
P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
6
3

Computational workflows with GC3Pe

Sergio MAFFIOLETTI∗

GC3: Grid Computing Competence Center
University of Zurich
E-mail: sergio.maffioletti@gc3.uzh.ch

Riccardo Murri
GC3: Grid Computing Competence Center
University of Zurich
E-mail: riccardo.murri@gmail.com

Tyanko Aleksiev
GC3: Grid Computing Competence Center
University of Zurich
E-mail: tyanko.aleksiev@gmail.com

This paper present GC3Pie [5], a python library to ease the development of scalable and robust
High Throughput data analysis tools. Most of the current distributed computing middlewares as
well as most of the in-house grown scripts fall short in reaching the scaling and reliability factors
required by the ever growing demand of large data analysis. GC3Pie provides mechanisms to
automitise the execution and the monitoring of large collection of applications while, at the same
time, provides simple data structures and interfaces to steer the behaviour of the underlying system
in an application-centric perspective. The goal of GC3Pie is to embody the common execution and
monitorig processing part of large data analysis while moving most decision making logic to the
application level; like, for example, the reaction to certain types of failures, the validation of the
application execution or the brokering of the computing resources driven by application fidelity
metrics. This allows to write application specific tools that take full control of the underlying
computing and data infrastructure, as opposite to current middleware stacks that are trying to
embody the full control of the execution logic thus reducing the flexibility of the entire system as
they prevent applications to define their own expected behaviour of the system.

EGI Community Forum 2012 / EMI Second Technical Conference
26-30 March, 2012
Munich, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:sergio.maffioletti@gc3.uzh.ch
mailto:riccardo.murri@gmail.com
mailto:tyanko.aleksiev@gmail.com

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
6
3

Computational workflows with GC3Pie Sergio MAFFIOLETTI

1. What is GC3Pie ?

GC3Pie is a library of Python classes to execute and control applications on distributed com-
puting resources (e.g., SGE clusters and ARC-based grids).

GC3Pie is object-oriented: basic classes abstract the generic and repetitive part of application
scripting, and let you focus on coding what is specific to your use case. Generic services pro-
vided by GC3Pie include: asynchronous job execution, programmatic generation of template files,
checkpoint/restart workflow execution.

GC3Pie is a toolkit: it provides the building blocks to write Python scripts to run large com-
putational campaigns (e.g., to analyze a vast dataset or explore a parameter space), and to combine
several tasks into a dynamic workflow.

2. How is GC3Pie different ?

Most execution engines represent workflows as data (e.g., some XML format). GC3Pie lets
you write Python code instead: you write your workflow as a set of Python classes so the entire
workflow logic is expressed in a plain programming language. This means that it is easy to create
loops and conditionally branch execution, for example.

Unlike other Python frameworks for distributing computation, e.g., Celery [4] or Pyro [3],
GC3Pie is designed to coordinate the execution of independent Applications (often pre-existing
and written in another language): with GC3Pie you write Python code to steer the computation,
not to perform it.

3. Workflows with GC3Pie

GC3Pie encourages a compositional approach for building workflows: the unit of job com-
position is called a Task in GC3Libs. An Application is the primary instance of a Task.
However, a single task can be composed of many applications. A task is a composite object: tasks
can be composed of other tasks. Workflows are built by composing tasks in different ways. A
workflow is a task, too.

The classes SequentialTaskCollection and ParallelTaskCollection are the
basic compositions of Tasks; by subclassing them you define how to coordinate the execution of
Tasks. For example, retry the execution of a certain step in a sequence, or stop a parallel parameter
sweep when a certain percentage of the tasks in it are successfully done.

TaskCollections are mutable objects, so Python code can alter them on the fly, while
a composition is running. This allows the creation of dynamic workflows, whose structure is not
fixed in advance, rather built in response to external events.

4. A real-world example: (Economic) Model calibration using Global Optimization

The presented workflow shows how a differential evolution optimizer is implemented with the
GC3Pie library to support the analysis of a computationally intense economic model. The paper
[1] seeks to understand the co-movement of interest rates and exchange rates. The economic model
is calibrated with data for five countries with major currencies.

2

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
6
3

Computational workflows with GC3Pie Sergio MAFFIOLETTI

To illustrate the explanatory power of the model, the countries’ preference parameters are
chosen to bring the simulated economies close to the real world. The resulting 10-dimensional
optimization problem of a non-convex function is undertaken with the help of the GC3Pie library.

GFPSequence (see fig. 1), a SequentialTaskCollection, implements the differential evolu-
tion optimizer: each optimization iteration is one sequential task. When initialized, the optimizer
generates an initial population of size n for the N-dimensional parameters (N=10).

The whole population is evaluated in parallel as a ParallelTaskCollection. Each
of the n tasks within the collection is an Application instance, a C++ implementation of the
economic model that simulates the interaction of two economies.

After the GFPParallel has completed, the GFPSequence.next() method checks for
convergence, otherwise generates a new population of size n and evaluates it.

The SessionBasedScript class provides a command line interface and allows running
several optimizations in parallel.

5. Wrokflow structure

For each optimization, a workflow is started. A driver script class SessionBasedScript
provides support for running several Tasks in parallel:

The SessionBasedScript class implements a command line interface to manage a session con-
sisting of the tasks so created.

class GFPScript(SessionBasedScript):

def new_tasks(self):

for ctry1, ctry2 in self.country_pairs:

add tasks to the session

yield (jobname,# unique identifier

GFPSequence # task class

[args], # creation arguments

kwargs)# creation keywords

A succession of Tasks is implemented through a SequentialTaskCollection. Tasks in
the collection are executed one after the other; after one of them completes, the next() method is
called to determine what step to take: continue execution with another task, or stop. The next()
method can modify the collection, or re-run tasks already run. It is thus possible to implement
indefinite loops, that repeat until a certain condition is met.

3

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
6
3

Computational workflows with GC3Pie Sergio MAFFIOLETTI

class GFPSequence(SequentialTaskCollection):

def __init__(self, ...):

SequentialsTaskCollection.__init__(

self, [tasks], ...)

def next(self, done):

if self.tasks[done].converged == True:

return Run.State.TERMINATED

else:

run another optimization step,

with altered parameters

new_params = ...

self.tasks.add(GFParallel(new_params))

Several simulations are run in parallel, one for each combination of input parameters; input
files for each simulations are created using a template mechanism.

The ParallelTaskCollection class is used to manage concurrent Tasks; subclass it to
create specialized collections:

class GFPParallel(ParallelTaskCollection):

def __init__(self, params..., **kwargs):

create Task collection from parameters

tasks = [GFPApplication(...)]

ParallelTaskCollection.__init__(

self, tasks, **kwargs)

Applications are the basic Tasks that comprise a workflow in GC3Pie. An Application
is just a UNIX process, i.e., any command that can be run from the shell command line. The
Application class should be subclassed to specify error-checking policies and post-processing of
output files:

class GFPApplication(Application):

def __init__(self, ...):

Application.__init__(

executable="./forwardPremiumOut",

arguments=["1", "2", "3"],

inputs=["input.file.name"],

outputs=["out.file", "out.directory"])

def terminated(self):

this gets called once the Task is done

if "simulation.out" in self.outputs:

self.execution.returncode = 0 # success

else:

self.execution.returncode = 1 # fail!

The workflow has been integrated in a suite called gpremium that has been used by a research
group from the Department of Banking and Finance a the University of Zurich (http://www.bf.uzh.ch/).

4

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
6
3

Computational workflows with GC3Pie Sergio MAFFIOLETTI

done

yes

no

new population

initial population

actual input files

Parameter
Range
Parameter

Range
Template

Input Files

G
F
P
A

p
p

li
c
a
ti

o
n

G
F
P
A

p
p

li
c
a
ti

o
n

converged?

class GFPScript(SessionBasedScript)

G
F
P
A

p
p

li
c
a
ti

o
n

class GFPParallel(ParallelTaskCollection)

class GFPApplication(Application)

class GFPSequence(SequentialTaskCollection)

Figure 1: The GFPremium workflow

A total of 796024062 jobs and an aggregated walltime of 221118 cpu/hours has been generated
through the gpremium suite.

6. Conclusion

This paper has presented how complex computational workflows could be programmatically
model using the GC3Pie framework. Instead of expressing the workflow logic using a defined
workflow description language as in many data-driven systems, GC3Pie allows to use simple and
yet effective data structures to programmatically compose tasks. GC3Pie is an open source project
under GPL license available at at http://code.google.com/p/gc3pie/.

5

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
6
3

Computational workflows with GC3Pie Sergio MAFFIOLETTI

References

[1] Jonen B., Scheuring S. Time-Varying International Diversification and the Forward Premium
(working paper). Institut für Banking und Finance, University of Zurich, 2011.

[2] Price K.V., Storn R.M., Lampinen J.A. Differential evolution: a practical approach to global
optimization. Springer, 2005.

[3] Pyro: http://packages.python.org/Pyro4/

[4] Celery: Distributed Task Queue http://celeryproject.org/

[5] GC3Pie. http://code.google.com/p/gc3pie/

[6] Gpremium, is a GC3Pie application available throught the GC3Pie repository.
http://code.google.com/p/gc3pie/

6

