
P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
9
1

Performance testing of distributed computational
resources in the software development phase

Jozef Cernak∗, Eva Cernakova and Marek Kocan
P. J. Safarik University in Kosice, Kosice, Slovak Republic
E-mail: jcernak@upjs.sk

A grid software harmonization is possible through adoptionof standards i.e. common protocols

and interfaces. In the development phase of standard implementation, the performance testing of

grid subsystems can detect hidden software issues which arenot detectable using other testing

procedures. A simple software solution was proposed which consists of a communication layer,

resource consumption agents hosted in computational resources (clients or servers), a database

of the performance results and a web interface to visualize the results. Communication between

agents, monitoring the resources and main control Python script (supervisor) is possible through

the communication layer based on the secure XML-RPC protocol. The resource monitoring agent

is a key element of performance testing which provides information about all monitored processes

including their child processes. The agent is a simple Python script based on the Pythonpsutil

library. The second agent, provided after the resource monitored phase, records data from the

resources in the central MySQL database. The results can be queried and visualized using a web

interface. The database and data visualization scripts could be considered for a service thus the

testers do not need install them to run own tests.

EGI Community Forum 2012 / EMI Second Technical Conference,
26-30 March, 2012
Munich, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
9
1

Early performance testing Jozef Cernak

1. Introduction

Performance testing in the development phase of a software production can provide early
feedback about potential performance issues. The developers can propose and implement effective
solutions to solve the performance issues before products are widely deployed [1, 2]. The EMI test-
ing policy [3] covers performance testing activities during certification i.e. before public software
deployment.

The performance testing before wide deployment has specificneeds. In some cases, for ex-
ample memory leaks, more detailed information is needed notonly about running daemons and
processes (CPU times, memory usage, open ports and etc.) butalso we need to know resource
consumption of their child processes. The requirements on tool are: (i) an installation of the tool
should be simple and quick with minimal maintenance, (ii) the tool should be flexible to easily
realize new test cases. After a short review of available open tools we proposed to design a simple
proprietory solution [5] which should meet all our requiredcriteria i.e. easy set up and flexibility
in usage with minimal maintenance.

2. Basic components of the performance tool

The performance tool consists of two Python scripts which behave as agents, central DB with
a web interface to visualize the results, and communicationlayer Fig. 1.

One of the scripts,monitor_process_tree collects information about monitored processes and
all their subprocesses. The script utilizes the Pythonpsutil library [4] which is available for Linux
and MS Windows. The second Python scriptsend_proc_tree sends data from a monitored resource
to the central DB. The activity of the scripts (agents) can becontrolled manually, automatically
or in a combination of manual and automatic control. In the manual mode a developer or tester
manually starts or stops scriptsmonitor_process_tree andsend_proc_tree on the resources. When
monitoring of resources is stopped then scriptsend_proc_tree sends the results to the central DB.
This mode is the easiest way to obtain required performance parameters. Scripts are started:

monitor_process_tree.py "list of process names"

send_proc_tree.py "list of process names"

In the automatic mode we need to run main Python script which sets up required parameters
and initiates activity of basic scriptsmonitor_process_tree andsend_proc_tree i.e. agents running
on the resources. The main script depends on the test case. A secure XLM-RPC protocol is used for
communication between resources and the main script. This simple structure can cover complex
tests including monitoring of performance of processes running on several distributed resources
(clients and servers).

In many simple cases, a developer needs to installpsutil library [4] and start two simple python
scripts. For more complex tests, the developer can use the same approach or write own test script
which synchronize events.

The central database and visualization scripts could be considered for service to store and
visualize the results from independent developers i.e. thedeveloper does not need to install and
maintain database. The proposed scenario is slightly different from the one that is adopted in

2



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
9
1

Early performance testing Jozef Cernak

p1

p2

p1

p2

p1

p2

p1

p2

Central DB
resorurce 1

resorurce n

resorurce n-1resorurce 2

control layer

Figure 1: Main blocks of the performance test tool. Processes are p1 -monitor_process_tree and p2 -
send_proc_tree

other monitoring system which are designed to monitor performance and reliability of servers and
services during long period, for example Nagios.

3. Performance test cases

We separated performance testing in a few phases such as monitoring of processes, running
of test cases, sending the results to DB, and visualization of the results. This approach allows
the developer to run arbitrary own test without additional modifification what could be considered
for advantage. The simplicity of usage is demonstrated by two simple test cases. The number of
system parameters which we can assign to the process is limited bypsutil library [4], however for
many test cases the set of parameters is complete.

The first test case covers testing of client-server performance during submission of 1000 tasks
which were sent from the client to the server (load testing).The server hosted scriptsmoni-
tor_process_tree.py and send_proc_tree.py which were started and stopped manually. Daemons
arched andslapd including all their subprocesses were monitored for several minutes with interval
of 2 seconds. The results were stored in the central DB and areavailable via web interface [5].

The second case demonstrates parameter testing i.e. seeking the optimal parameter setting of
the slapd daemon to increase performance of server. During testing nojobs were submitted and a
low usage of CPU was expected (Fig. 2). Initially the server installed and configured with the 2nd

release candidate of the EMI major release 2 (EMI-2rc2) showed that theslapd daemon consumed
more CPU time than we expected (Fig. 2(a)). However, after a change of BDII andslapd settings
in the newest releaseEMI-2rc4 , the results showed less CPU usage see Fig. 2(b). Finally, wecan
track the performance parameters during development phasefrom a release to the next release.

3



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
9
1

Early performance testing Jozef Cernak

(a)

(b)

Figure 2: Comparison of the CPU usage of theslapd process in the case when no jobs are submitted. The
CPU usage for ARC CE for a software of version: (a) EMI-2rc2 and (b) EMI-2rc4. The x-axis is time in
seconds and y-axis is CPU usage in %.

4. Conclusions

A prototype of performance tool based on Python librarypsutil has been developed and tested.
The prototype meets all our initial requirements. We assumethat the scripts (agents) could be
easily integrated in similar performance tools, for example Nagios.

We plan to use the tool during the certification testing for the EMI-2 release as additional tool
to Nagios probes which are currently deployed. However, more complex performance and profiling
analysis of all ARC components will be realized after the EMI-2 release.

We have identified a need to define widely acceptable performance test cases and minimal
performance parameters across grid software vendors. For example, a number of submitted jobs
per minute or reliability of job submission process, which could enable potential users to evaluate
a quality of distributed software solutions.

5. Acknowledgment

This work was done as part of the EMI project and partially funded by the European Commis-

4



P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
0
9
1

Early performance testing Jozef Cernak

sion under Grant Agreement INFSO-RI-261611.

References

[1] D5.4-1 RESOURCE CONSUMPTION PROFILE AND PERFORMANCE BENCHMARK STUDY
OF THE EARLY PROTOTYPE RELEASE OF KNOWARC:
http://www.knowarc.eu/documents/Knowarc_D5.4-1_07.pdf

[2] D5.4-1 RESOURCE CONSUMPTION PROFILE AND PERFORMANCE BENCHMARK STUDY
OF THE FINAL RELEASE OF KNOWARC:
http://www.knowarc.eu/documents/Knowarc_D5.4-1_09.pdf

[3] EMI testing policies:
https://twiki.cern.ch/twiki/bin/view/EMI/EmiSa2TestPolicy

[4] psutil cross-platform process and system monitoring module for Python:
http://code.google.com/p/psutil/

[5] ARC tools for revision, functional and performance testing (including DB of test results and tool to
generate EMI test reports):http://arc-emi.grid.upjs.sk/tests.php

[6] ARC test coordination:http://wiki.nordugrid.org/index.php/Testing

5


