the conditioﬁj‘j" = 0 as an equation of motion in order to implement ¢hgymmetry
(2.2) off shell. This term is not needed in vacuum.

Action (2.1) is invariant under the following transforn@is@):

3Guv = Gup&dy, + gvpfg,u +0uv.p&5 = Eopw + Eoviu
OGuv(X) = glu;v + Elv;u + gilpfcﬁv + GVpgcl)?u + guwpfé) (2.2)
OAp = —&uy +)‘pf(§fu + &S
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From now on we will fix the gaugd, = 0. This gauge preserves general coordinate transforma-
tions but fixes completely the extra symmetry with paramétgr
Equations of motion Varyingg,, we get:

1 ) 1,4 1 i
§”+§G@W—gw@WRWJ—§gW;E%(v—gm@W)u+
1 3Ty

1
YU— - B "’HV fr—
29775 (VO b0 d) = kg

whereS/© = (UPYP L UYBop _yovBe). ; Uakye = 1 (g (P — 1g%Fg,, GHY)]
Varying g*v we get Einstein equation:

g (2.3)

1

Varying A, we getT}" =0
Covariant derivatives as well as raising and lowering ofdesd are defined usingy,,. Notice
that outside the sourc&f, = 0), a solution of (2.3) ig"” = AgH", for a constand, sincegly’ =
0 andRyy, = 0. We will haveg"¥ = gV, assuming that both fields satisfy the same boundary
conditions far from the sources.
The equation fog”V is linear and of second order in the derivatives.

3. Particle motion in the gravitational field

We are aware of the presence of the gravitational field thratsgeffects on test particles. For
this reason, here we discuss the coupling of a test parti@debackground gravitational field, such
that the action of the patrticle is invariant under (2.2).

In & gravity we postulate the following action for a test pasicl

5%:—m/ﬁhﬂgW%&W+@/HWMi@ZW@W+%“W+AW%
where.7,, is the energy momentum tensor of the test particle:
m X; Xy
Tuv(y) = /dt £

K5 = K2K is a dimensionless constant.
That is:

o(y—x)

(3.1)

dt K2/ — \ .
Sp:m/7<gw+—zguv>x“x"
N g

wereg,y = Guv +AHY +AY:H . Notice thatS; is invariant under (2.2) andparametrizations.
From now on we work in the gauglg, = 0.
Since far from the sources, we must have free particles ikduski space,i.€yy ~ Nuv, Guv ~
Nuv, it follows that we are describing the motion of a particlevassm’ = m(1+ %’)
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Since in vacuumg” = gHV, the equation of motion for test particles is the same ast&iimis.
Moreover, the equation of motion is independent of the ma#segparticle.

In order to include massless particles, we prefer to usedtiens[26]:

1 B o MRV (guy + Kby ) XHXY I
-= E/dt <sz_" " (Quy + KaGuv) X + 2\/(—:g;a;3>'<025<:V) (-4 v 2150 §3.2

This action is invariant under reparametrizations:
X (1) = x(t);dt'V(t') = dtv(t);t =t —g(t) (3.3)
The equation of motion fov is:

—
V= _7\’95;)()( (3.4)
Replacing (3.4) into (3.2), we get back (3.1).

Let us consider first the massive case. Using (3.3) we candig#ugev = 1. Introducing
mdt= drt, we get the action:

1+ (Quv + K2Guv ) XHXY
ZgaBXaXB

1 — N W
L= Em/dr <l— (guv + Kzguv) XHXY + (1+ g)\pXAXp)> (3.5)

plus the constraint obtained from the equation of motion/for
FromL; the equation of motion for massive particles is derived. \&fneg,,, = g,y + %’5,“,.

d(x#x'g )'(ﬁg +2XBET ) 1. o
. d:ﬁ - ) X’ 8uX P Xy 0 — XX By a = 0 (3.7)

We will discuss the motion of massive particles elsewhere.
The action for massless particles is:

1 — Ny
Lo= 21/dt (—v 1 (guv + KaGpuv ) XHXY) (3.8)
In the gauger = 1, we get:
1 N,
Lo = —Z/dt(ngergw)x X (3.9)

plus the equation of motion farevaluated av = 1: (guy + K50uv) XX =0
So, the massless particle moves in a null geodesig,ef= g,y + K50uv-
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4. Distances and time intervals

In this section, we define the measurement of time and dissaincthe model.

In GR the geodesic equation preserves the proper time ofdheclp along the trajectory.
Equation(3.7) satisfies the same property: Along the trajga*x"g,, is constant.Therefore we
define proper time using the original metgg,,

= /= gudHdX’ = \/—goodXC(dX = 0) (4.1)

Following [27], we consider the motion of light rays alondimitesimally near trajectories and
(4.1) to get the three dimensional metric:

dI2 = yjdxdx,
Vi = @(Qij - gOing) (4.2)
goo doo

That is, we measure proper time using the majyicbut the space geometry is determined by both
metrics. In this model massive particles do not move on gaosl®f a four dimensional metric.
Only massless particles move on a null geodesig,of So, delta gravity is not a metric theory.

5. Friedman-Robertson-Walker(FRW) metric

In this section, we discuss the equations of motion for thévéiee described by the FRW
metric. We use spatial curvature equal to zero to agree wimological observations.

Here we will deal only with a perfect fluid, since rotationabaranslational invariance implies
that the energy-momentum tensor of the Universe has this.Tdre energy momentum tensor for
a perfect fluid is [11]:

Tuv = PYuv + (P+p)UUy, 0" U U, = -1 (5.1)
Then: 5
T
Sog = p + 5(p P)(UULE” +UULGY) 52)
yo

In this case, assuming flat three dimensional metric:

—ds® = dt* — R(t)?{dr® + r’d6° + r’sin® 6d¢? }
—d& = At)dt® — B(t) {dr?+r2d6? + r’sir? 6dg?}
Using (3.7, 4.1), we can check that these are co-mobile auates and the proper time intengiat

for a co-moving clock is justlt, sot is the time measured in the rest frame of a co-moving clock.
Equations (2.3, 5.2) give:

NP NV NI | . 3 ..
—RB—EpRBJtER RZB—épR3A+§RR2A_.O
—pB-2B—- R ?R°B+ 2R RB+ 2R 'RB+

p RPA+ RPA+ 2RRA+ 2RAR =0 (5.3)
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Einstein’s equations are:

3(&R° & d _\?

We use the equation of stape= wp, to get, forw # —1:

R= Rot ¥, A = 3wlpt (W)

: 4 _1
B = R2I,t°, b= w

— 5.4
3W—|—3+W+l (5.4)

I, is a free parameter.

6. Red Shift

To make the usual connection between redshift and the saetierfwe consider light waves
traveling fromr =rq1 to r = 0,along ther direction with fixed@, . Photons moves on a null
geodesic ofy:

0= —(1+4 kbA)dt? + (R? + k5B) (dr? +r2d62 + r2sir? d¢?) (6.1)
So,
1+ KA
2
/ﬁ RtkgB (6.2)

A typical galaxy will have fixedry, 61, @ . If a second wave crest is emittedtat t; + oty from
r =rq, it will reachr = 0 attg + dtg, where

/to+5to LKA
ty+ 5ty R2 + K/tB KZtB

Therefore, fordty, dtg small, which is true for light waves, we have:

1+ KA 1+ KkotA
Sty | S—2— (tp) = ot t 6.3
R2+ KitB (to) = Oty R2 + ’tB( 1 (6.3)

Introduce:
~ R2 -+ kitB
Rt) =/ ——2(t
®) 1+ KJtA ®)
We getIStO E g A cru0|al pomt is that, according to equation (4.&),measure the change in
proper time. That |$ Wherevo is the light frequency detected la&= 0 corresponding to

a source emission at frequemzy Or in terms of the redshift parametgrdefined as the fractional

increase of the wavelenggh B
R(to) Ao — A]_
- = — l = 6.4
R(t1) A1 6-4)

We see thatR replaces the usual scale facR®m the computation of.
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7. Luminosity distance

Let us consider a mirror of radidsthat is receiving light from a distant source. The photons
that reach the mirror are inside a cone of half-argyleith origin at the source.

Let us computee.The light path of rays coming from a far away sourcetais given by
X(p) = ph+X1, p > 0 is a parameter amdiS the direction of the light ray.The path reaches us at
X=0forp=|%| =r1. Write A = —X; + €. Sincen;X; have modulus 1¢ = €] << 1 is precisely
the angle betweenX; andn at the source.The impact parameter is the proper distartbe path
from the origin, whenp = |X;|. The proper distance is determined by the 3-dimensionatienet
(4.2). Thatish=R(to)r16 = R(to) r1€, i.e. € = =2

(to)ra”
Then the solid angle of the cone i&? = ﬁ, whereA = mb? is the proper area of the
1
mirror. The fraction of all isotropically emitted photortgat reach the mirror i$ = m?ﬁig(t)z' Each
1~(to

photon carries an enerdw; at the source anchvy at the mirror. Photons emitted at intervals

oty will arrive at intervalsdty. We have% = g%’ g—g = “E%- Therefore the power at the mirror

is Py = L%f, wherelL is the luminosity of the source. The apparent Iuminositj/:is% =
R(ty)? 1
R(to)? 4mr2R(to)?”

2= This permits to define the luminosity distartie:= /77 = ﬁ(to)zﬁztl—l)- Using (6.2) we can
write this in terms of the red shift:

In Euclidean space, the luminosity decreases with distdnaccording tol =

z dZ

dL:(1+z)/0 naE

(7.1)

pullipuit

8. Supernova la data

The supernova la data givas, (apparent or effective magnitude) as a functiorz.ofl his is
related to distancd,. by m=M + 5Iog(%bc). HereM is common to all supernova amdchanges
with d_ alone.

We compared gravity to General Relativity(GR) with a cosmological ctard:
H? = H3(Qm(14+ 23+ (1—Qm)),Qr = 1—Qn,

Notice thatA = 0 forw= 0 in (5.4). So, it seems that we cannot fit the supernova dateekier
w = 0 is not the only component of the Universe. The masslesiklearthat decoupled earlier still
remain. It means that the trueis between X w < % , but very close tav= 0. So, we will fit the
data withw = 0.1,0.01,0.001 and see how sensitive the predictions are to the value of

Using data from Essence[29], we notice tRatest changes very little for the chosen sequence
of w's. Each fit determines the bdstfor a givenw. In this way we see thds scales likd, ~ 2,
a being independent af. As an approximation to the limit = 0, we get:

R(t) = R(t) va (8.1)

w/aiNrenormaIizes the derivative &att = 0. It is not divergent, because for> 0, w — % aisa
free parameter determined by the best fit to the data.
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Of course, the complete model must include the contributibnormal matteny = 0) plus
relativistic mattenw = %). But, at later times, the data should tend to (8.1). The es@lction of
the model with two fluids is found in [28].

Let us fit the data to the simple scaling model (8.1).

We get:

Qm=0.2240.03,M = 4329+ 0.03 , x?(perpoint) = 1.0328, General Relativity

a=221+0.12 M = 43.45+0.06, x°(perpoint) = 1.0327, Delta Gravity

o-gravity with non-relativistic(NR) matter alone give a fitthe data as good as GR with NR
matter plus a cosmological constant.

According to the fit to data, a Big Rip will happentat 2.21049 in unities ofp(today). It is
a similar scenario as in [25].

Finally, we want to point out that since for- 0, we havew — % thenR(t) = R(t). Therefore
the accelerated expansion is slower than (8.1) when wedadhoth matter and radiation in the
model.

9. Dark Matter

Several years ago, the astronomers were able to measuneethe af individual stars around
the center of the galaxies[3]. Surprisingly, such spedd$as a function of the distanaeto the
galactic center, did not follow Kepler law. Most of the gdlaanass was assumed to be in the
form of stars, which concentrate near the galactic center.tt® expectation was that the speed
of rotation of stars far from the center will decrease @82. The observation shows that rotation
curves(RC) follow a different pattern [4].

A natural way to explain the observed velocities was to asstira existence of extra mass
that cannot be seen but interact gravitationally (Dark BtditM).

When in the late 1970s the phenomenon of DM was discovered drtdy flat RCs were
highlighted in order to rule out the claim that non Keplenetocity profiles originate from a faint
baryonic component distributed at large radii. At that timk&arge part of the evidence for DM
was provided by extended, low-resolution HI RCs of very lnouis spirals whose velocity profile
did show small radial variations. The increase in the gualftthe RCs though soon leads to the
conclusion that baryonic (dark) matter was not a plausiblediate for the cosmological DM and
that the RCs did show variation with radius, even at largé.raeter numerical simulations in the
Cold Dark Matter scenario also predicted asymptoticallglideng RCs. The flat RC paradigm was
hence dismissed in the 1990s[5]

Additional support for the existence of DM comes from thalgtof galaxy stability against
gravitational collapse: The form of the galaxy that we cas(&minous part) is not gravitationally
stable unless we assume the existence of a spherically syimima&o that we cannot see.

From observation, we get that 80-90% of the galactic mas#is D

However, the physical nature of Dark Matter is not known §kt[

Most people think that DM is made of particles that interaeekly with normal matter. Until
recently the standard cosmological scenario was the sed@alCDM model. That is the evolution
of the Universe is governed by a cosmological consfatitat produces the accelerated expansion
of the Universe(Dark Energy)[7, 30] and non relativistictjzdes (cold DM) that were the seeds
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of the galaxies. However, recent simulations of the neightbod of the Milky Way[31] have
challenged the CDM paradigma. They proposed instead thapBiticles are warm, with a rest
mass of 1Kev.

There is an alternative to DM that is gaining some support: N\D®]. The main idea of
MOND involves a modification of Newton Second Law for accatiems below a critical accel-
erationag. In this way the constant speeg of individual stars far from the galactic center is
explained. Therefore, according to MOND, DM patrticles db exst.

Since DM patrticles have not been detected yet and even tkisterce is challenged in some
models, in this section we want to explore a different sdentar understand the properties of
galaxies. Preliminary studies of the solutions of DG in wanthave shown that it contains extra
degrees of freedom that produces an additional newtonigmfial far from the sources.

In fact, far from a source the gravitational field correspagodhe Schwarzschild solution:
pointlike source, spherically symmetric.

The exact solution is:

—(1-8 0 0 O
0 0 0
v = O 012 0 ®1)
0 0 0r2sin(6)?
(124 b3 0 0 0
r r
0 = 0 0
Guy = (1-F) 9.2
v 0 0 20 (®:2)
0 0 0 r2sin()?

Boundary conditiorg,,y ~ nuwG ~ n*¥ for r — c.Notice that still there are 2 arbitrary constants.
Newtonian potential for Massive Particles

a
Ouv = Nuv +hyy,hoo = F,a: 2M

~ ~ al-b
Guv = Nuv + huv7h00 = ( r )73(1_ b) =2M’
The Newtonian potential is:
1 1 L. M
- —((——— —2)h 2 —_
® ((l+%’ 2) o0+ Y 00) .
So the total mass of the source is:
K5bM
Mr =M - 2=
1+ %
So, the dark matter mass is: /
K;bM
Mnpy = — —2 9.3
DM 1+ % (9.3)

M is the mass coming from the fluid density in Einstein equatidmis a hew constant to
accomodate DM.
Photons and Gravitational Lensing:

10
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The photon trajectory is given by:

b 1 1 b
—(1—§)—Ké(l—§+Ta)] dt2+[—+Ké( F 2 a)z)}dﬂ:o
r

r 1-2 1- r(1—-2
[—1+ %(a— %bKaé)} dt® + [H%(a— ﬁb,Z)} dr*=0
So, according to photons:
M =M — fﬁfz (9.4)

Notice that photons and massive particles see diffdvntbut sincex; is very small, this differ-
ence is hard to detect.

To determine ifd Gravity can describe Dark Matter, we must be able to comphw#tespeed of
stars rotating around the center of galaxies. This is wogpkd@gress.

10. Conclusions and Open Problems

Delta Gravity agrees with GR whef,, = 0, imposing same boundary conditions for both
tensor fields. In particular, the causal structure of deltvity in vacuum is the same as in GR,
since in this case the action (3.1) is proportional to thedgeir action in GR.

In a homogeneous and isotropic universe, we get accelezgpeshsion without a cosmological
constant or additional scalar fields.

Notice that equation (5.4) implies th& = R at the beginning of the Universe, when= %
corresponding to ultrarelativistic matter. That is, theederated expansion started at a later time,
which is needed if we want to recover the observational diatkesity perturbations and growth
of structures in the Universe. An earlier acceleration efd¢kpansion would prevent the growth of
density perturbations.

Work is in progress to compute the growth of density pertiioba and the anisotropies in the
CMB. The comparison of these calculations with the consioleramount of astronomical data that
will be available in the near future will be a very stringessttof the present gravitational model.
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11. Appendix A Review ofd-symmetries

Assume we have a group of transformations acting on theblagg with infinitesimal pa-
rameterse. That is:

3y = Ny(y)e® (11.1)
We define the transformation by:
OF = Ny(y) iy & + Na(y)E" (11.2)
ki = 2.

Notice that, we have introduced a new figldind a new transformation with paramet&r
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Itis easy to see that (11.1, 11.2) form a closed algebra.
An invariant action under the extended symmetry is builhig $ame way. We assume that
S(y) is invariant under (11.1):
0S
—AL(y)=0,vy,alla 11.3
Then:

S(y,y) = Sly) + 55 y

is invariant under (11.1, 11.2).
Proof:

2

6sy,y7——A' V) + 5o AL (Y)ET + og (N () 197 + Al (1)) =

53y 5
0+(W/\a(y)9r+5—y/\a(y) y')e® +0e
%S . oS a=i | 0 ,OS agi _
e+ 5 M6 = { o (52R,w) 751 =0

Last equality follows from equation (11.3).

Being careful with signs of permutations, these resultsraesfor anti-commuting, € as well.
In particular, super-symmetric transformations can beegaized to a- symmetry.

Other generalizations are possible. Suppose we have cahtr@insformations generated by
e(x, p):

OF = (&,F) ,

5F = (&,F)+ (&,F) (11.4)

equations (11.1, 11.2) are particular cases of (11(A4)B) is the Poisson bracket. Now we can
prove the closure of the algebra in a more general context.

:(5/3(a7|i)_aHB):(av(Bvli))_(Bv(avli)) ( (B )):((07[3)7':_):5(0/3)5
= (6g(a,F)—a < B) =(a,(B,F))—(B,(a,F)) = (F.(B,a)) = ((a,B),F) = §aqpF
(82,55 F =0

162,85 | F = (8(B.F) — &(a.F) = (B.(a.F)) — (a.(B.F)) = (F,(a.B)) = § o F
15,05 | F = 8a(B.F) ~ @ + B =0

Replacing Poisson bracket by commutators is the realizatiohe algebra we used in [23].

14



