
P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
1
4
9

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

The EGI Software Vulnerability Group and EMI

L. A. Cornwall1

STFC, The Rutherford Appleton Laboratory

Harwell Oxford, Didcot, OX11 OQX, United Kingdom

E-mail: Linda.Cornwall@stfc.ac.uk

E. Heymann

Universitat Autonoma de Barcelona

Computer Architecture and Operating System Department, Campus de Bellaterra, Bellaterra 08193

(Barcelona), Spain

E-mail: Elisa.Heymann@uab.cat

This provides an overview of the activities of the European Grid Infrastructure (EGI) Software

Vulnerability Group (SVG) and progress made in addressing vulnerabilities in collaboration

with the European Middleware Initiative (EMI). This includes a summary of the formally agreed

process for handling Software Vulnerabilities reported to the EGI SVG. It also describes the

pro-active searching for vulnerabilities via ‘Vulnerability Assessment’ of software packages.

Steps taken to prevent new vulnerabilities entering the infrastructure are described. The

emphasis is on Grid Middleware as vulnerabilities in this software are generally not handled

elsewhere. The collaboration with the Grid middleware software providers, in particular EMI, is

described.

EGI Community Forum 2012 / EMI Second Technical Conference,
Munich, Germany

26-30 March, 2012

1
 Speaker

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
1
4
9

The EGI Software Vulnerability Group and EMI Linda Cornwall

 2

1. Introduction

The purpose of the EGI Software Vulnerability Group (SVG) is to eliminate existing

vulnerabilities from the deployed infrastructure, primarily from Grid Middleware, prevent the

introduction of new ones and prevent Security incidents. This describes the various strategies

for keeping the infrastructure as free from software vulnerabilities as possible.

1.1 Definition of a Vulnerability

A vulnerability may be defined as a weakness allowing a principal (such as a user) to gain

access to or influence a system beyond their intended rights. Gary McGraw’s definition is a

vulnerability is a defect or weakness in system security procedures, design, implementation, or

internal controls that can be exercised and result in a security breach or violation of security

policy. A vulnerability may result in an unauthorized user gaining access to a system, or an

authorized user gaining unintended privileges (such as root or admin access), damaging a

system, gaining unintended access to, deleting or modifying data or information or

impersonating another user. In a Grid system where a large number of resources are distributed

across many countries, the consequence of a malicious user exploiting a vulnerability can be

devastating.

Generally, system administrators are trusted and any ability to carry out any actions on the

site or sites which they administrate (such as view or delete information), are not considered to

be vulnerabilities. The exception is access to bulk encrypted data and the encryption keys which

allow such data to be decrypted. System administrators are not prevented from having access to

data decrypted on the machines for which they are responsible, for example during processing.

In addition, information which may be useful to an attacker (such as lists of port numbers) is not

considered to be a vulnerability, nor are concerns such as ‘These instructions are not clear, this

could be installed in an insecure manner’.

Vulnerabilities due to weaknesses in software are the focus of this paper.

1.2 Strategies for reducing Software Vulnerabilities in the EGI environment

There are 3 main strategies for reducing software vulnerabilities in the EGI infrastructure.

The first (and largest activity of the EGI SVG) is the handling of vulnerabilities reported,

including the investigation, assessment and timely resolution of vulnerabilities found to be valid

in the EGI environment. The second is ‘Vulnerability Assessment’, which is the pro-active

investigation of software widely used in the EGI environment to see if there are any

vulnerabilities present. The third is vulnerability prevention, which consists of developer

education and the consideration of whether new middleware and functionality should be

allowed onto the EGI infrastructure.

2. The Handling of Software Vulnerabilities reported

This is the largest activity of the EGI software vulnerability group, where issues reported

are handled and resolved in a timely manner.

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
1
4
9

The EGI Software Vulnerability Group and EMI Linda Cornwall

 3

2.1 Background

In 2005 various people were discussing potential vulnerabilities in Middleware used in the

Grid Infrastructure on open mailing lists, and comments such as ‘someone should list these and

we should get them fixed’. Hence the EGEE Grid Security Vulnerability Group (GSVG) began

and a process for handling vulnerabilities was agreed and approved by the management at the

time. Between 2005 and 2010 (prior to the start of EGI) 193 potential vulnerabilities were

reported and handled by the GSVG resulting in approximately 100 bug fixes concerning these

vulnerabilities. At the start of EGI the EGI Software Vulnerability Group (SVG) was formed.

2.2 Scope of EGI SVG issue handling

The main focus is to handle vulnerabilities found in the EGI Unified Middleware

Distribution (UMD) repository [1], where EGI has a Service Level Agreement with the

providers of this software stipulating response times and agreeing that issues should be handled

according to the EGI SVG issue handling process. The largest provider of software in the EGI

UMD is the European Middleware Initiative (EMI) [2]. In general, Grid middleware does not

have any other group or activity handling vulnerabilities. The EGI SVG also handles

vulnerabilities in other software deployed on the EGI infrastructure, and this is carried out

jointly with EGI Computer Security Incident Response Team (CSIRT). CSIRT handles

incidents and operational security to provide a consistent risk assessment of all vulnerabilities in

software deployed on the EGI infrastructure. Software vulnerabilities in software other than that

distributed as part of the EGI UMD is fixed by their providers and EGI has no service level

agreement with such providers.

If any vulnerability is reported to the EGI SVG the EGI SVG will look at it and take any

action necessary. For example, if it is not relevant to EGI yet it is not certain that the provider of

the software is aware of the problem then EGI SVG will forward the information to the software

provider. Table 1 summarises which actions are carried out for reports of possible

vulnerabilities in various types of software.

2.3 Summary of the EGI SVG Issue handling process

The full details of the EGI issue handling process is defined in detail in The EGI Software

Vulnerability Issue Handling Procedure [3] and is carried out by the EGI SVG Risk Assessment

Team (RAT)[4] who are have full access details of vulnerabilities reported.

 Anyone may report an issue by e-mail to report-vulnerability@egi.eu

 The issue is investigated by a collaboration between the reporter, RAT, and the

developers of the software.

 If the issue is found to be valid, a risk assessment is carried out, whereby the issue

is placed in one of four risk categories which are Critical, High, Moderate, or

Low.

 A ‘Target Date’ for resolution is set according to a fixed value for each category.

Critical = 3 working days, High = 6 weeks, Moderate = 4 months, Low = 1 year.

 An advisory is issued when the problem is resolved, and a new version of the

software released, or on the target date.

mailto:report-vulnerability@egi.eu

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
1
4
9

The EGI Software Vulnerability Group and EMI Linda Cornwall

 4

Software Source S/W provider

aware/announced

vulnerability

S/W provider

not clearly aware

of vulnerability

Risk

Assessment

Other comment

EGI UMD – e.g.

EMI/IGE software

for which EGI has

SLA

Problem fully handled according to

process in this document by SVG

SVG

Operational Tools

developed by the

EGI InSPIRE

project

Problem fully handled according to the

process in this document by SVG,

except distribution of tools not in UMD

SVG

Linux Operating

system software on

which the EGI

infrastructure is

based

CSIRT sub-group

/SVG investigates

relevance to EGI

Inform software

provider

SVG/CSIRT

subgroup

jointly

Usually CSIRT

member will

contact provider if

necessary

EPEL software

(Extra Packages for

Linux Enterprise)

CSIRT sub-group

/SVG investigates

relevance to EGI

Inform software

provider

SVG/CSIRT

subgroup

jointly

SVG or CSIRT

member will

contact provider

depending on

knowledge

Other Software

widely installed on

the EGI

Infrastructure

CSIRT sub-group

/SVG investigates

relevance to EGI

Inform software

provider

SVG/CSIRT

subgroup

jointly

SVG or CSIRT

member will

contact provider

depending on

knowledge

Software not

installed on the EGI

infrastructure

Do nothing Inform software

provider

None Only action is to

forward

information.

 Table 1. Guide to how vulnerabilities in various types of software is handled.

The Risk Assessment is carried out by the RAT because mitigating or aggravating factors may

exist in the EGI infrastructure, and these need to be taken into account. The procedure states that

the RAT will vote on the Risk category, but in most cases a consensus is reached.

The EGI aims to complete this within 4 working days, or 1 working day for critical

vulnerabilities.

The software providers and the EGI Deployed Middleware Support Unit (DSMU) then need to

ensure that the issue is fixed and available in the EGI UMD for installation by the various

Resource Providers or sites by the target date.

If a vulnerability is assessed as Critical, then SVG and CSIRT jointly decide on what action to

take. Possibilities include setting a longer target date or carrying out operational mitigation.

Usually it is apparent if a vulnerability is likely to be considered ‘High’ or ‘Critical’ risk as soon

as it is reported and members of the RAT and the developers focus their attention on it.

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
1
4
9

The EGI Software Vulnerability Group and EMI Linda Cornwall

 5

2.4 Advisories

Advisories are released when the software vulnerability is fixed, or on the Target date,

whichever is the sooner. This is known as ‘responsible disclosure’ which allows software

providers to fix the issue but does not keep the information secret indefinitely. Advisories state

what the problem is, including the effect of an exploit, but should not give enough information

to allow the vulnerability to be easily exploited unless it is essential for the resolution of a

vulnerability in the infrastructure.

Advisories are normally placed on the EGI SVG wiki [5] as well as being set to National

Grid Infrastructure security contacts, Site security contacts, and CSIRT by e-mail. The original

reporter also receives a copy of the advisory.

2.5 Progress during EGI

Since the start of EGI (in May 2010) 52 potential vulnerabilities have been reported. This

has resulted in 14 advisories released publically by SVG as well as many of the alerts released

by CSIRT for more non-middleware issues [6]. At the time of writing 12 Middleware issues are

awaiting the release of a software fix (all assessed as ‘Low’ risk.)

2.6 Problems encountered and improvements planned.

Sometimes the co-ordination between the various parties has not quite worked to plan, and

confusion has happened when trying to ensure the advisory is issued at the same time as the

patch is available in the UMD. Co-ordination has improved with time, but may be improved

further by making available a flow chart of who does what and when.

Sometimes information on vulnerabilities has been leaked before the fixed version is

available in the EGI UMD. This may be due, for example, to world readable open source

software management tools making it possible for a person who is following changes to gain

information on where vulnerabilities may be found. Software providers have been asked to

avoid making changes publicly detectable for ‘High’ or ‘Critical’ risk vulnerabilities, but this

problem is not yet fully resolved.

At times it has been difficult to track which version of the middleware component contains

a vulnerability and which version does not. This has been resolved by tracking the fixed version

of the middleware component, the first EMI version which contains the fix, and the first UMD

version which provides that fix.

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
1
4
9

The EGI Software Vulnerability Group and EMI Linda Cornwall

 6

3. First Principles Vulnerability Assessment

3.1 Description

Researchers from the University of Wisconsin Madison and the Universitat Autonoma de

Barcelone developed a methodology for manual (analyst centric) Vulnerability Assessments,

called First Principles Vulnerability Assessment (FPVA) [7]. FPVA allows the in depth

valuation of the security of a system. While FPVA is a labour intensive approach to

Vulnerability assessment, it has been shown to be effective in several real systems, such as

Condor, Wireshark, and VOMS, finding several serious vulnerabilities.

FPVA consists of 5 stages, architectural, resource, privilege, and component analysis

followed by result dissemination.

Architectural Analysis: This step identifies the major structural components of the system,

including modules, threads, processes and hosts. For each of these components, FPVA identifies

the way they interact, both with each other and with users. Interactions are particularly

important as they provide a basis for understanding how the trust is delegated through the

system. The artefact produced at this stage is a document that diagrams the structure of the

system and the interactions amongst the different components, and with the end users.

Resource Analysis: This second step identifies the key resources accessed by each

component, and the operations supported on those resources. Resources include hosts, files,

databases, logs, and devices. These resources are often the target of an exploit. For each

resource, FPVA describes its value as an end target or as an intermediate target. The artefact

produced at this stage is an annotation of the architectural diagrams with resources.

Privilege Analysis: This third step identifies the trust assumptions about each component,

answering such questions as how are they protected and who can access them? The privilege

level controls the extent of access for each component and, in the case of exploitation, the extent

of damage that it can accomplish directly. A complex but crucial part of trust and privilege

analysis is evaluating trust delegation. By combining the information from the first two steps,

we determine what operations a component will execute on behalf of another component. The

artefact produced at this stage is a further labelling of the basic diagrams with trust levels and

labelling of interactions with delegation information.

Component Analysis: This forth step examines each component in depth. For large

systems, a line-by-line manual examination of the code is unworkable. In this step, FPVA is

guided by information obtained in the first three steps, helping to prioritize the work so that the

code relating to high value assets is evaluated first. The work in this step can be accelerated by

automated scanning tools. While these tools can provide valuable information, they are subject

to false positives, and even when they indicate real flaws, they often cannot tell whether the

flaw is exploitable and, even if it is exploitable, the tools cannot tell if it will allow serious

damage. The artefacts produced by this step are vulnerability reports, which are provided to the

software developers.

Result dissemination: Once vulnerabilities are reported, the obvious next step is for the

developers to fix them. Vulnerabilities in EMI software are handled in the same way as other

vulnerabilities reported to EGI SVG, a risk assessment is carried out and target date for

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
1
4
9

The EGI Software Vulnerability Group and EMI Linda Cornwall

 7

resolution set. Information on the full details of the vulnerability is not usually released publicly

until the vulnerability has been fixed and sites have had plenty of time to ensure that the

vulnerability is no longer present in the deployed infrastructure.

3.2 Application to EMI software

Various pieces of software from EMI have been assessed using the FPVA methodology.

The Virtual Organisation Membership Service (VOMS) Admin 2.0.18 (which allows a Virtual

Organisation Administrator to give appropriate membership and roles to users) has been

assessed, and the vulnerabilities found fixed about 1 year ago. Argus 1.2 [8] (which facilitates

authorization decisions in a distributed environment according to user’s rights) has been

assessed, and no vulnerabilities were found. gLexec 0.8 (which acts as a lightweight gatekeeper,

taking the local site policy into account to authenticate and authorize a user according to their

grid credentials, and allows identity switching) [9] was assessed, and some ‘Low’ risk

vulnerabilities were found. These have been resolved in the latest version which is expected to

be released at the end of April 2012. VOMS Core 2.0.2 has been assessed and one ‘Low’ risk

vulnerability has been found.

At present members of the Universitat Autonoma de Barcelona are working on assessing

the ‘Workload Management System’ WMS. Plans are also in place to assess the Computing

Resource Execution And Management (CREAM).

If time and manpower permits, plans are also in place to assess two UNICORE

components: The Target System Interface (TSI) which provides and interface between

UNICORE and the individual resource management/batch system and operating system of the

Grid resources and Gateway which is an authenticating web proxy service for web service

requests (SOAP messages) and normal HTTP traffic of the UNICORE Grid Middleware.

4.Vulnerability Prevention

4.1 Developer Training

One way to help prevent new vulnerabilities from occurring is to train developers to write

secure code. In particular not to trust user input, including that from a client supplied by the

developers if it is possible for a user to modify that client. File permissions should also be

checked, for example if a file has world write permission which is executable as there is the

potential for a root exploit if a user can execute code on that system. Programmers should also

be aware of buffer overflows; different kind of injection attack, including command injection

and SQL injection; attacks through strings or integers; directory traversal; and web attacks such

as Cross-site scripting amongst many others.

Developer training has largely been carried out by EMI, for example at the EGI Technical

Forum in Lyon in September 2011[10] . EMI offers tutorials on Security Risks, Vulnerability

Assessment and Secure Programming for users, software developers, system administrators and

managers.

Currently the above mentioned tutorial is being expanded to a University course consisting

of 80 hours of lectures and exercises in C, C++, Java and scripting languages.

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
1
4
9

The EGI Software Vulnerability Group and EMI Linda Cornwall

 8

4.2 Certification testing

It is possible to test for some vulnerabilities at Certification of a software package. As part

of the EMI certification the software is checked for world writeable files, and since this has

been in place no vulnerabilities have been found due to the presence of world writeable files.

Further tests may be considered if they are identified in the future.

4.3 Assessing new software for vulnerabilities

At times EGI forms partnerships with new software providers. Even though a lot of effort

has gone into reducing the vulnerabilities in software provided by existing providers the

addition of new providers opens the possibility of new software vulnerabilities in the EGI

infrastructure. Ideally such software would be assessed in detail for vulnerabilities, for example

using the FPVA techniques referred to above. However due to lack of manpower this is not

possible. The possibility of checklists for important criteria for the acceptance of new software

has been suggested but no progress has been made so far.

4.4 Assessing new requirements

New software requirements may in principle introduce a vulnerability. For example, if a

requirement was accepted from a user group which provides information which is useful to

them, it may also expose information which should not be exposed, and lead to a vulnerability.

Consideration of the security implications of new requirements should be considered but no

progress has been made so far.

5. Conclusions and future work

The EGI SVG in conjunction with EMI have worked together to reduce the number of

vulnerabilities in the EGI infrastructure, and prior to that in the EGEE infrastructure.

Less new vulnerabilities which are ‘High’ risk or ‘Critical’ risk are being reported in the

EMI middleware, which suggests that the vulnerability prevention measures are having affect.

Since EMI is coming to an end in 2013 plans need to be put in place to ensure that security

support for deployed middleware components is available and procedures for handling

vulnerabilities in this new situation defined.

New technology including Cloud technology and virtualization will inevitably introduce

new security issues, which need to be investigated and addressed. One aspect is the software

which facilitates the federation of cloud infrastructure for research communities, vulnerabilities

of various types may be found in this software which will need to be addressed.

When new technology appears there is a tendency for security to be ignored or thought

about later. Security (including software security) needs to be addressed and have an appropriate

level of investment from the beginning.

FPVA has proven to be an effective methodology for finding vulnerabilities. Nevertheless

it is a manual methodology, therefore is expensive and time consuming. At present research is

being carried out to automate parts of it. In particular, techniques like self-propelled

instrumentation [11] will allow us to automatically obtain the architectural diagram of a

P
o
S
(
E
G
I
C
F
1
2
-
E
M
I
T
C
2
)
1
4
9

The EGI Software Vulnerability Group and EMI Linda Cornwall

 9

distributed application. In addition tools are being worked on we are for guiding the analyst

where in the code to search for what problems.

Overall, the 3 main activities for reducing software vulnerabilities in the EGI infrastructure

(handling reported vulnerabilities, assessing code for vulnerabilities, and vulnerability

prevention) are progressing well.

References

[1] The EGI UMD repository http://repository.egi.eu/

[2] EMI http://www.eu-emi.eu/

[3] The EGI Software Vulnerability Issue handling Procedure

https://documents.egi.eu/secure/ShowDocument?docid=717

[4] The EGI Risk Assessment Team Members https://wiki.egi.eu/wiki/SVG:RAT_Members

[5] EGI SVG advisories https://wiki.egi.eu/wiki/SVG:Advisories

[6] EGI CSIRT Alerts https://wiki.egi.eu/wiki/EGI_CSIRT:Alerts

[7] James A. Kupsch, Barton P. Miller, Eduardo César, and Elisa Heymann, "First Principles

Vulnerability Assessment", 2010 ACM Cloud Computing Security Workshop (CCSW), Chicago,

IL, October 2010

[8] Argus http://www.switch.ch/grid/argus/index.html

[9] gLexec https://wiki.nikhef.nl/grid/GLExec

[10] EGI Technical Forum 2011 Training Tutorial on secure programming

https://www.egi.eu/indico/contributionDisplay.py?sessionId=57&contribId=75&confId=452

[11] Alexandre V. Mirgorodskiy and Barton P. Miller, "Diagnosing Distributed Systems with Self-

Propelled Instrumentation", ACM/IFIP/USENIX 9th International Middleware, Leuven, Belgium,

December 2008

http://repository.egi.eu/
http://www.eu-emi.eu/
https://documents.egi.eu/secure/ShowDocument?docid=717
https://wiki.egi.eu/wiki/SVG:RAT_Members
https://wiki.egi.eu/wiki/SVG:Advisories
https://wiki.egi.eu/wiki/EGI_CSIRT:Alerts
http://www.switch.ch/grid/argus/index.html
https://wiki.nikhef.nl/grid/GLExec
https://www.egi.eu/indico/contributionDisplay.py?sessionId=57&contribId=75&confId=452

