
P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
1

EMI Execution Service implementation in ARC

Aleksandr Konstantinov∗

University of Oslo, P.b.1048 Blindern, N-0316 Oslo, Norway
E-mail: aleksandr.konstantinov@fys.uio.no

Martin Skou Andersen
Niels Bohr Institute, Blegdamsvej 17, 2100 København Ø, Denmark
E-mail: skou@nbi.ku.dk

The Advanced Resource Connector (ARC) Grid middleware including its Computing Service A-
REX was designed almost 10 years ago, and has proved to be an attractive distributed computing
solution. Historically ARC was using proprietary interfaces for managing computational jobs
on remote clusters. With time as coverage of various Grid middlewares expanded interoperabil-
ity became important. Few attempts have been made to address this issue. One of them was
adoption of OGSA Basic Execution Service (BES) standard. Unfortunately it proved to be not
covering enough functionality for production use. Various implementations provided by different
Grid middlewares - including ARC - solve that problem by implementing different proprietary
extensions hence breaking idea of compatibility. Recent development of EMI Execution Service
interface (EMI-ES) specifications produced much richer and almost production-ready definition
which takes into account requirements of 3 participating middlewares - gLite, Unicore and ARC.
To prove its usability and to test its completeness and interoperability capabilities it is important to
provide few implementations. This paper represents the implementation of the EMI-ES interface
made in the A-REX service.

EGI Community Forum 2012 / EMI Second Technical Conference
26-30 March, 2012
Munich, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:aleksandr.konstantinov@fys.uio.no
mailto:skou@nbi.ku.dk


P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
1

EMI Execution Service implementation in ARC Aleksandr Konstantinov

1. Introduction

Historically not so many efforts for standardizing computational job control interfaces can be
identified in Grid community. Both Local Resource Management Systems and their Grid layers
are mostly adopting proprietary solution. And although the tendency in Grid world is to use Web
Service technology that still only provides communication layer leaving semantics incompatible.

The most notable effort to provide true standard among Grid computing services is OGSA
Basic Execution Service (BES)[2] and corresponding job description language JSDL[3]. This stan-
dard was adopted by multiple Grid middlewares. Among them UNICORE[4], ARC[5], gLite[6],
etc. But interoperability tests show only very basic functionality achieved between different im-
plementations. The OGSA BES provides only very basic functionality and its extensions being
developed by various groups simultaneously are tuned for different aims and overlap. Also stan-
dards development procedure is usually slow and not consistent with much quicker life-cycle of
production middleware.

The plethora of non-compatible interfaces is driving development of client applications and
frameworks capable to communicate using multiple interfaces. Among those CondorG [7] can be
mentioned as one of oldest. ARC also provides set of client side plug-ins for communication with
2 own proprietary interfaces, OGSA BES-enabled[8] CREAM[9] service of gLite and UNICORE
atomic services[14].

This complex situation raised effort backed by 3 middlewares within European Middleware
Initiative project[10] to develop common interface with rich enough capabilities, flexible and with
fast development cycle. The EMI is a project developing a software platform for high performance
distributed computing. The EMI Grid middleware is used by scientific research communities and
distributed computing infrastructures all over the world including the Worldwide LHC Computing
Grid[11]. The EMI-ES is one of its core activities.

2. Description of interface

This new interface was called EMI Execution Service (EMI-ES) [12] and defines non-strict
super-set of functionalities from production versions of all participating middlewares. The distinc-
tive features of new interface - especially if compared to the BES - are:

• Quick development cycle tied to development of EMI components allows for almost imme-
diate response to needs of participating middlewares.

• Integrated support for data pre-staging and post-staging with flexible control for staging op-
tions. Staging of specific data is conditional depending on job request and outcome of com-
putational job.

• Support for delegation of client credentials to service closely linked to data staging function-
ality. It allows for different delegated credentials to be assigned to different input and output
data.

• To accommodate for various implementations of job processing life-cycle EMI-ES defines
only basic job state cycle. And states related to supported functionalities - data staging, fail-

2



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
1

EMI Execution Service implementation in ARC Aleksandr Konstantinov

ARC Client Library

Target
information

Job
control

Job
description

xR
S

L

JS
D

L

JD
L

E
M

I 
A

D
L

A
R

C
 (

LD
A

P
)

W
S

R
F

+
G

LU
E

2

B
E

S

E
M

I E
S

E
M

I 
E

S

C
R

E
A

M
 B

E
S

U
ni

co
re

 B
E

S

A
R

C
 B

E
S

A
R

C
 G

rid
F

T
P

Target
discovery

A
R

C
 E

G
II

S

T
op

/S
ite

-B
D

II

E
M

I R
eg

is
tr

y

Figure 1: Architecture of ARC client

ure reason, etc. - are represented by state modifiers which are only loosely coupled to specific
states. This allows for greater flexibility in how and at which state specific functionalities are
implemented.

3. Implementation

The EMI provides three implementations of computing services offering different set of fea-
tures and suited for different purposes - A-REX, CREAM[13] and UNICORE/X[14]. All three are
implementing EMI-ES interfaces as part of their EMI participation.

The ARC middleware implements EMI-ES interface both at client and service side. The client
part of ARC is a library - called ARC client library - implemented in C++ with a set of dynamically
loadable plug-ins each representing specific module for communicating with computing service,
indexing service or processing job request language. This modular design allows for seamless
addition of new interfaces and functionalities. For describing computational job internally ARC
uses structures initially based on JSDL and later significantly extended. The OGF[1] standard
GLUE2[15] model is a base for representing computational services internally. Significantly ex-
tended from their prototypes, those structures are able to express wide range of applications. This
coincides well with EMI-ES interface because it also chooses GLUE2 for representing service
capabilities.

The figure 1 shows currently available set of modules implemented for the ARC client library.
3 additional modules were designed as part of EMI-ES implementation - EMI job description lan-
guage (EMI ADL) handling module, EMI-ES computational job control module and EMI-ES ser-
vice information query module. Also for discovering EMI-ES service as part of Grid infrastructure
service discovery module which can talk to new EMI Registry service EMIR[16] was also imple-

3



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
1

EMI Execution Service implementation in ARC Aleksandr Konstantinov

Job
Management

Module
(Grid Manager)

Information
collector

Batch
system

WS interfaces:
BES

EMI ES

GridFTP interface

Infosys interface

Data staging

Delegation

Batch
interfaceDelegation

Figure 2: Architecture of ARC computing service

mented as part of the library. In this way ARC client library provides full solution for handling
computational activities within Grid infrastructure based only on common agreed EMI interfaces.

On service side ARC implements EMI-ES interface as part of A-REX service. The ARC
Computing Service A-REX[17] also has modular design. Different parts of functionality are split
over multiple modules as seen on figure 2. Communication part is handled by WS framework of
ARC with job processing implemented as separate module known as Grid Manager. Data staging is
done in another reusable module which provides balanced data download/upload functionality[18].
And credentials delegation is implemented as a dedicated library of C++ classes which provides
bridge between communication and job control modules. Such separation makes implementation
of new interface relatively simple task. It also allows to have multiple same and different kinds
of interfaces active simultaneously. That makes it possible even to deploy experimental interfaces
on production systems hence providing possibility to test new interface in real production environ-
ment.

Currently neither the client nor the service parts provide full EMI-ES implementation. Miss-
ing functionality is mostly related to a way A-REX processes jobs internally. There is not so much
of it - most notable are multiple prologues and epilogues for executable application and compatible
multi-node request support. However some of the EMI-ES specs triggered implementation of new
features in A-REX hence enhancing its usefulness. During the implementation process the EMI-
ES specification was identified as covering most of the use cases of ARC middleware. Whether

4



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
1

EMI Execution Service implementation in ARC Aleksandr Konstantinov

the non-covered functionality is really used in production environment and how it could be im-
plemented in EMI-ES functionality is still to be determined and may become subject for future
development of EMI-ES specifications. For purpose of better understanding capabilities and short-
comings of EMI-ES in production environment, ARC community is planning to promote EMI-ES
interface to be enabled on sites using ARC middleware.

4. Interoperability

The first interoperability tests showed promising results although not full interoperability was
immediately achieved. Besides few technical mistakes in interpreting EMI-ES specifications also
more serious shortcomings were revealed. The most important of them is weak definition of service
representation in GLUE2 model. That makes impossible for automated tools to properly discover
and use EMI-ES services and made interoperability tests a manual work.

5. Status and Conclusion

The implementation of new EMI-ES interface in ARC shows promising results as in some
fields it covers even broader functionality than was available before.

Preliminary interoperability tests run between different implementations of EMI-ES client and
service show that basic functionality is properly covered by specifications. But interconnection
between interfaces constituting service and way service describes itself through GLUE2 model
still are undefined. In case of ARC that means that although each plugin implementing part of
EMI-ES is capable to communicate to other implementations the whole set failed to perform.

That should drive further development of EMI-ES specifications to cover issues discovered
during interoperability tests.

6. Acknowledgment

This work was done as part of the EMI project and partially funded by the European Commis-
sion under Grant Agreement INFSO-RI-261611.

References

[1] Open Grid Forum, http://www.ogf.org

[2] I. Foster at al., OGSA Basic Execution Service Version 1.0, GFD-R.108, (2008)
[http://www.ogf.org/documents/GFD.108.pdf]

[3] A. Anjomshoaa at al., Job Submission Description Language (JSDL) Specification, Version 1.0,
GFD-R.136 (2008), [http://www.ogf.org/documents/GFD.136.pdf]

[4] A. Streit et al., UNICORE 6 - Recent and Future Advancements, Berichte des Forschungszentrums
Jülich JUEL-4319 (2010), ISSN 0944-2952 [http://hdl.handle.net/2128/3695]

[5] M. Ellert et al., Advanced Resource Connector middleware for lightweight computational Grids,
Future Generation Computer Systems 23 (2007) [doi:10.1016/j.future.2006.05.008]

[6] gLite - Lightweight Middleware for Grid Computing, [http://glite.cern.ch/]

5



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
8
1

EMI Execution Service implementation in ARC Aleksandr Konstantinov

[7] J. Frey et al., Condor-G: A Computation Management Agent for Multi-Institutional Grids,
Proceedings of the Tenth IEEE Symposium on High Performance Distributed Computing (HPDC10)
San Francisco, California, (2001)
[http://research.cs.wisc.edu/condor/doc/condorg-hpdc10.pdf]

[8] BES-Enabled CREAM, http://grid.pd.infn.it/omii/cream-bes

[9] P. Andreetto at al., CREAM: A simple, Grid-accessible, Job Management System for local
Computational Resources, Proc. XV International Conference on Computing in High Energy and
Nuclear Physics (CHEP’06), (2006), ISBN 10:0230-63017-0, ISBN 13:978-0230-63017-8.

[10] European Middleware Initiative, http://www.eu-emi.eu

[11] WLCG - Worldwide LHC Computing Grid, http://wlcg.web.cern.ch/

[12] B. Schuller at al., EMI Execution Service Specification,
https://twiki.cern.ch/twiki/pub/EMI/EmiExecutionService/EMI-ES-Specification_v1.07.odt

[13] CREAM (Computing Resource Execution And Management) Service,
http://grid.pd.infn.it/cream/

[14] UNICORE/X,
http://www.unicore.eu/unicore/architecture/service-layer.php#anchor_xnjs

[15] S. Andreozzi at al., GLUE Specification v. 2.0, GFD-R-P.147, (2009)
[http://www.ogf.org/documents/GFD.147.pdf]

[16] EMI Registry (EMIR), https://twiki.cern.ch/twiki/bin/view/EMI/EMIRegistry

[17] F. Paganelli at al., ARC Computing Element. System Administrator Guide,
NORDUGRID-MANUAL-20, (2012)
http://www.nordugrid.org/documents/arc-ce-sysadm-guide.pdf

[18] D. Cameron et al., Adaptive data management in the ARC Grid middleware, Journal of Physics:
Conference Series 331 062006 (2011)
[http://dx.doi.org/10.1088/1742-6596/331/6/062006]

6


