PROCEEDINGS

OF SCIENCE

Performance testing of distributed computational
resources in the software development phase

Jozef Cernak® Eva Cernakova and Marek Kocan
P. J. Safarik University in Kosice, Kosice, Sovak Republic
E-mail: j cer nak@pj s. sk

A grid software harmonization is possible through adoptibetandards i.e. common protocols
and interfaces. In the development phase of standard ingpitation, the performance testing of
grid subsystems can detect hidden software issues whichoardetectable using other testing
procedures. A simple software solution was proposed whiclsists of a communication layer,
resource consumption agents hosted in computational res®(clients or servers), a database
of the performance results and a web interface to visudtieegsults. Communication between
agents, monitoring the resources and main control Pythdptgsupervisor) is possible through
the communication layer based on the secure XML-RPC pratdbe resource monitoring agent
is a key element of performance testing which provides mftion about all monitored processes
including their child processes. The agent is a simple Ry#wipt based on the Pythqsutil
library. The second agent, provided after the resource toi@d phase, records data from the
resources in the central MySQL database. The results candyeed and visualized using a web
interface. The database and data visualization scriptsl dmiconsidered for a service thus the
testers do not need install them to run own tests.

EGI Community Forum 2012 / EMI Second Technical Conference,
26-30 March, 2012
Munich, Germany

“Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/

Early performance testing Jozef Cernak

1. Introduction

Performance testing in the development phase of a softwadugtion can provide early
feedback about potential performance issues. The devslope propose and implement effective
solutions to solve the performance issues before produeisidely deployed [1, 2]. The EMI test-
ing policy [3] covers performance testing activities dgrirertification i.e. before public software
deployment.

The performance testing before wide deployment has spewfds. In some cases, for ex-
ample memory leaks, more detailed information is needednlyt about running daemons and
processes (CPU times, memory usage, open ports and etcglsbuive need to know resource
consumption of their child processes. The requirement®oinare: (i) an installation of the tool
should be simple and quick with minimal maintenance, (i@ thol should be flexible to easily
realize new test cases. After a short review of availablendpels we proposed to design a simple
proprietory solution [5] which should meet all our requirertiteria i.e. easy set up and flexibility
in usage with minimal maintenance.

2. Basic components of the performance tool

The performance tool consists of two Python scripts whidielse as agents, central DB with
a web interface to visualize the results, and communicdéipar Fig. 1.

One of the scriptsmonitor_process _tree collects information about monitored processes and
all their subprocesses. The script utilizes the Pytpautil library [4] which is available for Linux
and MS Windows. The second Python scegid proc_tree sends data from a monitored resource
to the central DB. The activity of the scripts (agents) carcoetrolled manually, automatically
or in a combination of manual and automatic control. In thennah mode a developer or tester
manually starts or stops script®onitor_process tree andsend proc_tree on the resources. When
monitoring of resources is stopped then scsgntd_proc_tree sends the results to the central DB.
This mode is the easiest way to obtain required performaacanpeters. Scripts are started:

nmoni tor _process tree.py "list of process nanes"
send _proc_tree.py "list of process nanes"

In the automatic mode we need to run main Python script wheth $p required parameters
and initiates activity of basic scripteonitor_process tree andsend_proc_tree i.e. agents running
on the resources. The main script depends on the test caseuresKLM-RPC protocol is used for
communication between resources and the main script. Thjges structure can cover complex
tests including monitoring of performance of processesingon several distributed resources
(clients and servers).

In many simple cases, a developer needs to ingsafil library [4] and start two simple python
scripts. For more complex tests, the developer can use the approach or write own test script
which synchronize events.

The central database and visualization scripts could beidered for service to store and
visualize the results from independent developers i.e.déveloper does not need to install and
maintain database. The proposed scenario is slightlyrdiftefrom the one that is adopted in

Early performance testing Jozef Cernak

resorurce 1

Central DB / resorurce n

. control layer

N

® ®
® ®

resorurce 2 resorurce n-1

Figure 1. Main blocks of the performance test tool. Processes are mpdnitor_process tree and p2 -
send_proc tree

other monitoring system which are designed to monitor parémce and reliability of servers and
services during long period, for example Nagios.

3. Performancetest cases

We separated performance testing in a few phases such atonmaniof processes, running
of test cases, sending the results to DB, and visualizatidheoresults. This approach allows
the developer to run arbitrary own test without additionaldifification what could be considered
for advantage. The simplicity of usage is demonstrated loysimple test cases. The number of
system parameters which we can assign to the process ieditoytpsutil library [4], however for
many test cases the set of parameters is complete.

The first test case covers testing of client-server perfao@aluring submission of 1000 tasks
which were sent from the client to the server (load testinghe server hosted scriptsoni-
tor_process treepy andsend _proc_tree.py which were started and stopped manually. Daemons
arched anddapd including all their subprocesses were monitored for seveirautes with interval
of 2 seconds. The results were stored in the central DB anavaikable via web interface [5].

The second case demonstrates parameter testing i.e. gée&ioptimal parameter setting of
the dapd daemon to increase performance of server. During testirjghbsowere submitted and a
low usage of CPU was expected (Fig. 2). Initially the sermstalled and configured with thé®
release candidate of the EMI major releas&®I[(-2rc2) showed that thalapd daemon consumed
more CPU time than we expected (Fig. 2(a)). However, aftdramge of BDIl anddlapd settings
in the newest releadeMI-2rc4 , the results showed less CPU usage see Fig. 2(b). Finallgawe
track the performance parameters during development fiasea release to the next release.

Early performance testing

Jozef Cernak

On-line Graph: CPU%
cpup

200 400 600 800 1000 1200 1400
Process: slapd

On-line Graph: CPU%
cpup

= (@)

~ (b)

Figure 2: Comparison of the CPU usage of tHepd process in the case when no jobs are submitted. The
CPU usage for ARC CE for a software of version: (a) EMI-2rc@ o) EMI-2rc4. The x-axis is time in
seconds and y-axis is CPU usage in %.

4. Conclusions

A prototype of performance tool based on Python libyasytil has been developed and tested.
The prototype meets all our initial requirements. We asstimaé the scripts (agents) could be

easily integrated in similar performance tools, for exagrghagios.

We plan to use the tool during the certification testing fer BMI-2 release as additional tool
to Nagios probes which are currently deployed. Howevergmomplex performance and profiling
analysis of all ARC components will be realized after the EMElease.

We have identified a need to define widely acceptable periacmaest cases and minimal
performance parameters across grid software vendors. Xaonme, a number of submitted jobs
per minute or reliability of job submission process, whictulel enable potential users to evaluate
a quality of distributed software solutions.

5. Acknowledgment

This work was done as part of the EMI project and partiallydieah by the European Commis-

Early performance testing Jozef Cernak

sion under Grant Agreement INFSO-RI-261611.

References

[1] D5.4-1 RESOURCE CONSUMPTION PROFILE AND PERFORMANCE BEHMARK STUDY
OF THE EARLY PROTOTYPE RELEASE OF KNOWARC:
http://ww. knowar c. eu/ docunment s/ Knowar c_D5. 4-1_07. pdf

[2] D5.4-1 RESOURCE CONSUMPTION PROFILE AND PERFORMANCE BEHMARK STUDY
OF THE FINAL RELEASE OF KNOWARC:
htt p: // ww. knowar c. eu/ docunent s/ Knowar c_D5. 4-1_09. pdf

[3] EMI testing policies:
https://tw ki.cern.ch/twi ki/bin/view EM /Em Sa2Test Pol i cy

[4] psutil cross-platform process and system monitoringlote for Python:
http://code. googl e. coni p/ psutil/

[5] ARC tools for revision, functional and performance tegt(including DB of test results and tool to
generate EMI testreportd)t t p: //arc-em . gri d. upj s. sk/ tests. php

[6] ARC test coordinationht t p: //wi ki . nor dugri d. or g/ i ndex. php/ Testi ng

