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We use the stacked gravitational lensing mass profile of four high-mass (M ≳ 1015M⊙) galaxy
clusters around z ≈ 0.3 from [1] to fit dark matter density profiles of phenomenological and the-
oretical models. The best overall fit is obtained with the phenomenological NFW profile. Among
the theoretically predicted models, the DARKexp represents the best fit, with performance close
to that of the best phenomenological ones. We conclude that DARKexp model retains impor-
tant features of nearly universal density profiles of self-gravitational systems, and may provide a
dynamical basis for the phenomenology of these systems.
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1. Introduction

Since the studies of Zwicky [2] on the internal kinematics of Coma cluster, dark matter is
known to represent the main massive component of astrophysical objects such as galaxies and
galaxy clusters. Evidences for this massive component include the rotation curves of spiral galax-
ies [3 – 6], gravitational lensing and X-ray emission by galaxy clusters [7, 8, 1, 9], acoustic oscil-
lations measured in the cosmic microwave background [10] and studies of structure formation on
numerical simulations [11].

In fact, simulations have indicated that these systems exhibit nearly universal density ρ(r) [12]
and pseudo phase-space ρ(r)/σ 3(r) [13] profiles, where σ(r) is either the radial or total velocity
dispersion. Interestingly, these universal density profiles also seem to agree with observations.
Therefore, since numerical simulations approximately provide the observed features of density
profiles, one could think that the hypothesis assumed in performing the simulations are correct
and there is not much else to be done. We argue, however, that a description of these systems
in the spirit of statistical mechanics is necessary for obtaining a deeper dynamical basis of their
phenomenology.

Since the pioneer work of Lynden-Bell [14] on the violent relaxation process in gravitational
systems, many first-principle models have been developed trying to explain the features seen in
simulations and observations. In particular, there has been a great effort to make predictions of the
three-dimensional density profile ρ (r) of dark matter halos. The connection with observations is
made via the surface density profile Σ(R) projected in the plane perpendicular to the line of sight
r∥

Σ(R) =
∫

dr∥ ρ
(
r∥,R

)
, (1.1)

where r = (r∥,R) and R is the projected distance on the plane of the sky. The surface mass density
profile Σ(R) can be inferred e.g. with gravitational lensing techniques, which do not require as-
sumptions of hydrostatic equilibrium, as in dynamical methods. In practice, however, it is difficult
to separate the purely gravitational effects related to dark matter from the dissipative effects due to
baryonic matter. Thus, compared to galaxies, for which the dissipative effects of cold baryons are
important, galaxy clusters are excellent to test the distribution of dark matter, because in clusters
most of the baryons are hot and dissipate less. Thus, the total density profile provides reliable
information about the dark matter density profile.

In this work we use the stacked surface density profile from four massive galaxy clusters with
similar mass and redshift to test both phenomenological and theoretical models. In §2 we briefly
describe the data used in this work. In §3 and §4 we present the models that we have tested. Our
results are shown in §5 and discussed in §6.

2. Data

We use the data of [1], who combined weak-lensing shear, magnification, and strong-lensing
measurements of four high-mass (M ≳ 1015M⊙) galaxy clusters (A1689, A1703, A370, C10024+17)
with redshifts z ≈ 0.3. The strong lensing data was based on Hubble Space Telescope observations
for the central regions of those clusters and combined with previous weak lensing measures ob-
tained by [16], extending to the outer regions (R ≲ 3.5 h−1Mpc) of the clusters. The surface
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density profiles of the four clusters were stacked in order to reduce the cosmic noise and smooth
effects due to asphericity and substructures. The resulting data points are shown in Fig. 1.

3. Phenomenological models

A number of phenomenological models for density profiles of dark matter halos and galaxy
clusters have been proposed as parameterized functions that fit reasonably well simulations and
observations, with no regards to fundamental principles or theoretical motivation. We have tested
six models in this class. Two of them have only scale parameters in density (ρs) and distance (rs):
they are the NFW profile [12], proposed to fit ΛCDM simulations and the Hernquist profile [17],
which gives analytical expressions for some dynamical quantities such as the energy distribution
function. The other phenomenological models have an extra shape parameter in addition to the
two scale parameters: the gNFW [18], a generalization of NFW with the inner slope α as a free
parameter, Einasto (recently shown to give results as good as NFW [19]), Sérsic [20] (the two-
dimensional, original version of Einasto profile) and Stadel [21]. The expressions for the density
profiles of these models are shown in Eq. (3.1), except for the bi-dimensional Sérsic profile.

ρ (r) =



ρs

(r/rs)(1+r/rs)
2 , NFW

ρs

(r/rs)
α (1+r/rs)

3−α , gNFW

ρs exp
{
−2n

[
(r/rs)

1/n −1
]}

, Einasto

ρs exp
{
−λ [ln(1+ r/rs)]

2
}
, Stadel

ρs

(r/rs)(1+r/rs)
3 , Hernquist

(3.1)

The NFW and Hernquist models have analytic expressions for the surface mass density Σ(R).
The Sérsic model is defined in terms of Σ(R) as

Σ(R) = Σe exp
{
−bn

[
(R/Re)

1/n −1
]}

. (3.2)

All the phenomenological profiles described above are shown in Fig. 1.

4. Theoretical models

Some of the theoretical models we investigate here are based on the hypothesis of hydrostatic
equilibrium between the gravitational attraction and the pressure P(r) due to velocity dispersion in
an isotropic distribution with total mass inside radius r given by M (r):

dP
dr

=−ρ (r)
GM (r)

r2 , (4.1)

M (r) =
∫ r

0
dr′4πr′2ρ

(
r′
)
. (4.2)
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Combining Eqs. 4.1 and 4.2 we have

d
dr

[
r2

ρ (r)
dP
dr

]
=−4πGr2ρ (r) . (4.3)

Choosing the equation of state P(ρ) determines the model, and Eq. (4.3) can then be (numerically)
solved to give the density profile ρ (r).

4.1 (non-singular) Isothermal Sphere

The (non-singular) Isothermal Sphere is based on the equation of state of an ideal gas P =

nkBT , which locally becomes

P(r) =
kBT
m

ρ (r) , (4.4)

where m is the mass of the constituent particle. Using Eq. (4.4) in Eq. (4.3) we have a non-linear
second-order differential equation, which has to be numerically solved imposing the boundary
conditions dρ/dr(0) = 0 and ρ (0) = ρ0, where ρ0 is a free parameter.

4.2 Kang & He models

In [22], Kang & He use the entropy per unit mass of an ideal gas

s = ln
(

P3/2ρ−5/2
)
, (4.5)

to maximize the total entropy S

S =
∫ ∞

0
4πr2ρsdr =

∫ ∞

0
4πr2ρ ln

(
P3/2ρ−5/2

)
dr , (4.6)

subject to the constraints of conservation of total energy and the virial theorem. This procedure
results in the following equation of state, with γ = 3/5:

ρ = λP+µPγ , (4.7)

We refer to this model as “Kang & He”. The constants λ and µ are related to the total mass and
energy. This equation of state reduces to that of an ideal gas Eq. (4.4) for µ = 0 and λ = m/kBT .
Following a similar but different approach, [23] obtain the same equation of state, but with γ = 4/5.
We call this last model “Kang & He 2”. Inserting ρ(r) from Eq. (4.7) into Eq. (4.3), gives an
equation for P(r), whose solution gives ρ(r) by Eq. (4.7).

4.3 DARKexp

The DARKexp model [15, 24] is significantly different from the previous models, because
it does not take into account an equation of state to use in the hydrostatic equilibrium, Eq. (4.3).
Instead, it (indirectly) derives the distribution function and then determines the density profile. Let
us define a dimensionless density ρ̃ = ρ/ρ0 and a dimensionless distance x = r/a, where ρ0 and a
are scale parameters. Defining vg =

√
a2ρ0G, the energy per mass E = Φ+ v2/2, where Φ is the

gravitational potential and v the velocity of the particle, can be written as

ε = φ − 1
2

v2

vg
2 , (4.8)
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where we defined the positive and dimensionless quantities ε =−E/vg
2 and φ =−Φ/vg

2.
The DARKexp model is based on the assumption that, because dark matter halos are colli-

sionless, after the system reaches an equilibrium, each particle retains its individual energy. Thus
a Boltzmann-like function must be used, not in the distribution function f (ε), but in the number
of particles per unit energy N (ε) ∝ f (ε)g(ε), where g(ε) is the density of states [25]. The model
also properly deals with low occupation numbers, which results in a cutoff similar to that of King
models [26]. These features imply that the number of particles per unit energy ε is given by

N (ε) = eφ0−ε −1 , (4.9)

where φ0 is the shape parameter representing the central potential. In order to estimate the density
profile, we need to use an iterative approach [25]. We start by guessing an initial estimate of the
density profile ρ̃ (x) and calculate the resulting potential as

φ (x) = 4π
[

1
x

∫ x

0
dx′x′2ρ̃

(
x′
)
+

∫ ∞

x
dx′x′ρ̃

(
x′
)]

. (4.10)

Next, we compute the density of states as

g(ε) = 16π2a3vg

∫ xmax(ε)

0
dxx2

√
2 [φ (x)− ε] , (4.11)

where xmax is such that φ (xmax) = ε . We then use the N (ε) defined in the model, Eq. (4.9), to
compute the dimensionless distribution function

f (ε) = a3vg
N (ε)
g(ε)

. (4.12)

Finally, we calculate a new ρ̃ (x) as

ρ̃ (x) = 4π
∫ φ(x)

0
dε f (ε)

√
2 [φ (x)− ε] . (4.13)

and iterate the process with Eq. (4.10). We find that after about 20 iterations the model converges to
a density profile independent of the initial guess. Fig. 2 shows all the theoretical models described.

5. Results

We fit the various models to the data with the help of the Minuit package [27], computing the
χ2, i.e. the minimum value of Q, given by

Q = ∆i V−1
i j ∆ j , (5.1)

where ∆i = ΣT (Ri)−ΣD (Ri), ΣT (Ri) is the surface density from Eq. (1.1) for a given model eval-
uated at radius Ri, ΣD (Ri) is data surface mass density [1] and Vi j is the error covariance matrix
between data points i and j. Fig. 1 shows the 15 correlated data points and the best fits of all the
phenomenological parameters discussed above. We compare the various models using the reduced
χ2, defined as

χ2
ν =

χ2

ν
(5.2)

where ν = 15−Np is the number of degrees of freedom for Np parameters. The fitting results for
the phenomenological (theoretical) models are summarized in Fig. 1 (2) and Table 1 (2).
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Figure 1: Best fit curves and χ2
ν for the phenomenological models studied, along with data points from [1].

The bottom panel shows the relative difference between the best fits of each model and NFW.
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Figure 2: Best fit curves and χ2
ν for the theoretical models studied, along with data points from [1]. The

bottom panel shows the relative difference between the best fits of each model and DARKexp model.

6. Discussion

We have used observed stacked data of 4 clusters of similar mass and redshift to study various
models for cluster density profiles. We find that the best fit is obtained with the NFW model, in
agreement with the results of [1]. Other phenomenological models produce similar fits with slightly
larger values of χv. The Isothermal Sphere and Kang & He models produce cored profiles and give
poor fits to the data. The best theoretical fit is for DARKexp, especially in the inner regions (Fig. 2).
The slight disagreement on the outskirts could in principle be due to the velocity anisotropy. How-
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Profile Np χ2
ν Shape parameter

NFW 2 0.449 -
gNFW 3 0.474 α = 0.89±0.37
Stadel 3 0.522 λ = 0.223±0.04
Einasto 3 0.602 n = 4.31±0.75
Sérsic 3 0.663 n = 2.69±0.41
Hernquist 2 0.706 -

Table 1: Fit results for the phenomenological models. Column Np indicates the total number of parameters,
χ2

ν shows the reduced χ2 and the last column shows the best estimate for the shape parameter.

Profile Np χ2
ν Shape parameter

DARKexp 3 0.598 φ0 = 3.24±0.48
Isoth. Sph. 3 2.195 λ̃ = (5.62±0.15)×104

KH 4 2.265 λ̃ = (5.477±0.003)×104; µ̃ = 6.1±0.6
KH2 4 2.385 λ̃ = (5.52±0.36)×104; µ̃ = 75±237

Table 2: Fit results for the theoretical models (columns are defined as in Table 1). For the shape parameters,
λ̃ = λc2 and µ̃ = µ

(
c8/ρs

)1/5, being c the speed of light in vacuum.

ever, it has been shown [28] that this effect does not alter significantly the predicted profile. The
inclusion of a 2-halo term could improve the fit of models that underestimate the outer points. De-
spite discrepancies at large radii, there is a global agreement between the DARKexp model and
the data. A similar agreement for clusters at different masses and redshifts would indicate that the
DARKexp model may provide a dynamical basis for observed dark matter density profiles.
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