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1. Introduction

General Relativity(GR) works very well at the macroscopic scales[1]. Its quantization has
proved to be difficult, though. It is non renormalizable, which prevents its unification with the
other forces of Nature. Trying to make sense of Quantum GR is the main physical motivation of
String Theories [2]. Moreover, recent discoveries in Cosmology [6, 7] has revealed that most part
of matter is in the form of unknown matter(dark matter,DM) and that the dynamics of the expan-
sion of the Universe is governed by a mysterious component that accelerates the later stages of the
expansion(dark energy,DE). Although GR is able to accommodate both DM and DE, the interpre-
tation of the dark sector in terms of fundamental theories ofelementary particles is problematic[8].
Although some candidates exists that could play the role of DM, none have been detected yet. Also,
an alternative explanation based on the modification of the dynamics for small accelerations cannot
be ruled out[9].

In GR, DE can be explained if a small cosmological constant(Λ) is present. At the later stages
of the evolution of the UniverseΛ will dominate the expansion, explaining the acceleration.Such
smallΛ is very difficult to generate in Quantum Field Theory (QFT) models, because in this models
Λ is the vacuum energy, which is usually very large.

In recent years there has been various proposals to explain the observed acceleration of the
universe. They involve the inclusion of some additional field like in quintessence, chameleon,
vector dark energy or massive gravity; Addition of higher order terms in the Einsten-Hilbert action,
like f(R) theories and Gauss-Bonnet terms; Modification of gravity on large scales by introduction
of extra dimensions. For a review, see [10].

Less widely explored, but interesting possibilities, are the search for non-trivial ultraviolet
fixed points in gravity (asymptotic safety[12]) and the notion of induced gravity[13]. The first pos-
sibility uses exact renormalization-group techniques[14] and lattice and numerical techniques such
as Lorentzian triangulation analysis[15]. Induced gravity proposed that gravitation is a residual
force produced by other interactions.

In recent papers, [16, 17] a field theory model explore the emergence of geometry by the
spontaneous symmetry breaking of a larger symmetry where the metric is absent. Previous work
in this direction can be found in [18], [19] and [20].

In this paper, we will review the results of [32, 24]. The mainobservation is that GR is finite
on shell at one loop[21]. In [23, 22] we presented a type of gauge theories,δ gauge theories(DGT):
The main properties of DGT are: 1) The classical equations ofmotion are satisfied in the full
Quantum theory 2) They live at one loop. 3) They are obtained through the extension of the former
symmetry of the model introducing an extra symmetry that we call δ symmetry, since it is formally
obtained as the variation of the original symmetry. When we apply this prescription to GR we
obtainδ gravity. Quantization ofδ gravity is discussed in [24].

The impact of dark energy on cosmological observations can be expressed in terms of a fluid
equation of statep = w(R)ρ , which is to be determined studying its influence on the large-scale
structure and dynamics of the Universe.

In this paper we follow the same approach. So we will not include the matter dynamics, except
by demanding that the energy-momentum tensor of the matter fluid is covariantly conserved. This
is required in order to respect the symmetries of the model.
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The main properties of this model at the classical level are:a)It agrees with GR, outside the
sources and with adequate boundary conditions. In particular, the causal structure of delta gravity
in vacuum is the same as in General Relativity. So all standard test are satisfied automatically. b)
When we study the evolution of the Universe, it predicts acceleration without a cosmological con-
stant or additional scalar fields. The Universe ends in a Big Rip, similar to the scenario considered
in [25]. c) The scale factor agrees with the standard cosmology at early times and show acceleration
only at late times. Therefore we expect that density perturbations should not have large corrections.

In section 2, we write the action defining the model and the corresponding symmetries. Section
3 discusses the motion of particles in the model. In section 4we define proper time and distances.
In section 5 we solve the equations of the model for Friedman-Robertson- Walker metric. In section
6, we find the red shift. In section 7, we define luminosity distance. In section 8, we fit the equations
of section 6 to the Supernova Ia data. Section 9 contains a preliminary discussion of Dark Matter.
Section 10 contains the conclusions and brief discussions of open problems. In Appendix A, we
reviewδ -symmetries.

2. Definition of Delta gravity

In this section we define the action as well as the symmetries of the model and derive the
equations of motion.

We use the metric convention of [11]. The action ofδ gravity is:

S(g, g̃,λ ) =
∫

ddx
√−g(− 1

2κ
R+LM)+

κ2

∫

[(

Rµν −
1
2

gµνR

)

+κTµν

]√−gg̃µνddx + (2.1)

κ2κ
∫ √−g(λ µ ;ν +λ ν ;µ)Tµνddx

Hereκ = 8πG
c4 , κ2 is an arbitrary constant andTµν := − 2√−g

δ (
√−gLM)
δgµν is the energy-momentum

tensor of matter.Rµν is the Ricci’s tensor andR is the curvature scalar ofgµν . g̃µν is a two-
contravariant tensor under general coordinate transformations.

The action (2.1) is obtained by applying the prescription contained in [23, 22]. That is, we
add to the action of general relativity, the variation of it and consider the variationδgµν = g̃µν as
a new field. Similarly, the symmetries we write below are obtained as variation of the infinitesimal
general coordinate transformations where the variation ofthe infinitesimal parameterδξ ρ

0 = ξ ρ
1

is the infinitesimal parameter of the new transformationδ . The last term in (2.1) is needed to
implement the conditionTµν

;ν = 0 as an equation of motion in order to implement theδ symmetry
(2.2) off shell. This term is not needed in vacuum.

Action (2.1) is invariant under the following transformations(δ ):

δgµν = gµρξ ρ
0,ν +gνρξ ρ

0,µ +gµν ,ρξ ρ
0 = ξ0µ ;ν +ξ0ν ;µ

δ g̃µν(x) = ξ1µ ;ν +ξ1ν ;µ + g̃µρξ ρ
0,ν + g̃νρξ ρ

0,µ + g̃µν ,ρξ ρ
0 (2.2)

δλµ =−ξ1µ +λρξ ρ
0,µ +λµ ,ρξ ρ

0
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From now on we will fix the gaugeλµ = 0. This gauge preserves general coordinate transforma-
tions but fixes completely the extra symmetry with parameterξ1µ .

Equations of motion Varying gµν we get:

Sγσ +
1
2
(Rg̃γσ −gµν g̃µνRγσ )− 1

2
gγσ 1√−g

(√−g∇ν g̃µν)
,µ +

1
4

gγσ 1√−g

(√−ggαβ ∇β (gµν g̃µν)
)

,α
= κ

δTµν

δgγσ
g̃µν (2.3)

whereSγσ = (Uσβγρ +U γβσρ −Uσγβρ);ρβ , Uαβγρ = 1
2

[

gγρ(g̃βα − 1
2gαβ gµν g̃µν)

]

Varying g̃µν we get Einstein equation:
(

Rµν −
1
2

gµνR

)

+κTµν = 0 (2.4)

Varying λµ we get:Tµν
;ν = 0

Covariant derivatives as well as raising and lowering of indices are defined usinggµν . Notice
that outside the sources(Tµν = 0), a solution of (2.3) is ˜gµν = λgµν , for a constantλ , sincegµν

;ρ =

0 andRµν = 0. We will have ˜gµν = gµν , assuming that both fields satisfy the same boundary
conditions far from the sources.

The equation for ˜gµν is linear and of second order in the derivatives.

3. Particle motion in the gravitational field

We are aware of the presence of the gravitational field through its effects on test particles. For
this reason, here we discuss the coupling of a test particle to a background gravitational field, such
that the action of the particle is invariant under (2.2).

In δ gravity we postulate the following action for a test particle:

Sp =−m
∫

dt
√

−gµν ẋµ ẋν +κ ′
2

∫

dny
√−gTµν (g̃

µν +λ µ ;ν +λ ν ;µ)

whereTµν is the energy momentum tensor of the test particle:

Tµν(y) =
m

2
√−g

∫

dt
ẋµ ẋν

√

−gαβ ẋα ẋβ
δ (y−x)

κ ′
2 = κ2κ is a dimensionless constant.

That is:

Sp = m
∫

dt
√

−gαβ ẋα ẋβ

(

gµν +
κ2

2

′
ḡµν

)

ẋµ ẋν (3.1)

wereḡµν = g̃µν +λ µ ;ν +λ ν ;µ . Notice thatSp is invariant under (2.2) andt-parametrizations.
From now on we work in the gaugeλµ = 0.
Since far from the sources, we must have free particles in Minkowski space,i.egµν ∼ηµν , g̃µν ∼

ηµν , it follows that we are describing the motion of a particle ofmassm′ = m(1+ κ2
2
′
)
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Since in vacuum ˜gµν = gµν , the equation of motion for test particles is the same as Einstein’s.
Moreover, the equation of motion is independent of the mass of the particle.

In order to include massless particles, we prefer to use the action [26]:

L =
1
2

∫

dt

(

vm2−v−1(gµν +κ ′
2ḡµν

)

ẋµ ẋν +
m2+v−2

(

gµν +κ ′
2ḡµν

)

ẋµ ẋν

2v−3gαβ ẋα ẋβ

(

m2+v−2gλρ ẋλ ẋρ
)

)

(3.2)

This action is invariant under reparametrizations:

x′(t ′) = x(t);dt′v′(t ′) = dtv(t); t ′ = t − ε(t) (3.3)

The equation of motion forv is:

v=−
√

−gµν ẋµ ẋν

m
(3.4)

Replacing (3.4) into (3.2), we get back (3.1).

Let us consider first the massive case. Using (3.3) we can fix the gaugev = 1. Introducing
mdt= dτ , we get the action:

L1 =
1
2

m
∫

dτ

(

1−
(

gµν +κ2ḡµν
)

ẋµ ẋν +
1+
(

gµν +κ2ḡµν
)

ẋµ ẋν

2gαβ ẋα ẋβ

(

1+gλρ ẋλ ẋρ
)

)

(3.5)

plus the constraint obtained from the equation of motion forv:

gµν ẋµ ẋν =−1 (3.6)

FromL1 the equation of motion for massive particles is derived. We define:gµν = gµν +
κ2
2
′ḡµν .

d(ẋµ ẋν
gµν ẋβ gαβ +2ẋβ

ḡαβ )

dτ
− 1

2
ẋµ ẋν

ḡµν ẋβ ẋγgβγ ,α − ẋµ ẋν
gµν ,α = 0 (3.7)

We will discuss the motion of massive particles elsewhere.

The action for massless particles is:

L0 =
1
4

∫

dt
(

−v−1(gµν +κ2ḡµν
)

ẋµ ẋν) (3.8)

In the gaugev= 1, we get:

L0 =−1
4

∫

dt
(

gµν +κ2ḡµν
)

ẋµ ẋν (3.9)

plus the equation of motion forv evaluated atv= 1:
(

gµν +κ ′
2ḡµν

)

ẋµ ẋν = 0

So, the massless particle moves in a null geodesic ofgµν = gµν +κ ′
2ḡµν .
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4. Distances and time intervals

In this section, we define the measurement of time and distances in the model.

In GR the geodesic equation preserves the proper time of the particle along the trajectory.
Equation(3.7) satisfies the same property: Along the trajectory ẋµ ẋνgµν is constant.Therefore we
define proper time using the original metricgµν ,

dτ =
√

−gµνdxµ dxν =
√−g00dx0(dxi = 0) (4.1)

Following [27], we consider the motion of light rays along infinitesimally near trajectories and
(4.1) to get the three dimensional metric:

dl2 = γi j dxidxj ,

γi j =
g00

g00
(gi j −

g0ig0 j

g00
) (4.2)

That is, we measure proper time using the metricgµν but the space geometry is determined by both
metrics. In this model massive particles do not move on geodesics of a four dimensional metric.
Only massless particles move on a null geodesic ofgµν . So, delta gravity is not a metric theory.

5. Friedman-Robertson-Walker(FRW) metric

In this section, we discuss the equations of motion for the Universe described by the FRW
metric. We use spatial curvature equal to zero to agree with cosmological observations.

Here we will deal only with a perfect fluid, since rotational and translational invariance implies
that the energy-momentum tensor of the Universe has this form.The energy momentum tensor for
a perfect fluid is [11]:

Tµν = pgµν +(p+ρ)UµUν ,g
µνUµUν =−1 (5.1)

Then:
δTµν

δgγσ
g̃µν = pg̃γσ +

1
2
(p+ρ)(U γUν g̃σν +UσUν g̃γν) (5.2)

In this case, assuming flat three dimensional metric:

−ds2 = dt2−R(t)2{dr2+ r2dθ2+ r2sin2θdφ2}

−ds̃2 = Ã(t)dt2− B̃(t)
{

dr2+ r2dθ2+ r2sin2θdφ2}

Using (3.7, 4.1), we can check that these are co-mobile coordinates and the proper time intervaldτ
for a co-moving clock is justdt, sot is the time measured in the rest frame of a co-moving clock.
Equations (2.3, 5.2) give:

−Ṙ ˙̃B− 1
2

pRB̃+
1
2

R−1Ṙ2B̃− 1
6

ρR3Ã+
3
2

RṘ2Ã= 0

−pB̃−2 ¨̃B−R−2Ṙ2B̃+2R−1R̈B̃+2R−1Ṙ ˙̃B+

ρ R2Ã+ Ṙ2Ã+2RṘ ˙̃A+2RÃR̈= 0 (5.3)

6
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Einstein’s equations are:

3
(

d
d t R

)2

R2 = κρ ,2 R

(

d2

d t2
R

)

+

(

d
d t

R

)2

=−κR2p

We use the equation of statep= wρ , to get, forw 6=−1 :

R= R0t
2

3(1+w) , Ã= 3wl2t
(w−1

w+1),

B̃= R2
0l2t

b,b=
4

3w+3
+

w−1
w+1

(5.4)

l2 is a free parameter.

6. Red Shift

To make the usual connection between redshift and the scale factor, we consider light waves
traveling fromr = r1 to r = 0,along ther direction with fixedθ ,φ . Photons moves on a null
geodesic ofg:

0=−(1+κ ′
2Ã)dt2+(R2+κ ′

2B̃)(dr2+ r2dθ2+ r2sin2 θdφ2) (6.1)

So,
∫ t0

t1
dt

√

1+κ ′
2tA

R2+κ ′
2tB

= r1 (6.2)

A typical galaxy will have fixed r1,θ1,φ1. If a second wave crest is emitted att = t1+ δ t1 from
r = r1, it will reach r = 0 att0+δ t0, where

∫ t0+δ t0

t1+δ t1
dt

√

1+κ ′
2tA

R2+κ ′
2tB

= r1

Therefore, forδ t1,δ t0 small, which is true for light waves, we have:

δ t0

√

1+κ ′
2tA

R2+κ ′
2tB

(t0) = δ t1

√

1+κ ′
2tA

R2+κ ′
2tB

(t1) (6.3)

Introduce:

R̃(t) =

√

R2+κ ′
2tB

1+κ ′
2tA

(t)

We get:δ t0
δ t1

= R̃(t0)
R̃(t1)

. A crucial point is that, according to equation (4.1),δ t measure the change in

proper time. That is:ν1
ν0

= R̃(t0)
R̃(t1)

, whereν0 is the light frequency detected atr = 0 corresponding to
a source emission at frequencyν1. Or in terms of the redshift parameterz, defined as the fractional
increase of the wavelengthλ :

z=
R̃(t0)

R̃(t1)
−1=

λ0−λ1

λ1
(6.4)

We see thatR̃ replaces the usual scale factorR in the computation ofz.

7
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7. Luminosity distance

Let us consider a mirror of radiusb that is receiving light from a distant source. The photons
that reach the mirror are inside a cone of half-angleε with origin at the source.

Let us computeε .The light path of rays coming from a far away source at~x1 is given by
~x(ρ) = ρ n̂+~x1, ρ > 0 is a parameter and ˆn is the direction of the light ray.The path reaches us at
~x= 0 for ρ = |~x1|= r1. Write n̂=−x̂1+~ε. Sincen̂, x̂1 have modulus 1,ε = |~ε |<< 1 is precisely
the angle between−~x1 andn̂ at the source.The impact parameter is the proper distance ofthe path
from the origin, whenρ = |~x1|. The proper distance is determined by the 3-dimensional metric
(4.2). That isb= R̃(t0) r1θ = R̃(t0) r1ε , i.e. ε = b

R̃(t0)r1
.

Then the solid angle of the cone isπε2 = A
r2
1R̃(t0)

2 , whereA = πb2 is the proper area of the

mirror.The fraction of all isotropically emitted photons that reach the mirror isf = A
4πr2

1R̃(t0)
2 . Each

photon carries an energyhν1 at the source andhν0 at the mirror. Photons emitted at intervals
δ t1 will arrive at intervalsδ t0. We haveν1

ν0
= R̃(t0)

R̃(t1)
, δ t0

δ t1
= R̃(t0)

R̃(t1)
. Therefore the power at the mirror

is P0 = L R̃(t1)2

R̃(t0)2 f , whereL is the luminosity of the source. The apparent luminosity isl = P0
A =

L R̃(t1)2

R̃(t0)2
1

4πr2
1R̃(t0)

2 . In Euclidean space, the luminosity decreases with distance d according tol =

L
4πd2 .This permits to define the luminosity distance:dL =

√

L
4π l = R̃(t0)2 r1

R̃(t1)
. Using (6.2) we can

write this in terms of the red shift:

dL = (1+z)
∫ z

0

dz′

H̃(z′)
,H̃ =

˙̃R

R̃
(7.1)

8. Supernova Ia data

The supernova Ia data gives,m (apparent or effective magnitude) as a function ofz. This is
related to distancedL by m= M+5log( dL

10pc). HereM is common to all supernova andm changes
with dL alone.

We compareδ gravity to General Relativity(GR) with a cosmological constant:

H2 = H2
0(Ωm(1+z)3+(1−Ωm)),ΩΛ = 1−Ωm

Notice thatÃ= 0 for w= 0 in (5.4). So, it seems that we cannot fit the supernova data. However
w= 0 is not the only component of the Universe. The massless particles that decoupled earlier still
remain. It means that the truew is between 06 w< 1

3 , but very close tow= 0. So, we will fit the
data withw= 0.1,0.01,0.001 and see how sensitive the predictions are to the value ofw.

Using data from Essence[29], we notice thatR2 test changes very little for the chosen sequence
of w’s. Each fit determines the bestl2 for a givenw. In this way we see thatl2 scales likel2 ∼ a

3w,
a being independent ofw. As an approximation to the limitw= 0, we get:

R̃(t) = R(t)

√
a√

a− t
(8.1)

√

1
3wrenormalizes the derivative of̃R at t = 0. It is not divergent, because fort → 0, w→ 1

3. a is a
free parameter determined by the best fit to the data.
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Of course, the complete model must include the contributionof normal matter(w = 0) plus
relativistic matter(w= 1

3). But, at later times, the data should tend to (8.1). The exactsolution of
the model with two fluids is found in [28].

Let us fit the data to the simple scaling model (8.1).
We get:
Ωm = 0.22±0.03,M = 43.29±0.03 ,χ2(perpoint) = 1.0328, General Relativity
a= 2.21±0.12,M = 43.45±0.06, χ2(perpoint) = 1.0327, Delta Gravity
δ -gravity with non-relativistic(NR) matter alone give a fit to the data as good as GR with NR

matter plus a cosmological constant.
According to the fit to data, a Big Rip will happen att = 2.21049 in unities oft0(today). It is

a similar scenario as in [25].
Finally, we want to point out that since fort → 0, we havew→ 1

3, thenR̃(t) = R(t). Therefore
the accelerated expansion is slower than (8.1) when we include both matter and radiation in the
model.

9. Dark Matter

Several years ago, the astronomers were able to measure the speed of individual stars around
the center of the galaxies[3]. Surprisingly, such speedsv(r)as a function of the distancer to the
galactic center, did not follow Kepler law. Most of the galactic mass was assumed to be in the
form of stars, which concentrate near the galactic center. So, the expectation was that the speed
of rotation of stars far from the center will decrease asr−1/2. The observation shows that rotation
curves(RC) follow a different pattern [4].

A natural way to explain the observed velocities was to assume the existence of extra mass
that cannot be seen but interact gravitationally (Dark Matter,DM).

When in the late 1970s the phenomenon of DM was discovered a few truly flat RCs were
highlighted in order to rule out the claim that non Keplerianvelocity profiles originate from a faint
baryonic component distributed at large radii. At that timea large part of the evidence for DM
was provided by extended, low-resolution HI RCs of very luminous spirals whose velocity profile
did show small radial variations. The increase in the quality of the RCs though soon leads to the
conclusion that baryonic (dark) matter was not a plausible candidate for the cosmological DM and
that the RCs did show variation with radius, even at large radii. Later numerical simulations in the
Cold Dark Matter scenario also predicted asymptotically declining RCs. The flat RC paradigm was
hence dismissed in the 1990s[5]

Additional support for the existence of DM comes from the study of galaxy stability against
gravitational collapse: The form of the galaxy that we can see (luminous part) is not gravitationally
stable unless we assume the existence of a spherically symmetric halo that we cannot see.

From observation, we get that 80-90% of the galactic mass is DM.
However, the physical nature of Dark Matter is not known yet[6].
Most people think that DM is made of particles that interact weekly with normal matter. Until

recently the standard cosmological scenario was the so calledΛCDM model. That is the evolution
of the Universe is governed by a cosmological constantΛ that produces the accelerated expansion
of the Universe(Dark Energy)[7, 30] and non relativistic particles (cold DM) that were the seeds

9
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of the galaxies. However, recent simulations of the neighborhood of the Milky Way[31] have
challenged the CDM paradigma. They proposed instead that DMparticles are warm, with a rest
mass of 1Kev.

There is an alternative to DM that is gaining some support: MOND[9]. The main idea of
MOND involves a modification of Newton Second Law for accelerations below a critical accel-
erationa0. In this way the constant speedv0 of individual stars far from the galactic center is
explained. Therefore, according to MOND, DM particles do not exist.

Since DM particles have not been detected yet and even their existence is challenged in some
models, in this section we want to explore a different scenario to understand the properties of
galaxies. Preliminary studies of the solutions of DG in vacuum have shown that it contains extra
degrees of freedom that produces an additional newtonian potential far from the sources.

In fact, far from a source the gravitational field correspondto the Schwarzschild solution:
pointlike source, spherically symmetric.

The exact solution is:

gµν =











−(1− a
r ) 0 0 0

0 1
1− a

r
0 0

0 0 r2 0
0 0 0 r2 sin(θ)2











(9.1)

g̃µν =











−(1− a
r +

ba
r ) 0 0 0

0 1
1− a

r
− ab

r(1− a
r )

2 0 0

0 0 r2 0
0 0 0 r2 sin(θ)2











(9.2)

Boundary condition:gµν ∼ηµν g̃µν ∼η µν for r →∞.Notice that still there are 2 arbitrary constants.
Newtonian potential for Massive Particles

gµν = ηµν +hµν ,h00 =
a
r
,a= 2M

g̃µν = ηµν + h̃µν , h̃00 =
a(1−b)

r
,a(1−b) = 2M′

The Newtonian potential is:

φ =−((
1

1+ κ2
2
′ −

1
2
)h00+

κ2
2
′

1+ κ2
2
′ h̃00) =−MT

r

So the total mass of the source is:

MT = M− κ ′
2bM

1+ κ2
2
′

So, the dark matter mass is:

MDM =− κ ′
2bM

1+ κ2
2
′ (9.3)

M is the mass coming from the fluid density in Einstein equations. b is a new constant to
accomodate DM.

Photons and Gravitational Lensing:

10
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The photon trajectory is given by:

[

−(1− a
r
)−κ ′

2(1−
a
r
+

ba
r
)

]

dt2+

[

1
1− a

r

+κ ′
2(

1
1− a

r

− ab
r(1− a

r )
2 )

]

dr2 = 0

[

−1+
1
r
(a− κ ′

2ba
1+κ ′

2
)

]

dt2+

[

1+
1
r
(a− κ ′

2ba
1+κ ′

2
)

]

dr2 = 0

So, according to photons:

MT = M− κ ′
2bM

1+κ ′
2

(9.4)

Notice that photons and massive particles see differentMT , but sinceκ ′
2 is very small, this differ-

ence is hard to detect.

To determine ifδ Gravity can describe Dark Matter, we must be able to compute the speed of
stars rotating around the center of galaxies. This is work inprogress.

10. Conclusions and Open Problems

Delta Gravity agrees with GR whenTµν = 0, imposing same boundary conditions for both
tensor fields. In particular, the causal structure of delta gravity in vacuum is the same as in GR,
since in this case the action (3.1) is proportional to the geodesic action in GR.

In a homogeneous and isotropic universe, we get acceleratedexpansion without a cosmological
constant or additional scalar fields.

Notice that equation (5.4) implies that̃R= R at the beginning of the Universe, whenw= 1
3,

corresponding to ultrarelativistic matter. That is, the accelerated expansion started at a later time,
which is needed if we want to recover the observational data of density perturbations and growth
of structures in the Universe. An earlier acceleration of the expansion would prevent the growth of
density perturbations.

Work is in progress to compute the growth of density perturbations and the anisotropies in the
CMB. The comparison of these calculations with the considerable amount of astronomical data that
will be available in the near future will be a very stringent test of the present gravitational model.
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11. Appendix A Review ofδ -symmetries

Assume we have a group of transformations acting on the variablesy with infinitesimal pa-
rametersε . That is:

δyi = Λi
α(y)εα (11.1)

We define theδ transformation by:

δ ȳi = Λi
α(y), j ȳ

jεα +Λi
α(y)ε̄α (11.2)

k,i = ∂k
∂yi .

Notice that, we have introduced a new field ¯yi and a new transformation with parameterε̄α .
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It is easy to see that (11.1, 11.2) form a closed algebra.
An invariant action under the extended symmetry is built in the same way. We assume that
S(y) is invariant under (11.1):

δS
δyi Λ

i
α(y) = 0,∀y,allα (11.3)

Then:

S̄(y, ȳ) = S(y)+
δS
δyi ȳ

i

is invariant under (11.1, 11.2).
Proof:

δ S̄(y, ȳ) =
δS
δyi Λ

i
α(y)εα +

δ 2S
δyiδy j Λ j

α(y)εα ȳi +
δS
δyi (Λ

i
α (y), j ȳ

jεα +Λi
α(y)ε̄α) =

0+(
δ 2S

δyiδy j Λ j
α(y)ȳ

i +
δS
δyi Λ

i
α(y), j ȳ

j)εα +0ε̄α =

(
δ 2S

δyiδy j Λi
α(y)+

δS
δyi Λ

i
α(y), j)εα ȳ j =

{

δ
δy j (

δS
δyi Λ

i
α(y))

}

εα ȳ j = 0

Last equality follows from equation (11.3).
Being careful with signs of permutations, these results aretrue for anti-commutingy,ε as well.

In particular, super-symmetric transformations can be generalized to aδ - symmetry.
Other generalizations are possible. Suppose we have canonical transformations generated by

ε(x, p):

δF = (ε ,F) ,

δ F̄ = (ε , F̄)+ (ε̄,F) (11.4)

equations (11.1, 11.2) are particular cases of (11.4).(A,B) is the Poisson bracket. Now we can
prove the closure of the algebra in a more general context.

[

δβ ,δα
]

F = (δβ (α ,F)−α ↔ β ) = (α ,(β ,F))− (β ,(α ,F)) = (F,(β ,α)) = ((α ,β ),F) = δ(α ,β)F
[

δβ ,δα
]

F̄ = (δβ (α , F̄)−α ↔ β ) = (α ,(β , F̄))− (β ,(α , F̄)) = (F̄,(β ,α)) = ((α ,β ), F̄) = δ(α ,β)F̄
[

δα ,δβ̄

]

F = 0
[

δα ,δβ̄

]

F̄ = (δα(β̄ ,F)−δβ̄(α , F̄) = (β̄ ,(α ,F))− (α ,(β̄ ,F)) = (F,(α , β̄ )) = δ(β̄ ,α)F
[

δᾱ ,δβ̄

]

F̄ = δᾱ(β̄ ,F)− ᾱ ↔ β̄ = 0

Replacing Poisson bracket by commutators is the realization of the algebra we used in [23].

14


